Graphical resources Graphical resources
Guest | Passport
 Rus | Eng   
 |  Help
..Up
Viewing the list of composite figures

List of figures from publications. Viewing composite plots

rows starting from
In all rows 281

Year Composite figure title Plots in the figure Figure size
1951

Figure 7a. Atmospheric transmission, 1 to 5.5 μ ; visual transmission (0.61 μ)  60% per sea mile; water content 17 mm.
Figure 7b. Atmospheric transmission, 7.5 to 14 μ; visual transmission (0.61 μ) 60% per sea mile; water content 17 mm.

1 x 2 800 x 1080
1956

Figure 4. The 2.7- and 3.2 -μ bands of H2O, showing the absorption parameters variable with the multiple-traversal cell.

2 x 2 1800 x 1080
1968

Figure 6. Comparison of observed and calculated transmittances in the 18-36 cm-1 region for representative samples of H2O and H2O+N2. The observed values are represented by data points.  Calculated values of Tonic (v) with the instrumental response  function taken into account are represented by the solid lines, and calculated true transmittance T'(v) by the short-dashed lines, D and F. The long-dashed curves, A, E, and H represent TnIc (v)  with the following modifications to the parameters: Panel I,  Curve A, the contribution by the continuum was not included. Panel II, Curve E, the absorption coefficient was increased by 10% at all wavenumbers. Panel IV, Curve H, the self-broadening factor  Be for the continuum was assumed to be 5 instead of 13. The sample parameters are

Sample u p P
No. ( g/cm2) (atm) (atm)
1 0.105 0.0117 0.95
2 0.205 0.0116 0.95
3 0.200 0.0075 0.133
4 0.587 0.0226 0.0226
1 x 4 800 x 1080
1969

Influence of assumed line width on calculated curves of χ (v- vo) and χ (ν) in the 7000 cm-1 region. The curve in the lowerpanel represents the experimental results for ks0. The + 's represent the values calculated on the basis of lines whose χ is given by the solid curve in the upper panel and whose half-widths are given by Fig. 4. The squaries represent values calculated on the basis of the  same χ but with α0 = 0.092 cm-1 for all lines. Values of ks0 based on  lines with α0= 0.092 cm-1 and x modified according to the dashed curve agree with the experimental curve to within ±42%.

1 x 2 640 x 960
1969

Figure 16. Curves of χ and kN20 showing influence of assumed line shape on the calculated absorption coefficient in the 3800 cm-1 region. Curve A in the lower panel represents the experimental results for KN20. The circles represent the values calculated on the basis of a line shape whose χ is given by curve A in the upper panel. Variations in the line shape given by curves B, C, D, and E in the upper panel were assumed, and the corresponding calculated curves of kN20 are shown in the lower panel. The six vertical lines in the lower panel indicate the wavenumbers at which experimental measurements were made.

1 x 2 640 x 960
1969

Figure 7. Boltmann-weighted Lorentzian curves fitted to the 2 components of the (1-0) 1Δg3Σg-- band at 87° and 300°K. The dashed curves are calculated for the individual components and the solid curve is the sum of these. The curve with dots gives the experimental data.

1 x 2 960 x 1080
1969

Figure 1. Spectra of the (0-0) band of the 1Δg + 1Δ3Σg-+3Σg- simultaneous transition. The pathlength is 168 m. The slitwidth is 1 cm-1. The oxygen desnity is 2.1 amagats at both temperatures. The tick mark indicates the band origin calculated from free-molecule spectroscopic constants.

1 x 2 960 x 1080
1969

Figure 2. Spectra of the (1-0) band of the 1Δg + 1Δ3Σg-+3Σg-- a simultaneous path length tranSItion. of 122 m The and a upper slitwidth spectrum of about was 1.2 recorded cm-1. with  The  lower spectrum was recorded with a path length of 168 m and a  slitwldth of about 2.5 cm-1. The oxygen density was 2.1 amagats at both temperatures. The tick mark indicates the band origin calculated from the spectroscopic constants of the free molecule.

1 x 2 960 x 540
1969
Москаленко Н.И., Мирумянц С.О.,
О влиянии температуры на поглощение ИК радиации парами Н2О и СО2,
Известия РАН. Серия Физика атмосферы и океана, 1969, Volume 5, no. 12, Pages 1292-1299.

Figure 1. Влияние температуры на спектральное пропускание паров Н2О (Р0=2.5 атм, w=4*10-3 ос см): а – полоса 1.37 мкм, б – полоса 1.87 мкм; 1 – Т=-30оС, 2 – Т=30оС, 3 – Т=120оС

1 x 2 800 x 1280
1971

Figure 1. The (v1, 2v2) infrared  band of CO2. (a) Ob- served   spectrum (I = 56 m, ρ = 0.92 amagat, T = 1920K). (b) Profile with the (v1, 2v2) band of C16O18O removed. (c) Calculated pressure-induced   profile for free-free collisions. (d) (= (b) - (c))  Spectrum ascribed to the (CO2)2 dimer. (e) The v1d band with  assignments of the maxima.

1 x 2 640 x 1080
1971

Table 2. Absorption coefficients and cross sections of the CO2 continuum in the region 2160-1718 A.

2 x 1 1280 x 480
1971

Figure 5. Absorption coefficients of CO2 in the region 2160-1880 A. The right and left curves correspond to the right and left scales, respectively.

2 x 1 1400 x 480
1971

Figure 6. Absorption coefficients of CO2 in the region 1885-1800 A.

2 x 1 1400 x 480
1971

Figure 7.  Absorption coefficients of CO2 in the region 1805-1720 A.

2 x 1 1400 x 480
1972

Figure. 3. The 1.06 and 1.26 μ bands of O2 at 90 and 112 K. The densities were 2.91 and 4.98 amagat, respectively, and the absorption path was 137 m.

1 x 2 640 x 960
1972

Figure 4. The 5770 and 6290 A bands of O2 at 90, 113, and 295 K. The densities were 2.66, 5.61, and 4.42 amagat, respectively, and the absorption path was 137 m at the low temperatures and 165 m at room temperature.

1 x 2 640 x 960
1972
Юхневич Г.В., Ветров А.А.,
Димерные комплексы в парах воды плотностью 0.1 г/см3,
Доклады Академии Наук, 1972, Т. 204, № 1, Страницы 154-157.

Figure 1. Кривые прозрачности паров воды при температуре 350оС.
         Давление,     Толщина,      Плотность,
               бар                 мм                      г/см3 
  а            158               0.20                    0.1
  б            76                 0.62                    0.032
  в            27.5              2.0                       0.01
  г             8.7                6.2                     0.0032
  д            2.8                20.0                    0.001

1 x 5 640 x 700
1973
Гальцев А.П., Осипов В.М., Шереметьева Т.А.,
Определение параметров контура линий СО2 методом минимизации,
Известия АН СССР. Серия Физика атмосферы и океана, 1973, Volume 9, no. 11, Pages 1195-1200.

Коэффициент поглощения в канте полос 1.4 (а), 2.7 (б) и 4.3 мкм (в): кривые – расчет авторов, точки – эксперимент [5].
The absorption coefficient in the edge of the bands (a) 1.4, (b) 2.7 and (c) 4.3 mm: curves - authors' calculations, points - experiment [5].
[5] Burch D.E., Gryvnak D.A., Patty R.R., Bartky Ch.E. Absorption of infrared radiant energy by CO2 and H2O. IV. Shapes of collision -broadened CO2 lines. J.Opt.Soc Amer. 1969, 59, No.3, 267-280.

1 x 3 640 x 1440
1973
Стырикович М.А., Юхневич Г.В., Ветров А.А., Вигасин А.А.,
Молекулярный состав паров воды высокой плотности и некоторые их термодинамические свойства,
Доклады Академии Наук, 1973, Volume 210, no. 2, Pages 321-323.

Figure 1. Спектры оптической плотности паров воды при температуре 360оС и различных давлениях: а – 65; б – 114; в – 143; г – 177 ата; 1 – наблюдаемый суммарный спектр, 2 – спектр мономерной части молекул, 3 – спектр ассоциированных молекул.

1 x 4 800 x 1920
1974

 Figure 6.  A plot of the absorption coefficient a(v)  divided by v2 vs. v, showing a solid line through the  experimental results for a2(v)/v2 of Ho et al. (1971),  Frenkel and Woods (1966). and the present results, and a dotted line through the results of Birnbaum et al. (1971) and the present result for a3(v)/v2.

2 x 1 1280 x 480
1975
Vetrov A.A., Yukhnevich G.V,
Some optical properties of high-density water vapors,
Optics and Spectroscopy, 1975, Volume 39, no. 3, Pages 273-275.

Спектры поглощения паров воды различной плотности при температуре 350оС.  а – 0.0032, б – 0.01, в – 0.032, г – 0.1 г/см3.

1 x 4 640 x 1920
1975
Vetrov A.A., Yukhnevich G.V,
Some optical properties of high-density water vapors,
Optics and Spectroscopy, 1975, Volume 39, no. 3, Pages 273-275.

Спектры поглощения паров воды различной плотности при температуре 350оС.  а – 0.0032, б – 0.01, в – 0.032, г – 0.1 г/см3.

2 x 2 1600 x 1080
1976
Буланин М.О., Булычев В.П., Гранский П.В., Коузов А.П., Тонков М.В.,
Исследование функций пропускания СО2 в области полос 4.3 и 15 мкм,
Проблемы физики атмосферы. Вып. 13, Ленинград, Изд. ЛГУ,
Ленинград, Издательство Ленинградского Государственного Университета, 1976, Pages 14-24.

Функции пропускания СО2-СО2 и СО2-N2, Т=293 К, L=4.97 м. Сплошные кривые построены по данным эксперимента, пунктирные – по расчетным данным:
а) СО2-СО2. 1) р=0.475 атм, 2) р=0.00989 атм;
б) СО2-N2, р=0.5 атм

2 x 1 1280 x 480
1976
Делер В., Тимофеев Ю.М., Шпенкух Д., Москаленко Н.И.,
Сравнение теоретических и экспериментальных функций пропускания СО2 в области полосы 15 мкм,
Проблемы физики атмосферы. Вып. 13,
Ленинград, Изд-во ЛГУ, 1976, Страницы 24-30.

Figure 1. Сопоставление экспериментальных и расчетных функций пропускания. Сплошная кривая – экспериментальные данные, пунктир – расчетные, штрихпунктир – расхождение между ними.
1. u=200 атм см, Рэф=0.889 атм
2. u=500 атм см, Рэф=0.0158 атм
[10] Кондратьев К.Я., Тимофеев Ю.М. Численное моделирование функций пропускания для узких спектральных интервалов 15 мкм полосы СО2 // Изв АН СССР, ФАО 1969. Т.5. №4. С.394.
Comparison of experimental and calculated transmission functions. Solid curve - experimental data, dotted line - calculated, dash-dotted line - discrepancy between them.
1.u = 200 atm cm, Ref = 0.889 atm
2.u = 500 atm cm, Ref = 0.0158 atm
[10] Kondrat'ev K.Ya., Timofeev Yu.M. Numerical modeling of transmission functions for narrow spectral intervals of 15 µm of the CO2 band // Izv AN SSSR, FAO 1969. V.5. No. 4. P.394.

1 x 2 640 x 960
1976
Москаленко Н.И., Ильин Ю.А.,
Экспериментальные исследования поглощения излучения атмосферными газами при повышенных температурах,
Труды 1 совещания по атмосферной оптике,  1976, Тезисы докладов, часть 1,
Томск, Издательство ИОА, 1976, Страницы 8-12.

Рисунок 1(не полный). Влияние температуры на спектры поглощения в полосах 2.0 и 2.7 мкм углекислого газа.
Figure 1(reduced). Influence of temperature on absorption spectra in the 2.0 and 2.7 μm bands of carbon dioxide.

2 x 1 1360 x 480
1976
Поберовский А.В.,
Исследование полос поглощения водяного пара (1.38 и 1.87 мкм) при повышенных давлениях и температурах,
Проблемы физики атмосферы. Вып. 13,
Ленинград, Изд-во ЛГУ, 1976, Страницы 81-87.

Figure 1.  Спектры  пропускания водяного пара в области 1.35 (а) и 1.87 (б) мкм:
а : 1 – w=0.084 г/см2, РН2О=4.2 атм, РН2О-N2=120 атм,
      2 - w=0.0083 г/см2, РН2О=41.44 атм,
      3 - w=0.0098 г/см2, РН2О=4.954 атм,
      пунктир – спектр димера
б : 2 - w=0.0086 г/см2, РН2О=4.355 атм,
      1 - w=0.0083 г/см2, РН2О=41.44 атм,
     3 - w=0.0084 г/см2, РН2О=4.2 атм, РН2О-N2=120 атм.

1 x 6 640 x 2880
1979
Peterson J.C., Thomas M.E., Nordstrom R.J., Damon E.K. Long R.K.,
Water vapor - nitrogen absorption at CO2 laser frequencies,
Applied Optics, 1979, Volume 18, no. 6, Pages 834-841.

Table 1. List of Spectrophone and White Cell Curve Fit Coefficients for H2O in N2. Measurements at a Total Pressure of 760 Torr. The data have been fit to an equation of the form  k(v) = C°s(ν) WH2O(PH2O +γ (P - PH2O)).
Defined function = γ(ω). Dependence of the gamma coefficient on the wavenumber in above formula.
Note: In original article the coefficient
γ is ansent in the formula.

1 x 3 640 x 1440
1979
Zavody A.M., Emery R.J., Gebbie H.A.,
Temperature dependence of atmospheric absorption in the wavelength range 8-14 um,
Nature, 1979, Volume 277, Pages 462-463.

Figure 1. Curves a-a’ and b-b’ show observed anomalous absorption values for mean temperatures of 281° and 290°K respectively, reduced to a water vapour density of 4.8 g m-3. The estimated error is ±0.02 dB km-1. Curves A-A’ and B-B’ are the corresponding temperature dependence values expressed as the exponent B in equation (1), with a maximum estimated error ±0.04 eV per molecule (at 12.6 μm wavelength). Curve l-l’ shows laboratory values from Ref.3 scaled to 290°K and density 4.8 g m-3, and L-L’ is the corresponding laboratory temperature dependence. Curve m-m’ shows a monomer model spectrum from the data in Table 1, for 290°K and density 4.8 g m-3. The values given by P and Q are taken from Ref.1, and apply to the temperature range 258° to 299°K.

[1]. Coffey, M.T., Quat. Jour. Res. Met. Soc, 103, 685-692 (177)
[3] Burch D.E., Proc. Am. Met. Soc, Conference on Atmospheric Radiation, Fort Collins, Colorado, 7-9 August (1972).

1 x 2 800 x 960
1979
Телегин Г.В., Фомин В.В.,
Расчет коэффициента поглощения в крыльях полос СО2,
5 Всесоюз. Симпозиум по распространению лазерного излучения в атмосфере. Ч. 3.,
Томск: ИОА СО АН СССР, Издательство ИОА, 1979, Pages 152-156.

Figure 1. Случай самоуширения. РСО2=1 атм, Т=300°К, эксперимент [2],  приближение сильной линии, сумма по линиям.
Self-broadening case. РСО2=1 atm, Т=300°K, experiment [2],  approximation of a strong line, the sum of the lines.
а) 4.3 μm, m=20, C20=1.3 10-10 cm-1; b) 2.7 μm, m=20, C20=1.8 10-10 cm-1; c) 1.4 μm, m=20, C20=2.5 10-10 cm-1.
[2] Burch D.E., Gryvnak D.A., Patty R.R., Bartky Ch.E. Absorption of infrared radiant energy by CO2 and H2O. IV. Shapes of collision -broadened CO2 lines. J.Opt.Soc Amer. 1969, 59, No.3, 267-280

3 x 1 1560 x 480
1979
Телегин Г.В., Фомин В.В.,
Расчет коэффициента поглощения в крыльях полос СО2,
5 Всесоюз. Симпозиум по распространению лазерного излучения в атмосфере. Ч. 3.,
Томск: ИОА СО АН СССР, Издательство ИОА, 1979, Pages 152-156.

Figure 2. Случай уширения азотом N2. РN2=1 атм, Т=300°К,  эксперимент [2],  приближение сильной линии, полинейный расчет.
N2-broadening case. РN2 = 1 atm, Т=300°K,  experiment [2], approximation of a strong line, iine by line calculation.
а) 4.3 μm, m=30, C30=1.42 10-17 cm-1; b) 2.7 μm, m=30, C30=1.8 10-17 cm-1; c) 1.4 μm, m=30, C30=5.0 10-18 cm-1;
[2] Burch D.E., Gryvnak D.A., Patty R.R., Bartky Ch.E. Absorption of infrared radiant energy by CO2 and H2O. IV. Shapes of collision-broadened CO2 lines. J.Opt.Soc Amer. 1969, 59, No.3, 267-280.

3 x 1 1560 x 480
1980

Figure 1. Theoretical water vapor absorption (water vapor density 18 g/m3, temperature 296°K) based on the Gross line-shape formula with laser frequencies in the gaps shown by arrows.

1 x 2 800 x 1280
1980

Figure 1. Theoretical water vapor absorption (water vapor density 18 g/m3, temperature 296°K) based on the Gross line-shape formula with laser frequencies in the gaps shown by arrows.

1 x 2 800 x 1080
1980
Докучаев А.Б., Тонков М.В.,
Определение формы крыльев колебательно-вращательных линий полосы двуокиси углерода,
Оптика и спектроскопия, 1980, Volume 48, Issue 4, Pages 738-744.

Figure 2. Отклонения рассчитанных K2k) от экспериментальных. 1 – χ(ν)=1, 2 – χ(ν) описана кривой (8). СO2+N2, СO2+Ar, СO2+He.
Deviations of the calculated K2k) from the experimental ones. 1 - χ (ν) = 1, 2 - χ (ν) is described by curve (8).  CO2-He.
χ(ν) = x5/2K5/2(x)(1+αx2), x=| ν - νj |/Δ (8), where K5/2(x) is a modified Bessel function. Parameters α and Δ are determined from experimental data.

1 x 3 640 x 1440
1980
Телегин Г.В., Фомин В.В.,
Расчет коэффициента поглощения в спектре СО2. Периферия полос 4.3, 2.7, 1.4 мкм,
Оптика и спектроскопия, 1980, Volume 49, Issue 4, Pages 668-675.

Зависимость коэффициента поглощения от частоты в случае СО2+СО2 для разных полос. а – 4.3, б – 2.7, в – 1.4 мкм; 1 – эксперимент [4], 2 – расчет в «приближении одной сильной линии», 3 – полинейный расчет, L – расчет по лорентцевскому контуру.
Frequency dependence of the absorption coefficient in the case of CO2+CO2 for different bands. a - 4.3, b - 2.7, c - 1.4 μm; 1 - experiment [4], 2 - calculation in the "approximation of one strong line", 3 - linear calculation, L -  using  Lorentzian contour calculation.
[4] Burch D.E., Gryvnak D.A., Patty R.R., Bartky Ch.E. Absorption of infrared radiant energy by CO2 and H2O. IV. Shapes of collision -broadened CO2 lines. J.Opt.Soc Amer. 1969, 59, No.3, 267-280.

1 x 3 640 x 1440
1980
Телегин Г.В., Фомин В.В.,
Расчет коэффициента поглощения в спектре СО2. Периферия полос 4.3, 2.7, 1.4 мкм,
Оптика и спектроскопия, 1980, Volume 49, Issue 4, Pages 668-675.

Зависимость коэффициента поглощения от частоты в случае СО2+N2 для разных полос. а – 4.3, б – 2.7, в – 1.4 мкм; 1 – эксперимент [4], 2 – расчет в «приближении одной сильной линии», 3 – полинейный расчет, L – расчет по лорентцевскому контуру.
Frequency dependence of the absorption coefficient for CO2 + N2 for different bands. a - 4.3, b - 2.7, c - 1.4 μm; 1 - experiment [4], 2 - calculation in the "approximation of one strong line", 3 - linear calculation, L -  Lorentzian contour calculation.
[4] Burch D.E., Gryvnak D.A., Patty R.R., Bartky Ch.E. Absorption of infrared radiant energy by CO2 and H2O. IV. Shapes of collision -broadened CO2 lines. J.Opt.Soc Amer. 1969, 59, No.3, 267-280.

1 x 3 640 x 1440
1980
Телегин Г.В., Фомин В.В.,
Расчет коэффициента поглощения в спектре СО2. Периферия полос 4.3, 2.7, 1.4 мкм,
Оптика и спектроскопия, 1980, Volume 49, Issue 4, Pages 668-675.
1 x 3 640 x 1440
1980
Телегин Г.В., Фомин В.В.,
Расчет коэффициента поглощения в спектре СО2. Периферия полос 4.3, 2.7, 1.4 мкм,
Оптика и спектроскопия, 1980, Volume 49, Issue 4, Pages 668-675.

Зависимость коэффициента поглощения от частоты в случае СО2+СО2 для полосы 1.4 мкм; 1 – эксперимент [4], 2 – расчет в «приближении одной сильной линии», 3 – полинейный расчет, L – расчет по лорентцевскому контуру.

[4] Burch D.E., Gryvnak D.A., Patty R.R., Bartky Ch.E. Absorption of infrared radiant energy by CO2 and H2O. IV. Shapes of collision -broadened CO2 lines. J.Opt.Soc Amer. 1969, 59, No.3, 267-280.

1 x 3 640 x 1440
1980
Телегин Г.В., Фомин В.В.,
О вкладе селективного и континуального поглощения в микроокнах спектра водяного пара в области 8-12 мкм,
Журнал прикладной спектроскопии, 1980, Т. 33, Выпуск 3, Страницы 513-516.

Figure 1. Сравнение экспериментов [6] (а, Н2О-Н2О) и [1] (с учетом [6,7]) (б, Н2О-N2) и расчетов. Аппроксимация экспериментов (1), расчеты по обобщенному контуру (2), по формуле Лоренца (3) и полной формуле Лоренца (4).

[1] Bignell K.J., Saiedy F., Sheppard P.A. On the atmospheric infrared continuum , J. Opt. Soc.America 53, No.4, 466-479 (1963)
[6] Burch D.E. Investigation of the absorption of infrared radiation by atmospheric gases
.  Semi-annual Technical report. Air Force Cambridge Research Lab., Publ. U-4784 (1970)
[7] K. J. Bignell, The water-vapour infra-red continuum, Quarterly Journal of the Royal Meteorological Society, Volume 96 Issue 409, Pages 390 - 403 1970 10.1002/qj.49709640904.

2 x 1 1380 x 480
1981

Figure 13. Comparison of the spectral curves from 0 to 3100 cm-1 of the empirical continuum for self broadening (C), the absorption coefficient of liquid water (L), and the average intensities of the H2O vapor lines (V). Note scale change at 50 cm-1.

2 x 1 1600 x 640
1981
Баранов Ю.И., Буланин М.О., Тонков М.В.,
Исследование крыльев линий колебательно-вращательной полосы 3ν3 СО2,
Оптика и спектроскопия, 1981, Volume 50, no. 3, Pages 613-615.

Таблица 1. Бинарные коэффициенты поглощения (см-1амага-2) для полосы 3ν3 СО2.
Table 1. Binary absorption coefficients (cm-1amaga-2) for the 3ν3 CO2 band.

2 x 1 1400 x 480
1981
Войцеховская О.К., Л.И.Несмелова. О.Б.Родимова, О.Н.Сулакшина, Ю.С.Макушкин, С.Д.Творогов,
Коэффициент поглощения света в крыле полосы 1.4 мкм СО2,
6 Всесоюз. Симпозиум по распространению лазерного излучения в атмосфере. Ч. 2.,
Томск: ИОА СО АН СССР, 1981, Страницы 16-19.

Рисунок 1. Коэффициент поглощения СО2 в районе 1.4 мкм.
CO2 absorption coefficient in the region of 1.4 μm.
[1] Burch D.E., Gryvnak D.A., Patty R.R., Bartky Ch.E.
Absorption of infrared radiant energy by CO2 and H2O. IV. Shapes of collision -broadened CO2 lines. J.Opt.Soc Amer. 1969, 59, No.3, 267-280.
[2] Baranov Yu.I., Bulanin M.O., Tonkov M.V. Study of the wings of the lines of the vibrational-rotational band 3ν3 СО2. Optics and Spectroscopy, 50, no. 3, p. 613-615 (1981).

2 x 1 1280 x 480
1982
Burch D.E.,
Continuum absorption by atmospheric H2O,
Report AFGL-TR-81-0300, by Ford Aeronutronic to Air Force Geophys. Lab., Hanscom AFB,
Massachusets, 1982, Pages 46.

Figure 13. Comparison of the spectral curves from 0 to 3100 cm-1 of the empirical continuum for self broadening (C), the absorption coefficient of liquid water (L), and the average intensities of the H2O vapor lines (V). Note scale change at 50 cm-1.

2 x 1 1600 x 640
1982
Gebbie H.A.,
Resonant absorption by water polymers in the atmosphere,
Nature, 1982, Volume 296, Pages 422-424.

Figure 1.  Predicted spectra for fogs comprising molecular absorption and particle loss computed from standard models; corresponding to visibilities of 50 (dotted line), 10 (dashed line) and 150 (solid line) m. Spectra observed in the atmosphere corresponding to the models. The standard deviation in the measured spectra is 3 dB km-1. In such fogs the liquid drops are all small compared with the wavelengths and show Rayleigh region behavior in which attenuation varies monotonically. Nether this component nor equilibrium dimers can accounr for the observed additional structure between monomer lines.

1 x 2 800 x 960
1982

Figure 1.  Predicted spectra for fogs comprising molecular absorption and particle loss computed from standard models; corresponding to visibilities of 50(…), 10(---) and 150(___) m. Spectra observed in the atmosphere corresponding to the models. The standard deviation in the measured spectra is 3 dB km-1. In such fogs the liquid drops are all small compared with the wavelengths and show Rayleigh region behavior in which attenuation varies monotonically. Nether this component nor equilibrium dimers can accounr for the observed additional structure between monomer lines.

1 x 2 640 x 960
1983

Figure 1. Experimental and calculated values of absorption coefficientk at T = 620°K over the R and P branches of the 9.6-μm CO2 transition.

2 x 1 1300 x 480
1984

Figure 1. Results of our laboratory measurements in comparison with laboratory investigations of (30) and theoretical data (ρ=19 g.m-3, T=25.5oC, P =730 Torr). Our total absorption (A) and excess one (B) are shown by circles. Theoretical values for water vapor monomers (chain-dot curve), excess absorption spectrum (30) (solid curve) and theoretical dimer absorption (7) (dotted curve) are shown as well.


[7]. A.A.Viktorova, S.A.Zhevakin,DAN USSR, v.194, 540 (1970).
[30].  R.J. Emery, P .Moffat, R.A. Bohlander, H. A. Gebbie, J. Atm.Terr.Phys. v.7,587 (1975).
1 x 2 800 x 960
1984

Figure 2. Our results of field measurements as compared with field investigation (30) and the theory (r =8.5 g.m-3, T=8.5°C, P= 727 Torr). Our total absorption (A) and excess one (B) are shown by circles. All the data are shown as in Figure 1. (A) and excess one (B) are shown by circles. Theoretical values for water vapor monomers (chain-dot curve),excess absorption spectrum (30) (solid curve) and theoretical dimer absorption (7) (dotted curve) are shown as well.

[7]. A.A. Viktorova, S.A. Zhevakin, Поглощение микрорадиоволн димерами водяного пара атмосферы, DAN USSR, v.194, 540 (1970).
[30]. R.J. Emery, P. Moffat, R.A. Bohlander, H.A. Gebbie, Measurements of anomalous atmospheric absorption in the wavenumber range 4-15 per cm, J. Atm. Terr. Phys. v.7,587 (1975).

1 x 2 800 x 960
1985

Figure 2. Normalized absorption coefficient B0(σ,T) in cm-1amagat-2 for CO2 broadened by N2: (a) wave number dependence of B0(σ,T) for two temperatures 296° and 193°K; (b) temperature dependence at various wave numbers (cm-1).

1 x 3 640 x 1500
1985

Figure 3. Normalized absorption coefficient B0(σ,T), in cm-1 amagat-2 for CO2 broadened by O2: (a) wave number dependent of B0(σ,T) for two temperatures 296° and 193°K; (b) temperature dependence at various wave numbers (cm-1).

1 x 3 640 x 1500
1985

Figure 3. A plot of A(v)/ρ2 versus the frequency (cm-1) measured using an FIR interferometer and indicated by the solid curve. The results are displayed for the four different temperatures used: (a) 212 K, (b) 179 K, (c) 149 K, (d) 126 K. In each case the laser measurements at 84.2 and 15.1 cm-1 are shown. Also shown are the theoretical line shapes generated using Mori theory (dashed line) as discussed in the text. In (d) the results of Buontempo et al. (10) are given for comparison.

2 x 2 1300 x 840
1985

Figure 8. Water vapor attenuation rates α(v) across atmospheric window range W4 at two temperatures, 5o and -10o C; pluses, measured data [Fedoseev and Koukin, 1984]; lines, MRM.

2 x 1 1360 x 480
1985
P. Codastefano, P. Dore and L. Nencini,
Far Infrared Absorption Spectra in Gaseous Methane from 138° to 296°K,
Phenomena Induced by Intermolecular Interactions, NATO ASI series 127, Editor(s) G. Birnbaum,
Springer US, 1985, Pages 119.

Figure 1. Absorption coefficients A(V) at 195° (upper) and 296°K (lower). ooooo present results;---- from Birnbaum (1975). A(v) are plotted in arbitrary units. In our data the maximum value is 9.24 10-6 cm-1 amagat-2 at 296°K and 1.22 10-5 cm-1 amagat-2 at 195°K.

Birnbaum, G. Far infrared collision‐induced spectrum in gaseous methane. I. Band shape and temperature dependence  J. Chem. Phys., 62:59, 1975, https://doi.org/10.1063/1.430239.

1 x 2 800 x 1280
1985

Figure 5. Wave number dependence of the normalized absorption coefficient A0(σ,T), in cm-1 amagat-2,  for two temperatures: 296° and 193°K.

1 x 3 640 x 1500
1985

Figure 9. Comparison of experimental and calculated spectrum (A0 in cm-1 amagat-2) (a) T=296°K, (b) T  = 218°K: *, observed, ----, Lorentz absorption, -, best fit obtained with the two-parameter lineshape factor of Birnbaum [see Eq. (5)]. The optimized values of the parameters are given in Table IV.

Defined function = log10A0 + 10

1 x 2 640 x 1000
1985
Несмелова Л.И., О.Б.Родимова, С.Д.Творогов,,
Температурная зависимость коэффициента поглощения СО2 в крыле полосы 4.3 мкм,
Деп. ВИНИТИ, 1985, №7998-В85,
ВИНИТИ, 1985, Страницы 19.

Figure 4. Коэффициент поглощения κ(ω) в крыле полосы 4.3 мкм СО2 при высоких температурах. А). Расчет с V(T0=293°K) при Т=300°, 473°, 673°К, соответственно. Б). Расчет с V(T) при тех же температурах.
Figure 4. The absorption coefficient κ (ω) in the wing of the 4.3 µm CO2 band at high temperatures. A). Calculation with V (T0 = 293°K) at T = 300°, 473°, 673°K, respectively. B). Calculation with V (T) at the same temperatures.

2 x 1 1300 x 480
1985
Несмелова Л.И., О.Б.Родимова, С.Д.Творогов,,
Температурная зависимость коэффициента поглощения СО2 в крыле полосы 4.3 мкм,
Деп. ВИНИТИ, 1985, №7998-В85,
ВИНИТИ, 1985, Страницы 19.

Figure 5.  Коэффициент поглощения СО2 при самоуширении в микроокнах и за кантом  полосы 4.3 мкм при различных температурах. Эксперимент [22,3] при Т=300°, 213° К, соответственно. Расчет для Т=213°, 310°, 500°К, соответственно; расчет с F(R)=1. a) Расчет с V(T0); b) Расчет с V(T); c) Расчет с дисперсионным контуром
CO2 absorption coefficient for self-broadening in micro-windows and behind the band edge is 4.3 µm at different temperatures. o, + - experiment [22,3] at T = 300°, 213°K, respectively. Calculation for T = 213°, 310°, 500°K, respectively; Calculation with F(R)=1. a) Calculation with V (T0); b) Calculation with V(T); c) Calculation with a dispersion contour.
  [22] Winters B.H., S. Silverman, W.S. Benedict Line shape in the wing beyond the band head of the 4.3 μ band of CO2  JQSRT V. 4, Issue 4, 1964, Pages 527-537.
[3] Буланин М.О., Булычев В.П., Гранский П.В., Коузов А.П., Тонков М.В. Исследование функций пропускания СО2 в области полос 4.3 и 15 мкм. В кн.: Проблемы физики атмосферы. Вып. 13, Л., Изд. ЛГУ, 1976, с.14-24.

1 x 3 640 x 1500
1986

Figure.1. Comparison of measured (Ref.5) (dots) and theoretical (curves) roto-translational spectra of H2-CH4 pairs at five temperatures from 140 to 296 K and frequency range from 150 to 850 cm-1.

P. Codastefano, P. Dore, L. Nencini, Temperature dependence of the far-infrared absorption spectrum of gaseous methane, Journal of Quantitative Spectroscopy and Radiative Transfer, Volume 35, Issue 4, April 1986, Pages 255-263, https://doi.org/10.1016/0022-4073(86)90079-8.
1 x 5 800 x 2400
1986

Figure 2. Far-infrared absorption spectrum of N2+N2 at (a) 126, 149, and 179 K and (b) 228.3° and 300°K. Open circles, experimental data at (a) 124°K, and (b) 300°K of Buentempo et.al. (1975).  Filled circles, squaries and triangles denote new results (Stone et al. 1984; Dagg et al. 1985). Lines, fitted spectrum, with the Ling and Rigby isotropic  potential  (see Appendix) and the dipole parameters given in Table 3. In (a), the scale is shifted by a factor of 2 at each temperature.

U. Buontempo, S. Cunsolo, G. Jacucci, and J. J. Weis, The far infrared absorption spectrum of N2 in the gas and liquid phases, The Journal of Chemical Physics, 1975, Volume 63, Pages 2570, DOI: 10.1063/1.431648, https://doi.org/10.1063/1.431648
Dagg, I.R., and Gray C.G., 1985, in Phenomenoa induced by intermolecular interaction, ed. G.Birnbaum (New York; Plenum), p.109.
Dagg, I.R., Anderson, A., Yan, S., Smith, W. and Read, L.A.A., Collision-induced absorption in nitrogen at low temperatures, Canadian Journal of Physics, 1985, Volume 63, Issue 5, Pages 625-631, DOI: 10.1139/p85-096, https://doi.org/10.1139/p85-096.
Stone, N. W. B., Read, L. A. A., Anderson, A., Dagg, I. R., & Smith, W., Temperature dependent collision-induced absorption in nitrogen, Canadian journal of physics, 62(4), 338-347. (1984).

2 x 1 1300 x 800
1986

Figure 1. Frequency dependence of the normalized absorption coefficient BN20 (σ,T) (in cm-1 amagat-2) in the centers of the R-branch troughs for N2 broadening: 296°K; 238°K; 193°K.

3 x 1 1940 x 480
1986

Figure 2. Frequency dependence of the normalized absorption coefficient BO20 (σ,T) (in cm-1 amagat-2) in the centers of the R-branch troughs for O2 broadening: 296°K; 238°K; 193°K.

3 x 1 1960 x 480
1986

Figure 1. Comparison of measured (dots) and theoretical (curves) roto-translational spectra of H2+N2 pairs at five temperatures from 91° to 298°K.

1 x 5 800 x 2400
1986

Figure 4. Plots of the absorption coefficient per product density (amix) as a  function of  the frequency v at the four temperatures (a) 212°, (b) 179°, (c) 149°, and (d) 126°K. The experimental  results are shown as the solid curves in the figures, and our theoretically derived line shapes are represented as the dotted curves. In (d), the theoretical  contributions due to  the various  induction  mechanisms are labelled Q, 0, and H for quadrupole, octopole,  and hexadecapole  induction,  respectively.

2 x 2 1600 x 960
1986

Experimentally determined absorption  band at 163°K and the best-fit curve obtained by using the MLEW model to describe the single line profiles. (a) octupolar  contribution; (b) hexadecapolar contribution.

1 x 2 800 x 1280
1986

Figure 3. Absorption coefficient AHM(v ) at 296° and 195°K. The vertical bars indicate the typical uncertainties in the experimental points. The broken line is the CH4+H2 absorption coefficient as obtained in previous measurements

1 x 2 800 x 1280
1986
Несмелова Л.И., О.Б.Родимова, С.Д.Творогов,
Температурная зависимость коэффициента поглощения СО2 в крыле полосы 4.3 мкм,
7 Всесоюзн. симпозиум по молекулярной спектроскопии высокого и сверхвысокого разрешения, тезисы докладов, Томск, 1986,
Томск, Издательство ИОА, 1986, Pages 143-147.

Figure 1. Коэффициент поглощения κ(ω) в крыле полосы 4.3 мкм СО2 при высоких температурах. 
Расчет с V(T0=293°K) при Т=300°, 473°, 673°К, соответственно. Расчет с V(T) при тех же температурах.
Absorption coefficient κ (ω) in the wing of the 4.3 µm CO2 band at high temperatures.
Calculation with V (T0 = 293°K) at T = 300°, 473°, 673°K, respectively.
Calculation with V (T) at the same temperatures.

2 x 1 1360 x 480
1987

Figure 1. Absorption coefficients α(ω) of CH4-CH4 fitted at different temperatures. Dots: experimental data at temperatures from 140° and 295°K from (20); and at 126°K from (22). J-dependent multipole moments according to Eqs. (9) and (10) are assumed (Table III). For all temperatures above 126°K the displayed spectra are shifted up by one decade; the maximum of the absorption coefficient at each temperature is near 10-5 cm-1 amagat-2 at all temperatures. As an example, the contributions due to the octopole  and hexadecapole induction are shown for one temperature.

20. P. Codastefano, P. Dore, and L. Nencini, J . Quant. Spectrosc. Radiat. Transfer 35, 255-263 (1986).
22. I. R. Dagg, A. Anderson, S. Yan, W. Smith, C. G. Joslin, and L. A. A. Read, Canad. J. Phys.1986, in press.

2 x 4 1380 x 1920
1987

Figure 1. CIA spectra of CH4-CH4 at the temperatures of 50°, 110°, and 300°K, computed from a quantum mechanical formalism described elsewhere (Borysow and Frommhold 1987). The dimer bands are convoluted with a triangular slit function of 4.3 cm-1 resolution. The octopole-induced (dashed curve) and hexadecapole-induced (dot-dashed curve) contributions are shown, together with the total (solid curve).

1 x 3 800 x 1440
1987

Figure 1. Pure N2 absorption spectrum at 297 and 149 K: ... , experimental data from ref. 7; ----. best fit; - - -, hexadecapolar component. Vertical bars indicate typical uncertainties for the experimental points. At 297K, the best-fit parameters are SΦnn = 1690 K-Å6, δ0nn = 19.6 cm-1, S0nn = 49 K-A", and δΦnn = 34.5 cm-1.  At 149 K, s:, = 1915 K-Å6, δ0nn = 15 cm-1: SΦnn = 47 K-Å6, and δΦnn = 23.5 cm-1.

2 x 1 1360 x 800
1987

Figure 2. Pure N2 absorption spectra at 140 and 93 K: ... , experimental data from ref. 9; ----, computed spectra multiplied by a normalizing factor F (F = 0.93 at 140 K and 1.12 at 93 K); ---, computed 90-K spectrum from ref. 5 (multiplied by a factor of 2 because of a different definition of the absorption coefficient).

2 x 1 1360 x 800
1987

Figure 1. Observed and calculated spectra of the CO2 trimer in the region of the 2ν02 + ν3 combination band of the monomer indicated by the negative-going R (0) line. Observed spectra for 3% CO2:He mixture at 2, 3, and 5 atm driving pressure. Asterisks indicate transitions attributed to the CO2 dimer. Calculated transitions are simulated with Gaussian profiles of 20 MHz FWHM and an effective rotational temperature of 1.3 K

1 x 4 800 x 960
1987

Figure 19. Measured temperature dependence of the pressure quadratic coefficients Cs of the continuum absorption at the (a) 10P(20), (b) 10P(24) and (c) 10P(30) CO2-laser emissions. Dashed lines correspond to least square fits based on equation (25). Solid lines correspond to best fits on the basis of equation (29).

Dimer model: Suck S.H., Kassner J.L., Jr., Jamaguchi J. Water clusters interpretation of IR absorption spectra in the 8-14 μm wavelength region Appl.Opt. 18, No.15, 2609-2617 (1979).

1 x 3 800 x 1440
1987

Figure 20. Measured temperature dependence of the pressure quadratic coefficients Cs of the continuum absorption at the (a) 10P(20), (b) 10P(24), (c) 10P(30) and (d) 10P(38) CO2-laser emissions. Solid lines represent best fits on the basis of equation (29).

2 x 2 1360 x 960
1987

Figure 24. Temperature dependence of the pressure quadratic coefficients Cs of the continuum absorption for the (a) 10P(20) and (b) 10P(24) CO2-laser emissions. Solid lines represent best fits on the basis of equations (26) and (29).

1 x 2 800 x 960
1987

Figure 3. A comparison between a calculated and experimental carbon dioxide dimer spectrum. The calculated spectrum was obtained using the rotational constants given in Table II. Although most of the features in the spectrum are properly accounted for there are some extra transitions in the observed spectrum, most likely associated with the parallel band. A very accurate fit to the spectrum was not possible due to what appears to be a staggering of the K band origins due to tunneling.

1 x 2 1500 x 800
1988

Figure 2. The collision-induced spectrum of pure N2 + Ar at 126, 149, 179, 212, and 298°K. The measurements are from Dagget al. (1986).  Points, FTIR data: Δ. microwave data at 15.1 cm-1; O, laser data at 84.2 cm-1). The solid lines were calculated with the semi-empirical model described in the text. The spectra for different temperatures are vertically offset.

Dagg, I.R., Anderson, A., Yan, S., Smith, W. and Read, L.A.A., Collision-induced absorption in nitrogen at low temperatures. Canadian journal of physics, 63(5), pp.625-631. 1985, DOI: 10.1139/p86-002.
1 x 4 800 x 1920
1988

Figure 5. The collision-induced spectrum of N2 + H2 mixture at 91, 141, 165, 195 and 298°K. The measurements are from Dore et al. (1986).

Dore, P., A. Borysow,  and L. Frommhold,  Roto-translational far-infrared absorption spectra of H2-N2 pairs, J. Chem. Phys. 84, 5211 (1986).
1 x 5 800 x 2400
1988

Figure 3. The collision-induced spectrum of pure CH4 at 140°, 163°, 195°, and 295°K. The measurements are from Codastefano et al. (1985, 1986).

Codastefano, P., P. Dore, and L. Nencini 1985. Far-infrared absorption spectra in gaseous methane from 138 to 296 K. In Phenomena Induced by Intermolecular Interactions (G. Birnbaum, Ed.), pp. 119-128. Plenum, New York.
Codastefano, P., P. Dore, and L. Nencini. 1986. Temperature dependence of the far-infrared absorption spectrum of gaseous methane. J. Quant. Spectrosc. Radiat. Transfer 35, 255-263.
1 x 4 800 x 1980
1988

Figure 4. The collision-induced spectrum of N2 + CH4 mixture at 126°, 149°, 179°, and 212°K. The measurements are from Dagg et al. (1986).

Dagg, I. R., A. Anderson, S. Yan, W. Smith, G. G. Joslin, and L. A. A. Read, 1986. Collision-induced absorption in gaseous mixtures of nitrogen and methane. Canad. J. Phys. 64, 1467-1474.
1 x 4 800 x 1920
1988

Figure 1. Density normalized absorption coefficients α(ω)/n1n2 of He+CH4 at three temperatures. Dots: Experimental data at 150°, 293°, and 353°K by Afanas’ev et al. (7). Solid line: Calculated spectra determined by fitting the range and amplitude of only the isotropic (A = 0) overlap contribution to the dipole induction. For all the temperatures above 150°K the displayed spectra are shitkl up by one decade; the maximum of the absorption coefficient at each temperature is near 10-6 cm-1/amagat2.

7. A. D. Afana'sev, M. 0. Bulanin, and M. V. Tonkov, Sov. Technol. Phys. Lett. 6, 1444-1446 (1980). [in Russian]

1 x 3 800 x 1440
1988
Кузнецов М.Н.,
Расчет поглощения крыльями линий СО2 в полосе 4.3 мкм,
Известия РАН. Серия Физика атмосферы и океана, 1988, Т. 24, № 4, Страницы 394-402.

Figure 2. Коэффициент поглощения крыльями линий СО2: a – самоуширение, б – уширение азотом: I- расчет с теоретическим контуром, II – расчет с уточненным значением νl, III – расчет по лоренцевскому контуру (χ(Δν)=1); 1 – данные [1], 2 – данные [2], 3 – данные [4,11], 4 – данные [3,4].
Coefficient of absorption by the wings of CO2 lines: a - self-broadening, b - broadening by nitrogen: I - calculation with a theoretical contour, II - calculation with a refined value of νl, III - calculation along the Lorentzian contour (χ (Δν) = 1); 1 - data [1], 2 - data [2], 3 - data [4,11], 4 - data [3,4].
[1] Winters B.H., S. Silverman, W.S. Benedict Line shape in the wing beyond the band head of the 4.3 μ band of CO2  JQSRT V. 4, Issue 4, 1964, Pages 527-537
[2] Burch D.E., Gryvnak D.A., Patty R.R., Bartky Ch.E. Absorption of infrared radiant energy by CO2 and H2O. IV. Shapes of collision -broadened CO2 lines. J.Opt.Soc Amer. 1969, 59, No.3, 267-280
[3] Докучаев А.Б., Тонков М.В. Определение формы крыльев колебательно-вращательных линий полосы двуокиси углерода. Оптика и спектроскопия, 48, вып.4, 738-744  (1980)
[4] Sattarov, K., Tonkov, M.V. Infrared absorption in the wing of the v3 vibrational-rotational band of CO2.Oпт. Спектроск. 54 (1983) 944-946.

1 x 2 640 x 1000
1989

Figure 5. Wavenumber dependence of the pure CO2 normalized absorption coefficient at (a) 291°K; (b) 534°K; (c) 751°K; *, experimental; calculated with the Lorentzian model, Lorentzian model with the χ (296°K) factor of Refs. 4 and 5.
4. R. Le Doucen, C. Cousin, C. Boulet, and A. Henry, "Temperature Dependence of the Absorption in the Region Beyond the 4.3-μm Band Head of CO2.1: Pure CO2 Case," Appl. Opt. 24,897-906 (1985).
5. C. Cousin-Lucasseau, "Absorption I.R. du CO2 dans la fenetre atmospherique autour de 4.2 μm - Determination de la dependance en temperature du coefficient d'absorption.- Influencedes interferences spectrales sur le profil observe," Thesis,Rennes (1987).

1 x 3 640 x 1440
1989

Figure 4. Transmission spectra for pure CO2 (in a 4.4 cm long cell) for (a) 291°K and 50 bar and (b) 627°K and 32 bar (), Experimental data; ( ..... ), Eq. (4) with Bi parameters for the given temperature; ( .... ), Eqs. (3) and (4) with the parameters αi, βi, εi of Table 3.

1 x 2 640 x 1000
1989

Figure 1. Methane  absorption coefficient at 296°K. A. Comparison between experimental and computed spectrum. The computed spectrum is given by the sum of l= 3 (a), l = 4 (b) and double transition (c) components. B. The two components (3, 3) and (3, 4) of the double transition spectrum are shown. The parameters used in the computations are reported in the table (case a).

2 x 1 1600 x 480
1989

 Figure 3. Comparison of calculated and observed spectra for the 2.0 μm (a) and 1.6 μm (b) CO2 bands. - Measured spectra; o - present work profiles; --- sub-Lorentzian profile.

1 x 2 640 x 960
1990

Figure 1. Observed spectra of the enhancement by N2 of the collision-induced fundamental band of H2 at 77°K, recorded with a total gas density of about 1.3 amagats and a path length of 154 m. The upper curve (a) is for para-H2 and the lower curve (b) for normal H2. The broad underlying absorption is due to collision-induced absorption in H2-N2 collision pairs. Of interest here is the sharper structure, concentrated near the peak of each collision-induced line, which is due to bound H2-N2 complexes.

2 x 1 1360 x 800
1990
Hartmann J.M., Boulet C.,
Line-mixing and finite duration of collision effects in pure CO2 infrared spectra: fitting analysis,
Proceedings of ASA Workshop, 1990. Tomsk.,
Tomsk, IAO Publishing House, 1990, Pages 10-13.

Figure 4. Pure CO2 transmission coefficients (52.9 mm long cell)  for the pressures of 55 atm.  Experimental data, calculated with the Lorentzian model, corrected line mixing model. (a) 294°K (91.4 Am) (b) 493°K (32.8 Am).

1 x 2 640 x 1000
1990

Figure 8. The 4-μm continuum region at T = 296°K. (a) Cs vs wavenumber [27] and (b) the absorption coefficient vs wavelength.[37,38].

[27] D. E. Burch and R. L. Alt, AFGL-TR-84-0128, Ford Aerospace and Communications Corporation, Aeronutronic Division (1984).
[37] K. O. White, W. K. Watkins, C. W. Bruce, R. E. Meredith and F. G. Smith, Appl. Opr. 17, 2711 (1978)
[38] F. S. Mills. Dissertation. The Ohio State University (1975).

1 x 2 640 x 960
1990
Творогов С.Д., Родимова О.Б., Несмелова Л.И.,
Спектральный обмен и периферия контура спектральных линий. Критический обзор,
Оптика атмосферы, 1990, Т. 3, № 5, Страницы 468-484.

Figure 5. Коэффициент поглощения СО2, уширенного N2, для частоты 2387.62 см-1 при разных температурах и давлениях, точки – эксперимент [26], 1988 г.; 1 – расчет с дисперсионным контуром, 2 – расчет [26], 3 – расчет по теории крыльев линий с контуром, полученным в [74], 1982 г. а) Т=296 К, б) – Т=370 К.
[26] Hartmann J.M., Rosenmann L., Taine J. Temperature and pressure dependencies of absorption in the narrow R66-R68 window of the 12C16O2 ν3-band, JQSRT 1988, V.40, No.2, p.93-99.
[74] Несмелова Л.И., О.Б.Родимова, С.Д.Творогов, Коэффициент поглощения света в крыле полосы 4,3 мкм СО2, в кн.: Спектроскопия атмосферных газов (Наука, Новосибирск, 1982), с.4-16.
The absorption coefficient of CO2 broadened by N2 for a frequency of 2387.62 cm-1 at different temperatures and pressures, points - experiment [26], 1988; 1 - calculation with a dispersion contour, 2 - calculation [26], 3 - calculation according to the theory of wings of lines with a contour obtained in [74], 1982 a) T = 296°K, b) - T = 370°K. [
26] Hartmann J.M., Rosenmann L., Taine J. Temperature and pressure dependencies of absorption in the narrow R66-R68 window of the 12C16O2 ν3-band, JQSRT 1988, V. 40, No.2, p. 93-99.

[74] Nesmelova LI, OB Rodimova, SD Tvorogov, Light absorption coefficient in the wing of the 4.3 μm CO2 band, in: Spectroscopy of atmospheric gases (Nauka, Novosibirsk, 1982), p.
4-16.

2 x 1 1300 x 480
1991

Figure 2. Binary absorptions coefficients α11(ν) for pure CO2 at 297.5°K in  semi logarithmic scale: pluses, experimental results. The upper curve in Figure 2b represents the Lorentzian calculation (i.e., χ=1 in equation (1)). The solid curve in Figure 2a and the lower curve in Figure 2b have been calculated with the Burch et al. [1969] χ-factor. The calculations do not include the very weak contributions from the allowed bands located in the 3900-4700 cm-1 region.
Burch, D.E., D.A. Gryvnak, R. R. Patty, and C. E. Bartky, Absorption of infrared radiant energy by CO2 and H2O. IV-Shapes of collision-broadened CO2 lines, J. Opt. Soc. Am., 59, 267-280, 1969.

1 x 2 800 x 1280
1991

Relative attenuation contributions at temperature extremes:(a) T = +30.30C, humidity = 14.9 g m- 3; (b) T =-21.4oC, humidity = 0.77 g m- 3

1 x 2 800 x 1280
1991

Figure 1. Self-Broadening Experimental and Theoretical Results  (Absorption coefficientα, (cm-1)) and δ =[(αobs - αcal)/αobs] in % for different temperatures.

2 x 1 1600 x 640
1991

Figure 2. Experimental and Theoretical Values of BCO2+N2 in cm-1 amagat-2 Notes: {δ =[(αobs - αcal)/αobs] in %}. χsym means calculation was made with a symmetrical χ factor deduced from high frequency side experiments; χasym means calculation was made with an optimized asymmetrical Χ factor.

2 x 1 1610 x 640
1991
Несмелова Л.И., О.Б.Родимова, С.Д.Творогов,
О поведении коэффициента поглощения при изменении давления в крыле полосы 4.3 мкм СО2,
Оптика атмосферы и океана, 1991, Volume 4, Issue 7, Pages 745-752.

 Figure 5. Полный коэффициент поглощения СО2 и его селективная и континуальная составляющие при различных температурах как функции давления, ω=2450 см-1; 1 – κполн,  2 – κконт, 3 – κсел. а) Т=300 К; б) Т=627 К

1 x 2 640 x 960
1991
Несмелова Л.И., О.Б.Родимова, С.Д.Творогов,
О поведении коэффициента поглощения при изменении давления в крыле полосы 4.3 мкм СО2,
Оптика атмосферы и океана, 1991, Volume 4, Issue 7, Pages 745-752.

Figure 3. Спектр пропускания СО2-N2 при Т-291 К, l=4.4 см, точки – эксперимент [4], штриховые – расчет с учетом смешивания линий [4], сплошные кривые – наш расчет: а) 1,1' –ρ=1.62 Амага; 2,2’ –ρ=7.27 Амага; 3,3’ – ρ=17 Амага; б) 1,1' –ρ=29.3 Амага; 2,2’ –ρ=51.5 Амага; 3,3’ –ρ=77.1 Амага
[4] J. M. Hartmann. Measurements and calculations of CO2 roomtemperature highpressure spectra in the 4.3 μm region. The Journal of Chemical Physics 90, 2944 (1989); doi: 10.1063/1.455894. http://dx.doi.org/10.1063/1.4558944-2950.

 

1 x 2 800 x 1280
1992
L.I.Nesmelova, O.B.Rodimova, and S. D. Tvorogov,
Absorption coefficient in the infrared CO2 Q-branch,
SPIE . V.1811,
SPIE - The international society for optical engineering, 1992, Pages 295-297.

Figure 1. The CO2 absorption coefficient. P=0.70992 atm. a) Lorentzian calculation:  line wing theory calculation; b) (κwl)/κw: (κexpl)/κexp, Ref.2
[2] L.L.Strow and B.M.Gentry, J.Chem.Phys. 84, No.3, pp.1149-1156, 1986

2 x 1 1280 x 480
1992
Несмелова Л.И., О.Б.Родимова, С.Д.Творогов,
Спектральное поведение коэффициента поглощения в полосе 4.3 мкм СО2 в широком диапазоне температур и давлений,
Оптика атмосферы и океана, 1992, Volume 5, no. 9, Pages 939-946.

Figure 4. Отклонения рассчитанного коэффициента поглощения от экспериментального для СО2+СО2 и СО2+N2 при различных температурах в микроокнах  полосы 4.3 мкм. Коэффициент поглощения κexp [4].
Defined Function = κcalcexp.
[4] Cousin C., Le Doucen R., Boulet C., Henry A., Robert D. Line coupling in the temperature dependence frequency dependences of absorption in the microwindows of  the 4.3 μm CO2 band. JQSRT. 36, No6, 521-538 (1986)

2 x 2 1280 x 960
1992
Несмелова Л.И., О.Б.Родимова, С.Д.Творогов,
Спектральное поведение коэффициента поглощения в полосе 4.3 мкм СО2 в широком диапазоне температур и давлений,
Оптика атмосферы и океана, 1992, Volume 5, no. 9, Pages 939-946.

Figure 3. Отклонения рассчитанного коэффициента поглощения от экспериментального для СО2+СО2 и СО2+N2 при различных температурах за кантом полосы 4.3 мкм. Коэффициент поглощения κexp [bib].
[1] Bulanin M.O., Dokuchaev A.B., Tonkov M.V., Filipov N.N. Influence of the line interference on the vibratio-rotation band shapes, JQSRT 31, No.6, 521-543 (1984)

[2] Le Doucen R., Cousin C., Boulet C., Henry A. Temperature dependence of the absorption in the region beyond the 4.3 μm band of CO2. I: Pure CO2 case, Appl. Opt. 24, No.6, 897-906 (1985)
[3] Cousin C., Le Doucen R., Boulet C., Henry A. Temperature dependence of the absorption in the region beyond the 4.3 μm band of CO2. 2: N2 and O2 broadening, Appl. Opt. 24, No.22, 3899-3907 (1985)
[5] Perrin, M. Y. and J. M. Hartmann, Temperature-dependent measurements and modeling of absorption by CO2-N2 mixtures in the far line-wings of the 4.3μm CO2. band, J. Quant. Spectrosc. Radiat. Transfer, 42, 311-317, 1989.
[6] Hartmann J.M., Perrin M.Y. Appl Optics 1989. V.28. No.13. P.2550-2553 [18] Кузнецова Э.С., Осипов В.М., Подкладенко М.В. Опт и спектр 1975. Т.38. Вып.1. С.36-38.
2 x 7 1280 x 3360
1993

Figure 2. Rototranslational collision-induced spectra of N2-CH4 pairs. Markers denote experimental data by (Dagg et al. 1986) at temperatures of 126°, 149°, 179°, and 212°K. Solid lines show our theoretical results based on fitted parameters μ obtained at this work.

I. R. Dagg, , A. Anderson, , S. Yan, , W. Smith, , C. G. Joslin, and , L. A. A. Read. Collision-induced absorption in gaseous mixtures of nitrogen and methane. Canadian Journal of Physics, 1986, 64(11): 1467-1474, https://doi.org/10.1139/p86-260.
1 x 4 800 x 1920
1993

Figure 3. Rototranslational collision-induced spectra of N2-CH4 pairs. Markers denote experimental data by (Birnbaum et al. 1993) at temperatures of 162°K, 195°K, and 297°K. Solid thick lines show our theoretical results, based on fitted parameters m obtained in this work. Separate dipolar contributions are marked with thin lines and denote induction by: dots, N2  Θ, dash-dot-dot, N2 Φ; dashes, CH4 Ω; dash-dot, CH4 Φ; dot-dash-dash, CH4 Q6 ; and long dashes, double transitions.

G. Birnbaum, A. Borysow, A. Buechele, Collision‐induced absorption in mixtures of symmetrical linear and tetrahedral molecules: Methane–nitrogen, J. Chem. Phys. 99, 3234 (1993); https://doi.org/10.1063/1.465132.
1 x 3 800 x 1440
1993

Figure 4. Comparison of the theoretical estimations based on the current (solid line) and the previous (Courtin 1988) (dashed line) models. The absorption spectra are shown at temperatures of 70°, 120°, and 170°K and frequencies up to 600 cm-1.

Régis Courtin, Pressure-induced absorption coefficients for radiative transfer calculations in Titan's atmosphere, Icarus, Volume 75, Issue 2, August 1988, Pages 245-254, https://doi.org/10.1016/0019-1035(88)90004-8

1 x 3 800 x 1440
1993

Figure 4. Experimental pure H2O transmission spectra for 575 K.

2 x 1 1280 x 480
1993

Figure 12. Pure H2O transmissivities in the wing of the ν2 band (2.5 cm-1 resolution): - experimental data; --- calculated from Eqs. (15) and (17) and Table 4. Fig. (12) 575°K and the densities: 10.5 Am; 21.3 Am; and 38.2 Am. Fig. (112) 775°K and the densities: 8.30 Am; 14.2 Am; and 25.6 Am.

1 x 2 1024 x 960
1993

Figure 3. A comparison of the monochromatic opacities of CO2 generated with the high-T database for  pressure conditions appropriate to the various window regions and alternately room temperature (dashed curve) and a temperature appropriate to the windows (see Fig.1). (a) 2.3 μm window; (b) 1.7 μm window; (c) 1.2 μm window complex.

2 x 2 1600 x 1280
1994

Figure 6. Observed and calculated absorption coefficient  in the region just before the bandhead for conditions: P(CO2)=2.5 atm, P(He)=63.6 atm.

1 x 2 800 x 1280
1994

Figure 2. Normalized He-broadened absorption beyond the bandhead. Present experimental results; previous results of Ref. 8; Lorentzian calculation. The bottom gives the ratio of the observed absorption to the Lorentzian prediction.
Defined function - B0(exp)/B0(Lor).

[8] Y. I. Baranov, M. O. Bulanin, and M. V. Tonkov, Opt. Spectrosc. 50, 336 (1981).

1 x 2 800 x 1280
1994

Figure 5. Absorption in the central gap between P and R branches. Observed absorption coefficient (top) in the region just before the bandhead for various experimental conditions (the bottom gives the ratio of the observed coefficient to a Lorentzian prediction)
Defined function - B0(exp)/B0(Lor).

2 x 2 1600 x 1240
1994

Figure 3. Comparison between IOS (infinite order sudden (IOS) approximation ) predictions and experimental absorption in the wing above 6990 cm-1. o, ratio of experimental absorption coefficient to that expected from a sum of Lorentzian lines. V, IOS predictions. (The insert shows the same ratio in the R branch region at high He pressures in order to demonstrate that the transfer of intensity is too important. )

2 x 1 1600 x 640
1994

Figure 10.  Comparison between experimental and ECS absorption coefficients in the central gap (T=296 K). Experiment; Lorentzian profiles; ECS predictions (based on the optimized Q, rates) [lower curves give the ratio of experimental or ECS results to that expected from a sum of Lorentzian lines].

2 x 1 1600 x 640
1994

Figure 3. Comparison between (IOS -DBC) predictions and experimental absorption in the wing above 6990 cm-1. ratio of experimental absorption coefficient to that expected from a sum of Lorentzian lines.  In this figure the diagonal elements are no longer obtained from Eq. (3) but deduced from the sum rules (see text). Wkk = -Σl=k dl/dk Wlk IOS/DBC=S’k; Wkk=1.01S’k; Wkk=1.02S’k; Wkk=1.05S’k; Wkk=1.1S’k.

2 x 1 1600 x 640
1995

 Figure 1. Absorption spectra in the 3ν3 CO2 band perturbed by He at room temperature 297 K. • Experimental values (Ref. 6); — calculated values (Eqs. (22), (24), and (25) and fitted parameters of Table II); --- calculated from the Lorentzian model and HITRAN database (Ref. 8).
[6] L. Ozanne, Nguyen-Van-Thanh, C. Brodbeck, J. P. Bouanich, J. M. Hartmann, and C. Boulet, J. Chem. Phys. 102, 7306 (1995).
[8] L. S. Rothman, R. R. Gamache, R. H. Tipping, C. P. Rinsland, M. A. H. Smith, D. C. Benner, V. Malathy Devi, J. M. Flaud, C. Camy-Peyret, A. Perrin, A. Goldman, S. T. Massie, L. R. Brown, and R. A. Toth, J. Quant. Spectrosc. Radiat. Trans. 48, 469 (1992).

1 x 3 800 x 1920
1995

Figure 2. Absorption spectra in the 3ν3 CO2 band perturbed by He at room temperature 297 K. nCO2=4.61 Am, nHe=409 Am. • Experimental values (Ref. 6); — calculated values (Eqs. (22), (24), and (25) and fitted parameters of Table II); --- calculated from the Lorentzian model and HITRAN database (Ref. 8).
[6] L.Ozanne, Nguyen-Van-Thanh, C. Brodbeck, J. P. Bouanich, J. M. Hartmann, and C. Boulet, J. Chem. Phys. 102, 7306 (1995).
[8] L.S. Rothman, R. R. Gamache, R. H. Tipping, C. P. Rinsland, M. A. H. Smith, D. C. Benner, V. Malathy Devi, J. M. Flaud, C. Camy-Peyret, A. Perrin, A. Goldman, S. T. Massie, L. R. Brown, and R. A. Toth, J. Quant. Spectrosc. Radiat. Trans. 48, 469 (1992).

1 x 3 800 x 1920
1995

Figure 5. Absorption coefficients in the central region of the 3ν3 band. experimental; calculated with the: ECS model; Lorentzian model. (a) nCO2= 4.62 Am and nHe=121.2 Am (n˜ He=126.2 Am). (b) nCO2= 4.66 Am and nHe=598.7 Am (n˜ He=720.6 Am).

1 x 2 800 x 1280
1995

Figure 7. Absorption coefficients in the central region of the 3ν3 band. o experimental; — calculated with the ECS model corrected for the effective shift Deff . (a)  nCO2= 4.61 Am and nHe=364.3 Am (n˜ He=409.4 Am). (b) nCO2=5 4.66 Am and nHe=598.7 Am (n˜ He=720.6 Am).

1 x 2 800 x 1280
1995

Figure 9. Absorption coefficients in the central region of the ν3 band. o experimental; calculated with the ECS model corrected for the effective shift Δeff and the interbranch corrective factor -..-  bR-P=0.4; —bR-P=0.25; --- bR-P=0.0. (a) nCO2= 2.73*10-5 Am and nHe=603.4 Am (n˜ He=727.2 Am); (b) nCO2= 1.63*10-5 Am and nHe=124.3 Am (n˜ He=129.5 Am); (c)  nCO2= 4.25 *10-5 Am and nHe=241.5 Am (n˜ He=261.3 Am).

1 x 3 800 x 1920
1995

Figure 4. Portion of observed (CO2)2 +(CO2)3. Note 3:1 spacing of (CO2)3 Q-branches, and sharp appearance of the (CO2)3 rQ0-branch due to l-type doubling (conditions: 1.8% CO2 in He, P0=1 bar).

1 x 4 800 x 1920
1995

Figure 3. Portion of observed (CO2)2+(CO2)3 infrared spectrum including central a -type Q-branch of  (CO2)2. Note resolved P-branch transitions for (CO2)3. The P-branch transitions are labeled only for subbands where K"≥15 (conditions: 1.8% CO2 in He, P0=1.0 bar).

1 x 4 800 x 1940
1995

Figure 3. Portion of observed (CO2)2+(CO2)3 infrared spectrum including central a -type Q-branch of  (CO2)2. Note resolved P-branch transitions for (CO2)3. The P-branch transitions are labeled only for subbands where KN≥15 (conditions: 1.8% CO2 in He, P0=1.0 bar).

1 x 4 960 x 540
1995

Figure 4. Portion of observed (CO2)2 +(CO2)3. Note 3:1 spacing of (CO2)3 Q-branches, and sharp appearance of the (CO2)3 rQ0-branch due to l-type doubling (conditions: 1.8% CO2 in He, P0=1 bar).

1 x 4 960 x 540
1995

Figure 10. Unidentified  Q-branch  like  absorptions  in  the  observed (CO2)2+(CO2)3 spectrum. The features labeled QA and QB clearly do not belong to the dimer or cyclic trimer. Moreover, they are within 0.4 cm-1 of the predicted vibrational origin of the trimer asymmetric top isomer from model potentials. Overlap of (CO2)3 transitions with the head of both QA and QB is coincidental (conditions: 1.8% CO2 in He,P0=1 bar)

1 x 2 960 x 1080
1996

Figure 4. Portion of noncyclic (CO2)3 isomer nI band spectrum. The observed spectrum corresponds to a c-type band of an asymmetric top, with a hybrid character of <0.10. The model spectrum (Gaussian width 575 MHz, 0.87 c type, 0.13 a type) correctly reproduces the observed features, including the strong Q branch at 2343.3 cm-1. The gaps in the observed spectrum are due to CO2 monomer transitions ~including hot band and 16O12C17O transitions! that have been excised for visual clarity. Conditions: 2% CO2 seeded in He at 0.8 bar, 20 passes of probe through expansion.

1 x 2 1200 x 480
1996

Figure 6. Portion of νIII band of the noncyclic (CO2)3 isomer. Some of the main P-branch transitions of the noncyclic trimer are labeled in the model spectrum, and indicated by arrows in the observed spectrum. Also note the strong Q branch marked with an asterisk in the observed spectrum. This corresponds to none of the predicted features, and probably belongs to a cluster larger than the trimer. Conditions: 0.6% CO2 in He, P0=2.1 bar, 2 passes. Model spectrum: Trot=6.5 K, linewidth is 50 MHz. Hybrid character: 0.78 a type, 0.22 c type.

1 x 4 800 x 960
1996

Figure 3. CO2 line profile adopted here compared to a Lorentz profile, an extrapolation [Fukabori et al., 1986] of the line profile specified by Perrin and Hartmann [ 1989], and the line profile used by Pollack et al. [1993].
M. Fukabori, T. Nakazawa and M. Tanaka, Absorption properties of infrared active gases at high pressures—I. CO2, Journal of Quantitative Spectroscopy and Radiative Transfer, 1986, Volume 36, Issue 3, Pages 265-270, DOI: 10.1016/0022-4073(86)90074-9./
Perrin M.Y.  and J.M. Hartmann, Temperature-dependent measurements and modeling of absorption by CO2–N2 mixtures in the far line-wings of the 4.3 μm CO2 band. Journal of Quantitative Spectroscopy and Radiative Transfer, Volume 42, Issue 4, October 1989, Pages 311-317  https://doi.org/10.1016/0022-4073(89)90077-0
Pollack J.B., Dalton J.B., Grinspoon D., Wattson R.B., Freedman R., Crisp D., Allen D.A., Bezard B., deBergh C., Giver L.P., Ma Q., Tipping R.H., Near-infrared light from Venus’ nightside: a spectroscopic analysis, Icarus, 1993, Volume 103, Pages 1-42, DOI: 10.1006/icar.1993.1055.
y

2 x 1 1600 x 640
1996

Figure 2. Comparison between experimental, Lorentzian and ECS absorption coefficients in the 3ν3 band region. (a) P[CO2]= 46 Torr., P[He] = 2.5 atm., L = 56 m; (b) P[CO2] = 159 Torr, P[He] = 5 atm., L = 96 m.

1 x 2 800 x 1280
1996

Figure 5. Self-broadened continuum coefficients from this research, Burch, CKD models, Ma and Tipping, and impact theory.

[5] R. H. Tipping and Q. Ma, Theory of the water vapor continuum and validations, Atmos. Res. 36, 69–94 (1995), and references therein.
[8] S. A. Clough, in The water vapor continuum and its role in remote sensing, in Optical Remote Sensing of the Atmosphere, Vol. 2 of 1995 OSA Technical Digest Series Optical Society of America, Washington, D.C., 1995, pp. 76–78.
[14] D. E. Burch, Continuum absorption by H2O, Ford Aerontronic Rep. AFGL-TR-81-0300, U.S. Air Force Geophysics Laboratory, Hanscom Air Force Base, Mass., 1982.

1 x 2 800 x 1280
1996

Figure 5. Comparison between experimental and Lorentzian profiles for the Q-branch at 720 cm-1. The insert gives the ratio of experimental absorption coefficient to that expected from a sum of Lorentzian lines.

1 x 2 800 x 1280
1996

Figure 6. Comparison between experimental and Lorentzian profiles for the Q-branch at 720 cm-1. The insert gives the ratio of experimental absorption coefficient to that expected from a sum of Lorentzian lines.

1 x 2 800 x 1280
1996

Figure 7. Comparison between experimental and Lorentzian profiles for the Q-branch at 618 cm-1. The insert gives the ratio of experimental absorption coefficient to that expected from a sum of Lorentzian lines.

1 x 2 800 x 1280
1996

Figure 10. Comparison between experimental and Lorentzian profiles in the wings of the ν2 Q-branch. The insert gives the ratio of experimental absorption coefficient to that expected from a sum of Lorentzian lines. The ratio is only given in the region where the experimental profile is not saturated.

1 x 2 800 x 1280
1996

Figure 7. Room temperature pure CO2 absorption coefficients for a density of 20 amagats: o, experimental values; solid curve, computed values accounting for allowed and induced transitions with the optimized x factor of Table 2 and the HITEMP database; dashed curve, computed contribution of the far wings of allowed bands centered outside the considered spectral region. The lower plot gives the relative difference between observed and computed spectra.

1 x 2 800 x 1280
1996

Figure 10. Absorption coefficients in the central region of the 3ν3 band of CO2 compressed by Ar at high density (n1 = 4.68 Am and n2 = 169.4 Am). • Experimental results; Calculated with the ECS model corrected with the interbranch corrective factor bP-R = 0.20. (a) Only individual lineshifts are taken into account: (b) in addition to the individual lineshifts a corrected lineshift of: -4.5 x 10-3cm-1 Am-1 in the R-branch and -25 x 10-3cm-1 Am-1 in the P-branch are taken into account.

1 x 2 800 x 1280
1996

Figure 9. Absorption coefficients in the central region of the 3ν3 band of CO2 compressed by Ar at high density. Experimental; Calculated with the SCA model . (a) n1 =4.78 Am and n2 = 112.3 Am. (b) n1 = 4.68 Am and n2 = 169.4 Am.

1 x 2 800 x 1280
1996

Figure 7. Absorption coefficients in the central region of the 3ν3, band of CO2 compressed by Ar at high density. Experimental; Calculated with the Lorentzian model, ECS model. (a) n1 =4.78 Am and n2 = 112.3 Am. (b) n1 = 4.68 Am and n2 = 169.4 Am.

1 x 2 800 x 1280
1996
Tobin D.C., Strow L.L., Lafferty W.J., Olson W.B.,
Experimental investigation of the self- and N2-broadened continuum within the ν2 band of water vapor,
Applied Optics, 1996, Volume 35, no. 24, Pages 4724-4734.

Figure 7. N2-broadened continuum coefficients from this research, Burch, CKD models, Ma and Tipping, and impact theory.
[5] R. H. Tipping and Q. Ma, “Theory of the water vapor continuum and validations,” Atmos. Res. 36, 69–94 (1995), and references therein.
[8] S. A. Clough, in “The water vapor continuum and its role in remote sensing,” in Optical Remote Sensing of the Atmosphere,
Vol. 2 of 1995 OSA Technical Digest Series ~Optical Society of America, Washington, D.C., 1995, pp. 76–78.
[14] D. E. Burch, “Continuum absorption by H2O,” Ford Aerontronic Rep. AFGL-TR-81-0300 (U.S. Air Force Geophysics Laboratory, Hanscom Air Force Base, Mass., 1981).

1 x 2 800 x 1280
1997

Figure 5. Measured transmission and computed results obtained accounting for line-mixing by using the models LM-R and LM-S in the 720 cm-1 region for spectra (a) 1 and (b) 84.
LM-R  and LM-S - two models of accounting for the line-mixing. LM – line-mixing within the first order perturbation theory [Rosenkranz E.W. IEEE Trans. Antennas Propag. AP-23, 498-506, 1975, Smith E.W. J Chem Phys 74. 6658-6673. 1981]. LM-R model, parameters from Rodrigers et al JQSRT 1997 with HITRAN 1996. LM-S model, parameters from Strow L.L. anonymous ftp site, 1994. Table 1. Main characteristics of some of the balloon-borne spectra.

1 x 2 800 x 1280
1997

Figure 6. Deviations between measured and computed transmissions in the 720 cm-1 region for spectra (a) 1 and (b) 84 of Figures 5a and 5b with a numerically downgraded resolution of 0.05 cm-1 (FWHM).

1 x 2 800 x 1280
1997

Figure 3. Absorption coefficients in the central region of the 3ν3 band: •, measured; ____, calculated with the ECS model. (a) nCO2=3.26 Am and nAr=283.1 Am (n'Ar=342.4 Am); (b) nCO2=3.26 Am and nAr=545.5 Am (n'Ar=765.6 Am).

1 x 2 800 x 1280
1997

Figure 7. ν3 band wing parameters B0CO2-Ar. Experimental results from: Refs.9,23;  this work. Calculations with: the ECS impact model; the impact/quasi-static interpolation model; the Lorentzian model.
[9] Boissoles J., Menoux V., Le Doucen R., Boulet C., Robert D. Collisionally induced population transfer effects in infrared absorption spectra. II. The wing of the Ar-broadened ν3 band of CO2, J.Chem.Phys. 91, No.4, 2163-2171 (1989)
[23] Bulanin M.O., Dokuchaev A.B., Tonkov M.V., Filipov N.N. Influence of the line interference on the vibratio-rotation band shapes, JQSRT 31, No.6, 521-543 (1984).

 

1 x 2 800 x 1280
1997

Table 2. Binary absorption coefficients B0CO2-Ar and density effect parameter cCO2-Ar [see Eq.(11)] in the ν3 band wing.
Bibliography

1 x 2 800 x 1280
1998

Figure 10. Net binary absorption cross sections  of the O4 visible bands for 1000 hPa pure oxygen at (a) 223 K and (b) 283 K. Figures 210c and 310d show the cross sections corrected for the O2 -γ-band absorption in the 630.0 nm region for Figures 10a and 110b, respectively. Standard deviations of the cross sections are shown on an expanded scale below each of Figures 10a-310d.

2 x 2 1080 x 640
1998

Figure 5. (a) D2O cluster spectra as a function of source pressure. Scans are taken at 10, 15, 25, 35, and 45 p.s.i. absolute pressure. Note to two uppermost pressure scans are plotted with the same offset to highlight the ‘‘bulk ice’’ feature that appears for the highest source pressure. (b) D2O cluster spectra obtained with a constant source pressure (35 psia) and increasing concentration of water in the carrier gas.

1 x 2 800 x 1300
1998

Figure 5. Absorption in the wing of the ν3 band: (a): CO2+He, (b) CO2+Ar: measured values; computed results obtained with our values of τJ-1 (0.009 and 0.049 cm-1/Am for He and Ar); have been obtained with twice (He) and half (Ar) these values.

1 x 2 800 x 1280
1999

Figure 3. Calculated absorption coefficient α(ω) in the 2400–2580 cm-1 spectral region of CO2–CO2 is represented by the solid curve; the experimental data from Ref. 15 are indicated by pluses. (a) T = 296 K, (b) T = 218 K. The absorption calculated assuming a Lorentzian line shape is given by the dashed curve.
[15] R. Le Doucen, C. Cousin, C. Boulet, and A. Henry, “Temperature dependence of the absorption in the region beyond the 4.3-μm band head of CO2. I: Pure CO2 case,” Appl. Opt. 24, 897–906 (1985).

 

1 x 2 800 x 1280
1999

Figure 3. Calculated absorption coefficient α(ω) in the 2400–2580 cm-1 spectral region of CO2–CO2 is represented by the solid curve; the experimental data from Ref. 16 are indicated by triangles. (a) T = 291 K, (b) T = 414 K, (c) T = 534 K, (d) T = 627 K, (e) T =751 K. The absorption calculated assuming a Lorentzian line shape .
[16] J.-M. Hartmann and M.-Y. Perrin, “Measurements of pure CO2 absorption beyond the ν3 band head at high temperature,” Appl. Opt. 28, 2550–2553 (1989).ibliography

 

2 x 3 1600 x 1920
1999

Figure 2. (a) CIA spectrum in the vicinity of lower member of the Fermi doublet. (b) Same as in Fig. 2a for the upper Fermi-coupled band.

1 x 2 640 x 960
2000

Figure 5. (A) Evolution in ν3 region of a CO2/Ar mixture (1/10 000) kept at 30 K during different time lapses (t).: (a) t=0; (b) t =10 min; (c) t = 20 min; (d) t = 30 min; (e) t = 45 min; (B) comparison of a spectrum of 13CO2/Ar sample (1/10 000) in the ν3 region recorded at  11 K after deposition at 20 K with a spectrum recorded at 11 K after annealing at 30 K. M: monomer; : band due to N2 impurity. D', D" dimer; P pair; X not assigned.

1 x 2 960 x 1080
2000

Figure 3. (b) Comparison of the calculated symmetric-top-like dimeric spectrum (solid line) with the experimental one (dots, see lower trace in Fig. 1) in the vicinity of the lower Fermi-coupled band. The dashed line shows the spectral profile which occurs provided rotational predissociation effect is neglected. Solid and dashed lines in this figure refer to the stick spectrum only and the sticks plus dash wings in the Fig. 3a, respectively. (c) Comparison of the calculated symmetric-top-like dimeric spectrum (solid line) with the experimental one (open circles, see lower trace in Fig. 1) in the vicinity of the upper Fermi coupled band.

1 x 2 640 x 960
2001

Figure 3. Typical CARS spectra taken at high resolution in the regions of νlow and νup (14, 15, 23). Neat CO2 gas was expanded at a stagnation pressure of 1.5 bar through a ω = 90-μm-wide and l=1-mm-long slit nozzle. Both spectra were recorded at a relative distance of z/w = 4 from the nozzle exit.

14. A. A. Vigasin, A. A. Ilyukhin, L. Ramonat, V. V. Smirnov, O. M. Stelmakh, and F. Huisken, Khim. Fiz. 15, 88–95 (1996) [in Russian].
15. F. Huisken, L. Ramonat, J. Santos, V. V. Smirnov, O. M. Stelmakh, and A. A. Vigasin, J. Mol. Struct. 47, 410–411 (1997).
23. L. Ramonat, Ph.D. Thesis, University of Gottingen, 1997.

2 x 1 1280 x 480
2001
Golovko V. F.,
Calculation of carbon dioxide absorption spectra in wide spectral regions,
Atmospheric and Oceanic Optics, 2001, Volume 14, Issue 9, Pages 807-812.

Figure 2. Качественная иллюстрация температурной зависимости рассчитанных спектров поглощения СО2 для трех температур за кантом 3ν3 полосы 7000 см-1 (1.4 мкм): а – самоуширение СО2+СО2; б – уширение гелием СО2+Не.

1 x 2 640 x 960
2001
Tiedje, H.F., DeMille, S., MacArthur, L. and Brooks, R.L.,
Cavity ring-down spectroscopy of transient O2-O2 dimers ,
Canadian Journal of Physics, 2001, Volume 79, Issue 4, Pages 773-781,
DOI: 10.1139/p01-042, https://doi.org/10.1139/p01-042.

Figure 3. CRDS spectra of (O2)2 a(0; 0)← X(0; 0) (top) and a(0; 1)← X(0; 0) (bottom) at three higher densities.

1 x 2 960 x 1080
2002

Figure 3. Infrared spectrum in the OH stretching region of supercritical water at T=380°C as function of pressure (density) in the range 200-250 bar (0.1-0.4 g.cm-3). The calculated characteristic frequencies of the OH stretching mode of small water clusters are reported for comparison.

1 x 2 800 x 1080
2002

Figure 2. Evolution of the OH anti-symmetric (ν3) and symmetric (Vi) stretching modes, and of the bending mode (ν2) of supercritical water at T=380°C as a function of pressure (density) in the range 25-180 bar (0.01-0.1 g.cm-3). (B) Infrared band intensities (Km.mol-1) associated with the OH stretching and bending modes of small cyclic water clusters as calculated by DFT methods (see text).

1 x 2 800 x 1080
2002

Figure 2. Temperature variations of the widths (a) and the exponents (b) in the generalized Lorentz formula (1). Empty circles refer to the low-frequency component; filled circles are used for the high-frequency one.

1 x 2 800 x 960
2003

Figure 2. The O2–O2 collision-induced absorption cross-section at room temperature from the UV to the NIR. Assignments and vibrational levels of the bands are also shown.

1 x 2 1280 x 1024
2003
Mikhail V. Tonkov, Nikolai N. Filippov,
Collision induced far wings of CO2 and H2O bands in IR spectra,
NATO Advanced Research Workshop on Weakly Interacting Molecular Pairs - Unconventional Absorbers of Radiation in the Atmosphere, NATO Science Series IV Earth and Environmental Sciences. Volume: 27,
Fontevraud, FRANCE, 2003, Pages 125-136.

 Figure 3. a) The absorption of H2O vapor due to collisions with N2 molecules. Data calculated with the strong collisions and ABC at Cbranch =0.6 models (1, 2); experimental data (3). b) The absorption of H2O vapor due to collisions with H2O molecules: experimental data (1); data calculated with the strong collisions approximation (2).

[10] Tonkov, M.V., Filippov, N.N., Timofeev, Yu. M., and Polyakov, A.V. (1996). A simple model of line mixing effect for atmospheric application: theoretical background and comparison with experimental profiles, JQSRT, 56, 783–795.
[12] Arefiev, V.N. (1990) Molecular Absorption in Gases and Attenuation of Laser Radiation in the Atmosphere. Thesis for a doctoral grade. Obninsk (in Russian).
1 x 2 800 x 960
2003

Figure 1. Comparison of observed and simulated profile of a CO2 dimer band.

1 x 2 800 x 960
2004

Figure 7. Absorption in the 12 20<-01 10 Q branch for various pressures. In each panel there are measured (difference frequency) values, and are measured–calculated deviations obtained with the ECS-EP model, respectively, accounting for and neglecting line mixing.

1 x 3 640 x 1440
2004

Figure 3. Comparison between vibrational predissociation spectra of (a) (H2O)6-‚ Ar7, reproduced from ref 23, and (b) the neutral (H2O)6 complex, obtained by argon-mediated, population-modulated electron attachment

1 x 2 640 x 800
2004

Figure 6. Normalized absorption in the ν2 region at 296 K for CO2 in 200 atm of N2. Measured values, calculated with the present ECS model and the Lorentzian approach, respectively. (Meas-ECS) relative deviations are given in the lower part of the plot.
Defined function = (σObs - σCalc)/σObs

1 x 2 640 x 960
2004

Figure 8. Normalized absorption in the ν2 region at 198 K for CO2 in 105 atm of N2. Measured values, calculated with the present ECS model and the Lorentzian approach, respectively. (Meas-ECS) relative deviations are given in the lower part of the plot.
Defined function = (σObs - σCalc)/σObs

1 x 2 640 x 960
2004

Figure 4. Collision-induced rototranslational absorption band of interacting  N2 and CH4 molecules, the binary enhancement spectrum of nitrogen- methane mixtures at the temperatures of 126°, 149°, 179°, and 212°K. Our calculations ͑thin lines͒ are compared with existing measurements ͑heavy͒  ͑Ref. 4͒.

I. R. Dagg, A. Anderson, S. Yan, W. Smith, C. G. Joslin, and L. A. A. Read, Collision-induced absorption in gaseous mixtures of nitrogen and methane, Canadian Journal of Physics, 1986, 64(11): 1467-1474, https://doi.org/10.1139/p86-260.

1 x 4 800 x 1920
2004

Figure 4. Corrected residual between measurement and modified-HITRAN calculations with CKD-2.4 included. Bars show the measurement errors and errors of spectral line parameters fitting. (a) 20 hPa, 128 m, 299 K measurement. (b) 98 hPa, 9.7 m, 342 K measurement. To best fit the residual, the dimer spectrum is red-shifted by 12 cm-1 and 5 cm-1 for (a) and (b) respectively.

1 x 2 800 x 960
2004

Figure 5. Corrected residual between measurement and modified-HITRAN calculations with Ma and Tipping continuum included. Bars show the measurement errors and errors of spectral line parameters fitting. (a) 20 hPa, 128 m, 299°K measurement. (b) 98 hPa, 9.7 m, 342°K measurement. To best fit the residual, the dimer spectrum is red-shifted by 9 cm-1 and 5 cm-1 for (a) and (b) respectively.

1 x 2 800 x 960
2004

Figure 15. Differential continuum in terms of optical depth computed from the transmission differences plotted in Figure 14. The estimated uncertainty of the retrieval is indicated by the grey shaded area. At large SZA the retrieved continuum becomes negative due to saturation effects. Both CKD models predict higher continuum absorption than observed, showing good agreement in the band wings.

2 x 2 1600 x 1080
2004

Figure 17. Differential continuum in terms of optical depth computed from the transmission differences plotted in Figure 16. The estimated uncertainty of the retrieval is indicated by the grey shaded area. While CKD 2.4.1. agrees well with the observation, the continuum computed by MT_CKD_1.0 yields lower continuum than observed. The dimer model predicts an isolated feature near 746 nm, while the retrieval exhibits enhanced absorption around 750 nm.

2 x 2 1600 x 960
2004

Figure 1. Temperature effect on some bands of (H218O)2 trapped in Ne (Ne/H218O=800). Spectra recorded at 8°K (lower traces) and 4°K (upper traces) after annealing at 10 K. M: Q(1)-type line of 2ν1 of the monomer.
Plot 1. and 301. - (ν12)/(ν13) PD; Plot 601. and 401. - ν1/2ν2  PA;  Plot 201. and 501. - ν1/2ν1   PD.

3 x 2 1620 x 800
2004
Несмелова Л.И., Родимова О.Б., Творогов С.Д.,
Коэффициент поглощения водяного пара при различных температурах,
Оптическая спектроскопия и стандарты частоты. Молекулярная спектроскопия, Редактор(ы) Л.Н.Синица и Е.А.Виноградов,
Томск, Издательство ИОА СО РАН, 2004, Страницы 413-436,
ISBN: 5-94458-040-2.

Figure 17. Результаты расчетов коэффициента поглощения водяного пара при самоуширении в интервале 3.8-4.2 мкм при различных температурах, полученные в квазистатическом [58] и асимптотическом подходах.

[16] Burch D.E. Continuum absorption by H2O, Report AFGL-TR-81-0300 by Ford Aerospace and Communications Corporation, Aeronutronic Division to AFGL, United States Air Force, Hanscom AFB, Massachusetts 01731 (1982), 46 p.
[58] Ma Q. and R.H.Tipping, A far wing line shape theory and its application to the water vibrational bands. II. J.Chem. Phys. 96, No. 12, 8655-8663 (1992).
2 x 1 1600 x 640
2005

Figure 2. Water vapor absorption in the OH stretching fundamental. Points with error bars stand for experimental data from [9]. Light, dash, and solid traces refer to the monomer, dimer, and resulting spectral profiles, respectively.

1 x 3 800 x 1800
2005

Figure 3.  (1+1)  REMPI spectra recorded under three different conditions. In (a) only NO and Ar were present and the spectrum was recorded in the m/z=16 mass channel; in (b) NO, CH4, and Ar were present, and again the spectrum was recorded in the m/z=16 mass channel; in (c) NO, CH4 and Ar were present, with the spectrum being recorded in the m/z=46 mass channel. See text for details.

1 x 3 800 x 1440
2005

Figure 4. (1+1)  REMPI spectra of the five different isotopomers of NO·methane. Whole scans. Spectra recorded in the parent mass channel, except for the CH3D isotopomer, which was recorded in the CH3D+ masschannel (where a small bleed in of O+ signal is seen from the m/z=16 channel, cf. Fig. 3) —see text.

1 x 5 800 x 2400
2005

Figure 5. (1+1)  REMPI spectra of the five different isotopomers of NO·methane. Low wavenumber regions. Spectra recorded in the parent mass channel, except for the CH3D isotopomer, which was recorded in the CH3D+ mass channel—see text.

1 x 5 800 x 2400
2005

Figure 4. The comparison of spectra in the 0–6000 cm–1 range calculated using the far-wing theory and the empirical model. (a) The entire range, (b) the 1200 cm–1 window (in more detail).

1 x 2 640 x 960
2005
Figure 7. Detailed view of the results of Fig. 6 in three particular regions, going away from the band center in the high wave number ν2 wing: measured values; computation accounting for line-mixing; computation neglecting line-mixing.
1 x 3 640 x 1440
2005

Figure 2. Dots: measurements of the rototranslational enhancement absorption spectra of hydrogen-methane gas mixtures at various temperatures (Refs. 4 and 8); solid lines: calculations of the binary rototranslational spectra.

4. G. Birnbaum, A. Borysow, and H. G. Sutter, J. Quant. Spectrosc. Radiat. Transf. 38, 189 (1987)
8. P. Codastefano, P. Dore, and L. Nencini, J. Quant. Spectrosc. Radiat. Transf. 36, 239 (1986).
1 x 7 800 x 3360
2005

Figure 1. Existing measurements [17] at temperatures of 163°, 195°, 243°, and 297°K (dots) are compared to calculated absorption spectra (solid line) in methane.

P. Codastefano, P. Dore, L. Nencini, Temperature dependence of the far-infrared absorption spectrum of gaseous methane, Journal of Quantitative Spectroscopy and Radiative Transfer, Volume 35, Issue 4, April 1986, Pages 255-263, https://doi.org/10.1016/0022-4073(86)90079-8.

2 x 2 1600 x 960
2006
Bicknell W.E., Cecca S.D., Griffin M.K., S. D. Swartz, and A. Flusberg,
Search for low-absorption regions in the 1.6-and 2.1-μm atmospheric windows,
Journal of Directed Energy, 2006, Volume 2, Pages 151–161.

Figure 3. Potential energy cuts along the R coordinate for Linear 0-0-0 (i.e.,θ12=00,φ=00; left panel) and near-equilibrium Slipped Parallel (i.e., θ12=600, φ=00; right panel) configurations. These cuts are computed using CCSD(T)/aug-cc-pVXZ (X=D,T,Q,CBS), CCSD(T)-F12(a,b)/aug-cc-pVTZ, MP2/aug-cc-pVQZ. We give also the SAPT potential of Bukowski et al.35 for comparison. 1a0=1 bohr=0.529177 A.

35. S.R. Bukowski, J. Sadlej, B. Jeziorski, P. Jankowski, K. Szalewicz, S. A. Kucharski, H. L. Williams, and B. M. Rice, J. Chem. Phys. 110, 3785 (1999).
48. K. A. Peterson, D. E. Woon, and T. H. Dunning, Jr., J. Chem. Phys. 100, 7410 (1994).
49 A. Halkier, T. Helgaker, P. Jørgensen, W. Klopper, and J. Olsen, Chem. Phys. Lett. 302, 437 (1999).

1 x 2 800 x 1280
2006
J. Thievin, Y. Cadudal, R. Georges, A.A. Vigasin,
 Direct FTIR high resolution probe of small and medium size Arn(CO2)m van der Waals complexes formed in a slit supersonic expansion,
Journal of Molecular Spectroscopy, 2006, Issue 2, Pages 141-152.

Table 5. Comparison between observation (experimental conditions #5) and simulation. The intensity of the simulated bands were adjusted to match the observed ones

1 x 5 960 x 1080
2006

Figure 4. The absorption profiles of the O2 + O2 feature near 477 nm at 294 K, 230°K and 184°K. Residuals from a comparison to a model function are shown as well. Further details are given in Section 2.5.

1 x 3 1920 x 1080
2006

Figure 5. The absorption profiles of the O2-O2 feature near 577 nm at 294 K taken from Ref. [2], 268 and 190 K. Residuals from a fit to a model function as discussed in Section 2.5 are shown as well.

1 x 3 1920 x 1080
2006

Figure 1. Depletion spectra of NH3 panel a and H2O panel b single molecules and clusters in He droplets of about 3500 atoms with an average number of about 1.5 and 2 captured molecules per droplet, respectively. Vertical dashed lines give the frequencies of the vibrational band origins of monomers. Sharp rovibrational lines of monomers are assigned Refs. 25 and 26. Additional strong bands are assigned to the absorption of the (NH3)k and (H2O)k clusters, which have been enhanced by hydrogen bonding. Cluster size, k, is indicated by numbers. Spectral peaks a – d in panel b are assigned to the dangling OH bonds of water clusters of different size.

1 x 2 1920 x 1080
2006

Figure 1. Depletion spectra of the N2-H2O complexes in the range of the ν3 band of H2O in He droplets. Pickup pressures: panel (a) PH2O ) 3*10-6 mbar, PN2 = 0; panel (b) PH2O=3  10-6 mbar, PN2 = 9*10-6 mbar. Panel (c) shows spectrum (b) with the contribution of spectrum (a) subtracted. This has been scaled to eliminate H2O linesfrom the spectrum. Smooth curves are Gaussian fits as described in the text. The origin of the ν3 band of H2O in He droplets is marked by the vertical dashed line. Pickup pressure dependences of the intensity of the peaks marked in panel (b) by arrows are shown in Figure 2.

1 x 3 1920 x 1080
2006

Figure 3. Depletion spectra of the N2-H2O complexes in the range of the î1 band of H2O in He droplets. Pickup pressures: panel (a) P(H2O) = 6*10-6 mbar, P(N2) = 0; panel (b) P(H2O) = 6*10-6 mbar, P(N2) = 9*10-6 mbar; panel (c) P(H2O) = 6*10-6 mbar, P(N2) = 1.8*10-5 mbar. Smooth curves are Gaussian fits as described in the text. The spectra were measured with a collimated laser beam, which gave about a factor of 5 larger effective laser energy flux, as compared with measurements in Figure 1. The origin of the î1 band of H2O in He droplets is marked by the vertical dashed line.

1 x 3 1920 x 1080
2007
Figure 4. Comparison of experimental data with HITEMP and CDSD (1550 K, 2:0 μm band of CO2).
1 x 2 1280 x 960
2007

Figure 10. Comparison of experimental data with HITEMP and CDSD (1550 K, 4:3 μm band of CO2).
Tashkun SA, Perevalov VI, Bykov AD, Lavrentieva NN, Teffo J-L. Carbon dioxide spectroscopic databank (CDSD), available from hftp://ftp.iao.ru/pub/CDSD-1000i; 2002.
Rothman LS, Wattson RB, Gamache RR, Schroeder J, McCann A. HITRAN, HAWKS and HITEMP high temperature database. Proc SPIE 1995;2471:105–11.
Bharadwaj SP, Modest MF, Riazzi RJ. Medium resolution transmission measurements of water vapor at high temperature. ASME J. Heat Transfer 2006;121:374–81.

1 x 2 1280 x 960
2007

Figure 13. Comparison of experimental data with HITEMP and CDSD (1550 K, 15:0 μm band of CO2).
Tashkun SA, Perevalov VI, Bykov AD, Lavrentieva NN, Teffo J-L. Carbon dioxide spectroscopic databank (CDSD), available from hftp://ftp.iao.ru/pub/CDSD-1000i; 2002.
Rothman LS, Wattson RB, Gamache RR, Schroeder J, McCann A. HITRAN, HAWKS and HITEMP high temperature database. Proc SPIE 1995;2471:105–11.

 

1 x 2 1280 x 960
2007

Figure 1. Potential energy as a function of the intermolecular distance R for  some selected conformations of the dimer, (θN2a; θH2/N2b; Φ) = (90°; 90°; 0°) for H, (0°, 0°, 0°) for L, (90°, 90°, 90°) for X, (90°, 0°, 0°) for Ta and (0°, 90°, 0°) for Tb, of N2–H2 (left panel) and N2–N2 (right panel).

2 x 1 1360 x 800
2008

Figure 2. Typical examples of the spectral fit for the 650K isotherm

1 x 3 960 x 1720
2008

Figure 3. Calculated far-IR absorption spectra per molecule for the dimer. The spectrum obtained by Scribano and Leforestier (Ref. 26) (dotted line) is also shown, for the comparison.

[26] Y. Scribano and C. Leforestier, J. Chem. Phys. 126, 234301 (2007).
1 x 2 800 x 1280
2008

Figure 4. Calculated far-IR absorption spectra per molecule for the tetramer and the hexamer

1 x 2 960 x 1080
2008

Figure 5.  Influence of the anharmonicity on the ab initio calculated Raman spectrum of  noncyclic  trimer in the bending region of CO2. As for previous figures, each transition has also been represented by a Lorentzian profile (with an arbitrary full width of 3.0 cm−1).

1 x 2 640 x 960
2008

Figure. 4 Intermolecular potentials for the the O2–O2 dimer singlet and triplet states as obtained for the four limiting geometries by combining CCSD(T) quintet energies and multireference splittings

2 x 4 1600 x 1920
2008

Figure 2. Self-continuum absorption of water vapor at P = 2.13 kPa at different temperatures. Data for the 84.1 cm-1 window are not included in the ν2-fit presented by solid curves. The absorbance, A, is expressed as A= log10(1/T), where the maximum transmittance, T, is equal to unity. For convenience, the second scale in dB/km is also presented. For the pathlength used here (23.3 m), the absorbance of A = 1 corresponds to absorption coefficient of 429 dB/km.

1 x 2 800 x 1280
2008

Figure 4. Foreign continuum data for two different mixtures of H2O/N2: 1.43/78.5 kPa (triangles) and 0.67/70 kPa (rhombs). For clarity, only the end-temperature data are shown. The curves present the ν2-fit of absorbance data over all available windows.

1 x 2 800 x 1280
2008

Figure 7. The spectra of water vapour in 5300 cm-1 (a), and 3700 cm-1 (b) absorption bands, obtained in the experiments of Poberovsky [73, 74] for the cases (1): H2O + N2, and (2): pure H2O (see text); the difference spectrum (2)-(1), attributed by Poberovsky to water clusters; the difference spectrum of Poberovsky, modified in this work; WD according to the model [52]. (a) Experiment [73]: T=530°K, spectral resolution FWHM=15 cm-1, L=4.83 cm (1) and 0.49 cm (2); WD simulation: line strengths and positions from [52], HWHM=28 cm-1 [54], Keq(530°K)=0.0023 atm-1 (Curtiss et al. [59] extrapolation). (b): Experiment [74]: T=503°K, spectral resolution FWHM=10 cm-1; L=0.88 cm (1) and 0.08 cm (2); WD simulation: HWHM=25 cm-1, Keq(503 K)=0.0032 atm-1.


[52] Schofield D.P., Kjaergaard H.G. Calculated OH-stretching and HOH-bending vibrational transitions in the water dimer. Phys. Chem. Chem. Phys., 2003;5:3100–5.
[54] Ptashnik I.V., Smith K.M., Shine K.P., Newnham D.A. Laboratory measurements of water vapour continuum absorption in spectral region 5000–5600 cm-1: evidence for water dimers. Q. J. R. Meteorol Soc 2004;130:2391–408.
[59] Curtiss L.A, Frurip DJ, Blander M. Studies of molecular association in H2O and D2O vapors by measurement of thermal conductivity. J. Chem. Phys. 1979;71:2703–11
[73] Poberovsky A.V. Problemy fiziki atmosfery. Sbornik Trudov Univ Leningrad 1976;13:81–7 (in Russian).
[74] Poberovsky A.V. Diss. kand. fiz-mat nauk (PhD. thesis), Leningrad University, 1976 (in Russian).

1 x 2 800 x 960
2008

Figure 1. Absorption for the nine isotopologues of CO2. The log of the line intensities are plotted vs. cm−1 for the nine species included in the present database. The line intensities vary from 4*10-30 to 1.29*10-21 cm−1/(molecule cm-2) at 296 K. The total integrated strength for this spectral interval is 5.9559*10-20 cm−1/(molecule cm−2) at 296 K.

1 x 9 1080 x 4000
2008
Figure 3. The χ-factor of the ν3 band of CO2 for N2-broadening. The χ-factor was calculated at 0–100 cm−1 from the line center.
2 x 1 1280 x 480
2008

Figure 5. N2-broadened measured spectra (black lines) and spectra calculated with first-order line-mixing coefficients (gray lines) at T = 230, 250, 273, 296, and 318 K.

2 x 3 1280 x 1440
2009

Figure 5. The variation in vibrational frequencies (a) (Ref. 7) and absolute infrared absorption intensities (b) as a function of the number of water molecules in small-sized water clusters. In the lower panel, the measured values from Refs. 30 and 31 are shown by open circles, ab initio calculated intensities from Refs. 32 and 33 are shown by asterisks.
7. F. Huisken, M. Kaloudis, and A. Kulcke, J. Chem. Phys. 104, p.17, 1996.
30. M. N. Slipchenko, K. E. Kuyanov, B. G. Sartakov, and A. F. Vilesov, J. Chem. Phys. 124, p.241101, 2006.
31. S. Kuma, M. N. Slipchenko, K. E. Kuyanov, T. Momose, and A. F. Vilesov, J. Phys. Chem. A 110, p.10046, 2006.
32. S. S. Xantheas and T. H. Dunning, Jr., J. Chem. Phys. 99, p.8774, 1993.
33. M. Losada and S. Leutwyler, J. Chem. Phys. 117, p.2003, 2002.

1 x 2 800 x 1300
2009

Figure 4. (Color online) Expanded portion of the (H2O)2 spectrum shown in Fig. 3. The smooth curve is a smoothed representation of the structured classical spectrum. The vertical lines represent the nearly exact quantum energies (and not intensities) from Ref. 13, described in detail in the text.

2 x 1 1280 x 480
2009

Figure 1. The effect of the χ factor on absorption by a single line. Absorption due to a single ‘‘virtual line,’’ with a strength of unity at the line center and a half width of 0.3 cm-1, multiplied by the χ factors shown in Figure 1a. The thick gray line is the unmodified Lorentz line-shape.

2 x 1 1280 x 480
2009

Figure 3. Outgoing longwave radiation (OLR) as a function of the surface partial pressure of CO2 (pCO2) for the three parameterizations. Simulations of Earth  The details of the simulations are in section 3. Since the atmosphere was not driven to radiativeconvective equilibrium, the OLR does not realistically represent emission from planets’ surfaces but is intended to provide a comparison between the parameterizations.
Defined Function = OLRAS - OLRGBKM (W m-2)

1 x 3 640 x 1480
2009

Figure 6, Continuum coefficients retrieved from Polar Atmospheric Infrared Radiance Interferometer (PAERI) measurements in (a) the low-wavenumber wing of the ν2 band, (b) the center, and (c) the high-wavenumber wing. The results of previous work (RWW06) [9] and the MTCKD continuum are shown.

[9] P. M. Rowe, V. P. Walden and S. G. Warren, “Measurements of the foreign-broadened continuum of water vapor in the 6.3-μm band at -30oC,” Appl. Opt. 45, 4366-4382 (2006).

1 x 3 800 x 1920
2010

Figure 3. Parts of the infrared spectra of H2O/Ne = 1/140 matrix recorded at 3 K before and after annealing at 12.5 K (lower and upper trace, respectively). Sample deposited at 6 K for 6 h at 15 mmol/h. (a–d) Regions 3d, mOHb + d, 2msOHb and 3mOHf, respectively. Note that the mOHb + d region (b) is subdivided in two parts, one relating to ms, the other to ma. The decrease of the signal to noise ratio in (d) after annealing is due to noticeable decrease of the transmission. PA, PD: dimer; Tri: trimer; P: (H2O)n, n > 3.

1 x 4 800 x 1280
2010

Figure 3. Measured absorption coefficients (bottom) and associated square density normalized values (top) for pure CO2 at 295.15K and seven total pressures from 15 to 44atm: (b) Dens normalized Abs (10-6 cm-1/atm2) and (a) Abs Coeff (10-2 cm-1).

1 x 2 640 x 960
2010

Figure 5. Absorption coefficients for 1% CO2 in various pressures (from bottom to top: 28.1,47.6, and 76.0 atm) of N2 at 295.15K in the region of the (2v1+v3)2 band. Measured values, calculated values with the old and new version of our database and software, respectively, neglecting line-mixing and taking this process into account.

1 x 3 960 x 1920
2010

Figure 8. Absorption coefficients for 10% CO2 in: 29.9 (bottom) and 72.3 atm(top) of N2 at 295.15K in the region of the 3v3 band.  Measured values, calculated values with the new version of our database and software, respectively, neglecting line-mixing and taking this process into account.

1 x 2 960 x 1280
2010

Figure 9. Absorption coefficients for 1% CO2 in various pressures (from bottom to top: 20.1, 35.6, and 54.0 atm) of N2 at 218.2K in the region of the (2v1+v3)2 band.    Black lines are measured values, whereas blue and red lines have been calculated with the old and new version of our database and software, respectively, neglecting line-mixing and taking this process into account.

1 x 3 960 x 1920
2010

Figure 2. Spectra of the OH-stretching bands of water molecules and clusters in He droplets of about 3500 atoms at spectral resolution of 1 cm-1 upon capture of one and three water molecules on average per droplet in panels a and b, respectively.

1 x 3 800 x 1080
2010

Figure 1. Part of the fundamental band of the CO2 dimer for (12C16O2)2, (13C16O2)2, and 12C16O213C16O2. An analogous range is covered for each isotopomer, but this is not so obvious since the nuclear spin statistics are different. The asterisks mark lines that are partly or entirely due to the He–CO2 complex. The simulations use parameters from Table 2, an effective rotational temperature of 3 K, and an assumed Gaussian linewidth of 0.0017 cm-1.

1 x 3 800 x 1440
2010

Figure 2. Portions of the observed and simulated combination bands of (a) the CO2 dimer and (b) the CO2 trimer.

1 x 2 800 x 960
2010

Figure 3. Three CO2 cluster absorption features that can be assigned as parallel bands of symmetric or nearly symmetric tops. The bands in the upper two panels have similar, but not identical, rotational constants which are  appropriate for (CO2)n with n≈5–7. The band in the lower panel corresponds to n≈10.

1 x 3 800 x 1440
2010

Figure 3. The ab initio calculation of the dipole moment (a)  μx and (b) μy for six configurations of the CH4–N2 complex. Solid line—MP2 calculations; circles—CCSDT calculations. The numbers indicate the configurations.

1 x 2 800 x 960
2010
Figure 4. Dipole moment components (a) μx and (b) μy for configurations 3–5 of the CH4–N2 complex.
1 x 2 800 x 960
2010

Figure 1. (a.) Total longwave absorption in a pure CO2 gas at 1 bar and 273 K. (b. T=200K, c. T=250K, d. T=300K) Comparison of the CIA absorption shown in (a) with the parameterisation of Kasting et al. (1984) . As can be seen, the difference between the two datasets is extremely large in the 250–500 cm-1 region.
Gruszka, M., Borysow, A., 1998. Computer simulation of the far infrared collision induced absorption spectra of gaseous CO2. Mol. Phys. 93, 1007–1016. doi:10.1080/002689798168709.
Baranov, Y.I., Lafferty, W.J., Fraser, G.T., 2004. Infrared spectrum of the continuum and dimer absorption in the vicinity of the O2 vibrational fundamental in O2/CO2 mixtures. J. Mol. Spectrosc. 228, 432–440. doi:10.1016/j.jms.2004.04.010

Kasting, J.F., Pollack, J.B., Crisp, D., 1984. Effects of high CO2 levels on surface temperature and atmospheric oxidation state of the early Earth. J. Atmos. Chem. 1, 403–428.

2 x 2 1280 x 960
2011

Figure 1. Evolution of the spectrum of water trapped in N2 in the regions 5120–5170 (lower frame) and 7190–7150 cm-1 (upper frame) as a function of the 18O/16O isotopic ratio: (a) 0, (b) 1, (c) 3. Lower frame: the isotopic varieties of PA and PD are reported in this order. Upper frame: for natural water the fit of the dimer absorptions in the range 7185–7175 cm-1 has been reported.

1 x 2 960 x 1080
2011

Figure 2.  Identification of ST’s in Ne matrix at 3K. Lower trace: 16O/18O decoupling effect for the resonant (ν2 + ν3)PDMST(ν2PA + ν3PD) transitions. 18O/16O isotopic ratios of (a) 0, (b) 0.2, (c) 5. The isotopic varieties of PA and PD are reported in this order. Upper trace: ST(ν1PA + ν1PD) observed at 7251.5 cm-1 in absence of resonance. R(0), P(1), Q(1): rovibrational transitions of H2O monomer.

1 x 2 960 x 1080
2011

Figure 3. Normalized absorptioDin the left panel (•red ) and (•blue ) are, respectively, data from Refs. [7] and [10]; data from Refs. [15] and [6].
[6] Burch DE, Gryvnak DA, Patty RR, Bartky CE. Absorption of infrared radiant energy by CO2 and H2O.  IV. Shapes of collision-broadened CO2 lines. JOptSocAm1969;59:267–80.
[7] Le Doucen R, Cousin C, Boulet C, Henry A.Temperature dependence of the absorption beyond the 4.3 mm band head of CO2. 1:Pure CO2 case. Appl Opt1985;24:897–905.
[10] Perrin MY, Hartmann JM. Temperature dependence measurements and modeling of absorption by CO2–N2 mixtures in the far line- wings of the 4.3 mm CO2 band. JQSRT 1989; 42:311–7.
[15] Tonkov MV, Filippov NN, Bertsev VV, Bouanich JP, Nguyen Van Thanh, Brodbeck C,et al. Measurements and empirical modeling of pure CO2 absorption in the 2.3 mm region at room temperature: far wings, allowed and collision-induced bands. Appl Opt 1996; 35: 4863–70.

 

2 x 1 1600 x 640
2011

Figure 6. Absorptions of pure CO2 measured and calculated with and without line-mixing effects at 294 K and 51.28 amagat.

2 x 1 1600 x 640
2011

Figure 7. Comparison between absorptions of pure CO2 measured and calculated with and without line-mixing effects. Results are obtained, from top to bottom, for (a): T=294K, NCO2 = 35:51 amagat; (b): T=373K, NCO2 = 31:93 amagat; (c): T=473K, NCO2= 23:63 amagat.

1 x 3 1600 x 1920
2011

Figure 8. Absorption in the high-frequency wing of the ν2 band region of pure CO2 for (a) T=294K, NCO2 =51.28 amagat; (b) T=373K, NCO2 = 31:93 amagat; (c) T=473K, NCO2 = 23.63amagat. There are the experimental values, lines are absorptions calculated with and without taking into account line-mixing effects, respectively.

1 x 3 1600 x 1920
2011

Figure 9. Normalized absorption in the high-frequency wing of the ν3 band region of pure CO2 at (a) 260K; (b) 296K; (c) 373K; (d) 473K. There are the present measured values, are normalized absorption scalculated using our line-mixing model (see text) and the Lorentz shape, respectively. Values in open circle in (a) are data measured at 258K by [7].
[7] LeDoucen R, Cousin C, Boulet C, Henry A. Temperature dependence of the absorption beyond the 4.3 μm band head of CO2. 1:Pure CO2 case. Appl Opt 1985; 24:897–905.

2 x 2 1600 x 1280
2011

Figure 10. Pure CO2 normalized absorption coefficients at the ν3 band wing regions for T=295 K (top); T=473 K (bottom). (•) and ( green) are respectively measured and calculated (see text) values. Measured data at room temperature (top) of previous studies are also reported for comparison: ( red) are values of [9] in the left and [7] in the right, (red ) are values from [10].
[7] Le Doucen R, Cousin C, Boulet C, Henry A. Temperature dependence of the absorption beyond the 4.3 mm band head of CO2. 1: Pure CO2 case. Appl Opt 1985;24:897–905.
[9] Menoux V, LeDoucen R, Boulet C. Line shape in the low frequency wing of self-broadened CO2 lines. Appl Opt 1987; 26:554–61.
[10] Perrin MY, Hartmann JM. Temperature dependence measurements and modelling of absorption by CO2–N 2 mixtures in the far line-wings of the 4.3 mm CO2 band. JQSRT 1989;42:311–7.

1 x 2 1600 x 1280
2011

Figure 3. Pure CO2 normalized absorption coefficients at the high-frequency wingside of the ν13 band for (a) T=230K; (b) T=260K; (c) T=295K and  (d)  T=373K. Measured and calculated values. At room temperature (c), data of Ref. [15] are also reported for comparison.
[15] Tonkov M.V., Filippov N.N., Bertsev V.V., Bouanich J.P., Nguyen Van Thanh, Brodbeck C., et al. Measurements and empirical modelling of pure CO2 absorption in the 2.3 mm region at room temperature: far wings, allowed and collision-induced bands. Appl Opt 1996;35: 4863–70.

2 x 2 1600 x 1280
2011

Figure 10. Smoothed spectra of WD absorption cross-section from Victorova and Zhevakin (V&Zh) [75], Scribano and Leforestier (S&L) [12] and Lee et al. [13] for temperatures around 296°K. The MTCKD [15] continuum model and empirical self-continuum of Burch [45] are also presented for comparison: (A) mm-wave region and (B) mid-to-far infrared spectral regions. The dashed lines in (B) show ratios (right hand axis) of the S&L and Lee et al. calculated spectra to the experimental continuum [45] (above 340 cm-1) and to the MTCKD-1.3 model (below 340cm-1). The equilibrium constant used by S&L: Keq,S&L(~296°K)=0.05 atm-1, is adopted here to represent WD absorption cross-section for all three works. This causes the cross-section curve from Lee et al. to be a factor 1.86 lower than in the original work. The absorption in dB/km from V&Zh and S&L is converted to cm2 molec-1 atm-1 units using formula: 2:3026 x 10-6 [dB/km]* T *Keq,S&L/ (273.15* NA* PWD), where NA=2.687x1019 molec cm-3; T~296°K; PWD is WD partial pressure (atm) assumed in the particular work:8x10-6 in V&Zh and 2.2x10-5 in  S&L. The implicit term Keq, S&L/Keq (where Keq is equilibrium constant applied for calculation in particular work) is used in the formula above to bring different calculations to similar conditions.

[12] Scribano Y, Leforestier C. Contribution of water dimers absorption to the millimeter and far infrared atmospheric water continuum. J Chem Phys2007;126:234301.
[13] Lee M-S, Baletto F, Kanhere DG, Scandolo S. Far-infrared absorption of  water clusters by first-principles molecular dynamics. J Chem Phys 2008; 128:214506.
[15] MTCKD Available from web-site: /http:// rtweb.aer.com/ continuum_frame.htmlS.
[45] Burch D. Continuum absorption by H2O, Air Force Geophysics Laboratory report,AFGL-TR-81-0300, Hanscom AFB, MA,1981.
[75] Viktorova AA, Zhevakin SA. Microradiowave absorption by dimers of atmospheric water vapor. Sov Phys Dokl 1970; 15:852–5.

1 x 3 1080 x 1440
2011

Figure 8. Comparison of temperature dependencies for pure water vapour continuum absorption in mm-wave and mid-IR spectral ranges. Experimental data for 190 and 239 GHz are from [67] and [68], respectively; CO2 laser absorptions are from [69,70]. Solid lines show the result of calculations using formula (2a) and universal parameters n=1.63 and Do=1700 K. The data for infrared continuum (right axis) are shown in arbitrary units. The Figure is adopted from [63].

[63] Vigasin AA. Water vapor continuous absorption in various mixtures: possible role of weakly bound complexes. JQSRT 2000; 64: 25–40.
[67] Bauer A, Godon M. Temperature dependence of water vapor absorption in line wings at 190 GHz. JQSRT 1991; 46:211–20.
[68] Bauer A, Godon M, Carlier J, Ma Q. Water vapor absorption in the atmospheric window at 239 GHz. JQSRT 1995; 53:411–23.
[69] Aref’ev VN. Molecular absorption of radiation by water vapour in the relative transparency window of the atmosphere at 8–13 μm. Opt Atmos 1989; 2:1034 inRussian.
[70] Hinderling J, Sigrist MW, Kneubuhl FK. Laser-photoacoustic spectroscopy of water-vapor continuum and line absorption in the 8 to 14 μm atmospheric window. Infrared Phys 1987; 27:63–120.
2 x 1 1280 x 480
2011

Figure 10B. Smoothed spectra of WD absorption cross-section from Scribano and Leforestier (S&L) [12] and Lee et al. [13] for temperatures around 296 K. The MTCKD [15] continuum model and empirical self-continuum of Burch [45] are also presented for comparison in the mid-to-far infrared spectral regions.

[12] Scribano Y., Leforestier C. Contribution of water dimers absorption to the millimeter and far infrared atmospheric water continuum. J. Chem. Phys., 2007;126:234301.
[13] Lee M.-S., Baletto F., Kanhere D.G., Scandolo S. Far-infrared absorption of  water clusters by first-principles molecular dynamics. J. Chem. Phys., 2008; 128:214506.
[15] MTCKD Available from web-site: /http:// rtweb.aer.com/ continuum_frame.htmlS.
[45] Burch D. Continuum absorption by H2O, Air Force Geophysics Laboratory report,AFGL-TR-81-0300, Hanscom AFB, MA,1981.

2 x 1 1280 x 480
2011

Figure 10. Smoothed spectra of WD absorption cross-section from Victorova and Zhevakin (V&Zh) [75], Scribano and Leforestier (S&L) [12] and Lee et al. [13] for temperatures around 296°K. The MTCKD [15] continuum model and empirical self-continuum of Burch [45] are also presented for comparison: (A) mm-wave region and (B) mid-to-far infrared spectral regions. The dashed lines in (B) show ratios (right hand axis) of the S&L and Lee et al. calculated spectra to the experimental continuum [45] (above 340 cm-1) and to the MTCKD-1.3 model (below 340cm-1). The equilibrium constant used by S&L: Keq,S&L(~296 K)=0.05 atm-1, is adopted here to represent WD absorption cross-section for all three works. This causes the cross-section curve from Lee et al. to be a factor 1.86 lower than in the original work. The absorption in dB/km from V&Zh and S&L is converted to cm2 molec-1 atm-1 units using formula: 2:3026 x 10-6 [dB/km]* T *Keq,S&L/ (273.15* NA* PWD), where NA=2.687x1019 molec cm-3; T~296°K; PWD is WD partial pressure (atm) assumed in the particular work:8x10-6 in V&Zh and 2.2x10-5 in  S&L. The implicit term Keq, S&L/Keq (where Keq is equilibrium constant applied for calculation in particular work) is used in the formula above to bring different calculations to similar conditions.

[12] Scribano Y., Leforestier C. Contribution of water dimers absorption to the millimeter and far infrared atmospheric water continuum. J. Chem. Phys., 2007; 126: 234301.
[13] Lee M.-S., Baletto F., Kanhere D.G., Scandolo S. Far-infrared absorption of  water clusters by first-principles molecular dynamics. J. Chem. Phys., 2008; 128: 214506.
[15] MTCKD Available from web-site: /http:// rtweb.aer.com/ continuum_frame.htmlS.
[45] Burch D. Continuum absorption by H2O, Air Force Geophysics Laboratory report,AFGL-TR-81-0300, Hanscom AFB, MA,1981.
[75] Viktorova A.A., Zhevakin S.A. Microradiowave absorption by dimers of atmospheric water vapor. Sov. Phys. Dokl., 1970; 15:852–855.

1 x 3 800 x 1440
2011

Figure 3. Observed and simulated spectra showing bands assigned to the S4 isomer of (CO2)6. The perpendicular band in the lower panel is overlapped by bands of (CO2)2 and of the cyclic (brown) and noncyclic (blue) isomers of (CO2)3 as shown, while the Q- and R-branches of the parallel band in the upper panel are relatively clear. Observed and simulated spectra showing bands assigned to the S4 isomer of (CO2)6. The perpendicular band in the lower panel is overlapped by bands of (CO2)2 and of the cyclic (brown) and noncyclic (blue) isomers of (CO2)3 as shown, while the Q- and R-branches of the parallel band in the upper panel are relatively clear.

1 x 7 800 x 3360
2011

Figure 1. Parts of the infrared spectrum of a H2O/Ne = 1/150 matrix recorded at 3 K at the resolution of 1 cm-1 in the P6 and P8 domains. Sample deposited at 5.8 K for 6 h at a rate of 7 mmol/h. Tri: water trimer. (b) Spectra recorded before (upper trace) and after annealing at 12 K (lower trace).

1 x 4 800 x 1080
2011

Figure 3. Spectrum of H2O trapped in Ne in the P5 region. Same conditions of deposition as for Fig. 1. (a) Spectra recorded at the resolution of 0.5 cm-1. (b) Spectra recorded before (upper trace) and after annealing at 12 K (lower trace).

1 x 2 640 x 800
2011

Figure 4. Local-monomer IR spectra in the OH-stretch region of the indicated isomers of the hexamer obtained with the local-monomer model.

1 x 6 800 x 1920
2011

Figure 6. Local-monomer IR spectra of intramolecular modes of the lowest energy isomer of the indicated cluster.

1 x 3 800 x 960
2012

Figure 1. Comparison of the spectrum of the dipole time correlation function ◦calculated at 400C with the experimental IR spectrum. The experimental data in (a) by Tassaing et al. (Ref. 6) are taken at 380C with 0.009 g cm−3 and those by Vigasin et al. (Ref. 7) at 377C with 0.0105 g cm−3. In (b), the data by Tassaing et al. are at 380C with 0.04 g cm−3 and those by Vigasin et al. are at 377C with 0.0405 g cm−3. The calculated spectrum is shifted by 50 cm−1 to the higher frequency for comparison of the line shape to the experimental one.

1 x 2 960 x 1080
2012

Figure 4. Comparison of the interaction energies for selected dimer geometries of a pair of rigid monomers (black lines) and of a rigid plus a stretched (both CAO bonds of monomer a have been symmetrically stretched of 10% with respect to equilibrium) monomer (red dashed lines). The Ta configuration refers to that with the stretched monomer a and the unstretched monomer b perpendicular to it and lying on the line connencting the two molecular centers of mass. Bond-bond results are plotted in the lower panel while those corresponding to the ab initio calculations are plotted in the upper panel.

1 x 2 800 x 960
2012

Figure 5. Comparison of the interaction energies for selected dimer geometries of a pair of rigid monomers (black lines) and of a rigid plus a stretched (the two C-O bonds of monomer a have been respectively stretched and shrunk of 10% with respect to equilibrium) monomer (red dashed lines). In particular the stretched C-O bond is the one lying on the intermolecular separation R and pointing closer to the monomer b in the L configuration. The Ta configuration refers to that with the stretched monomer a and the unstretched monomer b  perpendicular to it and lying on the line connecting the two molecular CM. Bond-bond results are plotted in the lower panel while those corresponding to present ab initio calculations are in the upper panel.

1 x 2 800 x 960
2012

Figure 3. Line list comparison at 296 K, Ames-296 K (red) vs. HITRAN-2008 (black). Convolution FWHM = 10 cm−1. Full scale comparison is shown in (a), and amplified, detailed comparisons are given for 0–3000 cm−1 in (b), and 8000–13 000 cm−1 in (c).

1 x 3 800 x 1920
2013

Figure 1. Absorption coefficient of pure CO2 at 296 K due to the single 3ν3 band calculated with the present rCMDS model and the ECS approach of Ref. 16 for the densities of (a) 22.65 Am and (b) 51.28 Am.
16. H. Tran, C. Boulet, S. Stefani, M. Snels, and G. Piccioni, J. Quant. Spectrosc. Radiat. Transf. 112, 925 (2011).

2 x 1 1280 x 640
2013

Figure 2. Absorption coefficients of pure CO2 in the region of the 3ν3 band at 294 K for densities of (a) 22.7 Am, (b) 35.5 Am, and (c) 51.3 Am. The blue circles are measured values [16] while the lines are calculated results obtained with the rCMDS model (red) and neglecting line-mixing (black). The olive curve in (c) has been obtained from rCMDS after the introduction of spectral shifts of opposite signs in the P and R branches (see text).
16. H. Tran, C. Boulet, S. Stefani, M. Snels, and G. Piccioni, J. Quant. Spectrosc. Radiat. Transf. 112, 925 (2011).

1 x 3 800 x 1920
2013

Figure 3. Absorption coefficients of pure CO2 in the region of the 2ν1 + 2ν2 + ν3 band at 294 K for densities of (a) 20.6 Am, (b) 33.0 Am, and (c) 56.7 Am. Measured values [16]. Calculated results obtained with the rCMDS model and neglecting line-mixing. Calculated results obtained from rCMDS after the introduction of spectral shifts of opposite signs in the P and R branches (see text).
16. H. Tran, C. Boulet, S. Stefani, M. Snels, and G. Piccioni, J. Quant. Spectrosc. Radiat. Transf. 112, 925 (2011).

1 x 3 800 x 1440
2013

Figure 2. The observed dimer spectrum (a). The ab intio calculated [21]  dimer spectrum [(b) upper trace]. The water vapor continuum absorption measured in moist nitrogen [28] at atmospheric pressure (d). The calculated collision-induced absorption [32] [(c) lower trace], the absorption is shown multiplied by factor of 1000 to make it visible). All spectra correspond to water vapor at 13 Torr and 296 K.

[21] Y. Scribano and C. Leforestier, J. Chem. Phys. 126, 234301 (2007).
[28] M. A. Koshelev, E. A. Serov, V. V. Parshin, and M. Yu. Tretyakov, J. Quant. Spectrosc. Radiat. Transfer 112, 2704 (2011).
[32] C. Leforestier, R. H. Tipping, and Q. Ma, J. Chem. Phys. 132, 164302 (2010).

3 x 1 1440 x 640
2013
Figure 3. Line-mixing manifestation in the Q-branch region of the (2ν1 + ν2)II (a) and (ν2 + 2ν3 (b) bands.
1 x 2 1020 x 1280
2013

Figure 4. Dependence of the (ν1 + ν2)I (a) and 3ν1 + ν3 (b) band-shapes on the gas density.

1 x 2 1020 x 1080
2013

Figure 7. Comparison of calculated and experimental absorptions for the 3ν3 band

1 x 2 800 x 1280
2013

Figure 9. Comparison between calculated and experimental absorptions for the (ν1 + ν2)I band. T=300 K.

1 x 3 800 x 1920
2013

Figure 4. Comparison of peak and integrated cross-sections to available literature values at four wavelengths

2 x 4 1280 x 1920
2013
Климешина Т.Е., Петрова Т.М., Родимова О.Б., Солодов А.А., Солодов А.М. ,
Поглощение СО2 за кантами полос в области 8000 см–1,
Оптика атмосферы и океана, 2013, Volume 26, no. 11, Pages 925–931.

Figure 8. Коэффициент поглощенияСО2 при самоуширении в крыльях полос в области 8300 см-1 (а) и 8200 см-1 (б) ; (а,б) экспериментальные данные, расчет с HITRAN-2004, (б) расчет с HITRAN-2012; Т=290K, РСО2=612 мбар

1 x 2 800 x 1280
2014

Figure 2. Collision-induced absorption spectrum (in cm−1 /amagat2 ) of N2 by N2 (a) at 149 K, (b) at 228 K, and (c) at 296 K, as obtained from measurements12, 13 (circles) and from the CMDS calculations using the present ab initio dipole moment and the intermolecular potential of Ref. 16 (continuous lines). The error bars correspond to ± 10%.

1 x 3 640 x 1340
2014

Figure 3. Self- and foreign-continuum cross-section (upper and lower panels respectively) as retrieved from laboratory measurements in Ptashnik et al. (2011, 2012) (CAVIAR), along with their associated uncertainties, compared to the far-wing model of Tipping and Ma (1995) and the MTCKD-2.5 continuum model.

Ptashnik I.V., McPheat R.A., Shine K.P., Smith K.M., Williams R.G. (2011b) Water vapor continuum absorption in near-infrared windows derived from laboratory measurements. J Geophys Res 116:D16305
Ptashnik I.V., McPheat R.A., Shine K.P., Smith K.M., Williams R.G. (2012) Water vapour foreign continuum absorption in near-infrared windows from laboratory measurements. Phil Trans Roy Soc A (to appear). doi:10.1098/rsta.2011.0218
Tipping R.H., Ma Q. (1995) Theory of the water vapor continuum and validations. Atmos Res 36:69–94

1 x 2 1200 x 1560
2014

Figure 2. Focus on the rotational structure of the (H2O)2 band observed around 7256.5 cm−1 in the cw-CRDS spectra of a supersonic expansion of H2O in Ne, Ar, and Kr carrier gases. Monomer lines and H2O-rare gas lines are also observed. The simulated structure is presented at the bottom.

1 x 4 960 x 1680
2014

FIGURE 4. Potential energy cuts along the R coordinate for Linear 0-0-0 (left panel) and Slipped Parallel 60-60-60 (right panel) configurations. These cuts are computed using CCSD(T)-F12b/aug-cc-pVTZ. We give also the individual contribution of each multipolar expansion term. See text for more details. 1a0 = 1 bohr = 0.529177 Å.

1 x 2 800 x 1280
2015

Figure 2. CH4–CO interaction energies for different basis sets and methods as a function of the intermolecular distance for selected angular orientations.

2 x 3 1600 x 1440
2015

Table 6. Experimental Н2О self-continuum (T =296 K) versus predicted absorption spectra of bound and metastable dimers1 and present calculations for the  5200–5500 cm-1 band. The black dots are the experimental data, the triangles are the stable dimer absorption coefficients,  and the gray curves represent the calculated results using the κLorχ line shape. The frequency step is 50 cm-1.

3 x 1 1920 x 480
2015

Figure 1. Transmittances recorded in the ν1/2ν2 Fermi dyad region at 300 K. (a) Pure CO2 gas. Increasing gas pressure induces, simultaneously, a rise of the collision-induced absorption and a transformation of the dimeric bands. The gas pressures are converted into densities in amagat (Table II of Ref. 11). (b) 14.9-amagat CO2 mixed with various quantities of Ar. The absorption induced by collisions of CO2 monomers with Ar atoms has only a small influence on the band shape evolution which is dominated by the dimer signatures.
[11] See supplementary material at http://dx.doi.org/ 10.1063/1.4906874 for experimental details, binary absorption coefficients, symmetric-top modeling, and pressure dependence of dimer band shape.

1 x 2 800 x 1280
2015

Figure 5. Comparison between the measured CO2 absorption coefficients at  800, 1600, 3200 and 6400 Torr near 5930 cm-1 and the corresponding simulations of the absorption of the local rovibrational lines. The local line simulations used the HITRAN2012 line list and a Lorentzian line shape truncated at  ±25 cm-1 (see Text).

2 x 2 1600 x 1280
2015

Figure 3. Retrieval of the CO2 continuum absorption at 6400 Torr (lower panel) by difference between the absorption coefficient measured by CRDS and the corresponding simulations of the absortions of the local rovibrational lines.

1 x 2 640 x 960
2015

Figure 3. mpact of the line mixing in the 10022-00001 band of 16O12C18O on the derived continuum absorption of CO2 (P=6400 Torr). Upper panel: Comparison to the CO2 CRDS spectrum at P = 6400 Torr of simulations of the absorption of the local rovibrational lines with and without taking into account line mixing effects, and corresponding difference. Lower panel: Resulting continuum absorption of CO2 obtained with and without taking into account line mixing effects.

1 x 2 640 x 960
2015

Figure 7. Absorption coefficient beyond the 4.3 μm band edge: (a) T = 193 K, experimental data [34] are marked by circles; (b) θ = 920 K, experimental data [35] are marked by circles; our calculation results are shown by the curves (see also [16–18]).
[16] L. I. Nesmelova, O. B. Rodimova, and S. D. Tvorogov, Coefficient of light absorption in SO2 4.3 μm band. Izv. vuzov, Fiz., no. 10, 106–107 (1980).
[17] L. I. Nesmelova, O. B. Rodimova, and S. D. Tvorogov, Spectral behavior of the absorption coefficients in the 4.3 μm CO
2 band within a wide range of temperature and pressure, Atmos. Ocean. Opt. 5 (9), 609–614 (1992).
[18] O. B. Rodimova, Spectral line profile of self-broadened CO
2 from the center to the far wing, Atmos. Ocean. Opt. 15 (9), 694–703 (2002).
[34] R. Le Doucen, C. Cousin, C. Boulet, and A. Henry, Temperature dependence of the absorption in the region beyond the 4.3 μmband of CO
2. I: Pure CO2 case, Appl. Opt. 24 (6), 897–906 (1985).
[35] J.M. Hartmann and C. Boulet, Line mixing and finite duration of collision effects in pure CO
2 infrared spectra: Fitting and scaling analysis, J. Chem. Phys. 94 (10), 6406–6419 (1991).

1 x 2 640 x 980
2015

Figure 3. Deviations from a Lorentzian profile for the 1.2, 1.2195, 1.4, 2.7, 4.3 μm CO2 bands calculated in (a) work [8] and (b) this work. The curve for 1.2195 μm almost coincides with the curve for 1.2 μm.
[8] M. Y. Perrin and J. M. Hartmann, “Temperature_dependent measurements and modeling of absorption by CO2–N2 mixtures in the far line_wings of the 4.3 μm CO2 band,” J. Quant. Spectrosc. Radiat. Transfer 42 (4), 311–317 (1989)

1 x 2 800 x 1280
2015

Figure 1. Н2О+N2 absorption coefficient in the 8–20 μm region. The full circles are the measured data from [7], the open circles are the calculated data from [19], and the curve is the calculation from [16]; Θ=296° (a)and 430°K (b).

[7] Burch DE, Alt RL. Continuum absorption by H2O in the 700–1200 cm-1 and 2400–2800 cm-1 windows. Scientific report no. 1. AFGL-TR-84-0128; 1984.
[16] Ma Q, Tipping RH. The density matrix of H2O+N2 in the coordinate representation: a Monte Carlo calculation of the far-wing line shape. J Chem Phys 2000;112:574–84.
[19] Rodimova OB. Theoretical researches of the absorption and photo-chemistry processes and their application in radiation codes of theclimate models [Thesis]. Dokt Phys-Math Sci Tomsk; 2003.

2 x 1 1360 x 480
2015

Рисунок 2. Сглаженные спектры поглощения димера воды в миллиметровом (А) и в среднем ИК (Б) диапазонах согласно расчетам Викторовой и Жевакина (V&Zh) [12], Вигасина и Членовой (V&Ch) [14], Yukhnevich и Tarakanova (Yu&T) [15], Scribano и Leforestier (S&L) [16] и Lee и др. [17] в сравнении с экспериментальными данными Burch [22], Podobedov et al. [97] и полуэмпирической моделью континуума MT_CKD [25].
Рисунок заимствован из работы [4].

[4] Shine K.P., Ptashnik I.V., Rädel G. The water vapour continuum: Brief history and recent developments // Surv. Geophys. 2012. V. 33. Ð. 535–555. DOI: 10.1007/s10712-011-9170-y.
[12] Викторова А.А., Жевакин С.А. Поглощение микрорадиоволн в воздухе димерами водяного пара // Докл. АН СССР. 1966. Т.171. №5. С.1061-1064.
[14] Вигасин А.А., Членова Г.В. Спектр димеров воды в области длин волн > 8 мкм и ослабление излучения в атмосфере // Изв. АН СССР. Физ. атмосф. и океана. 1984. Т.20. №7. С.657-661.
[15] Yukhnevich G.V., Tarakanova E.G. Some properties of the potential energy surface and vibrational spectrum of a strong hydrogen bond complex // J. Mol. Struct. 1988. V. 117. P. 495–512.
[16] Scribano Y., Leforestier C. Contribution of water dimers absorption to the millimeter and far infrared atmospheric water continuum // J. Chem. Phys. 2007. V. 126. P. 234301-1–234301-12.
[17] Lee M.-S., Baletto F., Kanhere D.G., Scandolo S. Far-infrared absorption of water clusters by firstprinciples molecular dynamics // J. Chem. Phys. 2008. V. 128. P. 214506-1–214506-5.
[22] Burch D.E. Continuum absorption by H2O // Report AFGL-TR-81-0300. Air Force Geophysics Laboratory. Hanscom AFB, MA. 1981. 46 ð.
[25] Mlawer E.J., Payne V.H., Moncet J.-L., Delamere J.S., Alvarado M.J., Tobin D.D. Development and recent evaluation of the MT_CKD model of continuum absorption // Phil. Trans. Roy. Soc. A. 2012. V. 370. Ð. 2520– 2556. DOI: 10.1098/rsta.2011.0295.
[97] Podobedov V.B., Plusquellic D.F., Siegrist K.E., Fraser G.T., Ma Q., Tipping R.H. New measurements of the water vapor continuum in the region from 0.3 to 2.7 THz // J. Quant. Spectrosc. Radiat. Transfer. 2008. V. 109. P. 458–467.

1 x 2 800 x 960
2015

Figure 9. Экспериментальный континуум чистого водяного пара из работы Paynter и др. [77] в полосах 1600 (а) и 3600 см-1(б), полученный при 295K, в сравнении с моделями спектра связанных (“Bound”) и квазисвязанных (“Quasibound”) димеров. Спектр связанных димеров смоделирован на основе данных об интенсивностях и центрах полос из работ [60,79], константы димеризации Kbeq=0,03 атм-1 и лоренцевского контура шириной 60 cm-1 для каждой полосы димера. Спектр квазисвязанных димеров смоделирован с использованием параметров линий мономера воды из HITRAN-2012 [80] с удвоенным интенсивностями, лоренцевской шириной 20 см-1 для каждой линии и константой димеризации Kmeq =0,06 атм-1. Суммарный спектр димеров показан жирной линией. Рисунок заимствован из работы [65].

[60] Kjaergaard H., Garden A., Chaban G., Gerber R., Matthews D., Stanton J. Calculation of vibrational transition frequencies and intensities in water dimer: Comparison of different vibrational approaches // J. Phys. Chem. A. 2008. V. 112. P. 4324–4335.
[65] Ptashnik I.V., Shine K.P., Vigasin A.A. Water vapour self-continuum and water dimers. 1. Review and analysis of recent work // J. Quant. Spectrosc. Radiat. Transfer. 2011. V. 112. P. 1286–1303.
[77] Paynter D.J., Ptashnik I.V., Shine K.P., Smith K.M., McPheat R., Williams R.G. Laboratory measurements of the water vapor continuum in the 1 200–8 000 cm–1 region between 293 and 351 K // J. Geophys. Res. 2009. V. 114. P. D21301-1–D21301-23.
[79] Kuyanov-Prozument K., Choi M.Y., Vilesov A.F. Spectrum and infrared intensities of OH-stretching bands of water dimers // J. Chem. Phys. 2010. V. 132. P. 014304-1–014304-7.
[80] Rothman L.S., Gordon I.E., Babikov I.E., Barbe A., Benner C.D., Bernath P.F., Birk M., Bizzocchi L., Boudon V., Brown L.R., Campargue A., Chance K., Cohen E.A., Coudert L.H., Devi V.M., Drouin B.J., Fayt A., Flaud J.-M., Gamache R.R., Harrison J.J., Hartmann J.-M., Hill C., Hodges J.T., Jacquemart D., Jolly A., Lamouroux J., Le Roy R.J., Li G., Long D.A., Lyulin O.M., Mackie C.J., Massie S.T., Mikhailenko S., Müller S.P., Naumenko O.V., Nikitin A.V., Orphal J., Perevalov V., Perrin A., Polovtseva E.R., Richard C., Smith M.A.H., Starikova E., Sung K., Tashkun S., Tennyson J., Toon G.C., Tyuterev Vl.G., Wagner G. The HITRAN 2012 molecular spectroscopic database // J. Quant. Spectrosc. Radiat. Transfer. 2013. V. 130. P. 4–50.

1 x 2 800 x 960
2016
A. A. Simonova, I. V. Ptashnik,
Estimation of water dimers contribution to the water vapour continuum absorption within 0.94 and 1.13 μm bands,
Proc. SPIE  v.10035, 22nd International Symposium Atmospheric and Ocean Optics: Atmospheric Physics, Editor(s) Gennadii G. Matvienko; Oleg A. Romanovskii,
Tomsk, Russian Federation, SPIE - The international society for optical engineering, 2016, Pages 100350K,
ISBN: 10.1117/12.2249458.

Figure 2. The results of fitting of the water dimers model spectrum to the retrieved continuum spectrum in the absorption bands of 8800 and 10600 cm-1 at a pressure of 1000 mbar, temperature of 400 K and an optical length of 17.7 m.

1 x 2 1080 x 960
2016

Spectral dependence of the self-continuum cross section at room  temperature in the 1.25 μm window. Comparison of the MT_CKD2.8 model to the values obtained by CRDS-DFB and CRDS-ECDL. The blue curve corresponds to the recommended values provided as supporting information.

2 x 1 1600 x 640
2016

Figure 5. Temperature dependence of the water vapour self-continuum cross-section at three wavenumbers in the 4700 cm-1 window (after [58]) from Grenoble CRDS, OF-CEAS, CAVIAR FTS and Tomsk FTS, and the MT_CKD2.5 continuum model. The dashed lines show the slope of the curve assuming a temperature dependence of the form exp (D/kT) with Do = 1104 cm-1 (see text for details). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

[58] I. Ventrillard, D. Romanini, D. Mondelain, A. Campargue, Accurate measurements and temperature dependence of the water vapor selfcontinuum absorption in the 2.1μm atmospheric window, J. Chem. Phys. 143 (2015) 134304, http://dx.doi.org/10.1063/1.4931811.
[59] D. Mondelain, S. Vasilchenko, P. Cermak, S. Kassi, A. Campargue, The self- and foreign-absorption continua of water vapor by cavity ring-down spectroscopy near 2.35 μm, Phys. Chem. Chem. Phys. 17 (2015) 17762–17770, http://dx.doi.org/10.1039/c5cp01238d.
[23] I.V. Ptashnik, R.A. McPheat, K.P. Shine, K.M. Smith, R.G. Williams, Water vapor self-continuum absorption in near-infrared windows derived from laboratory measurements, Journal of Geophysical Research-Atmospheres, 116 (2011), D16305. 10.1029/2011JD015603.
[55] I.V. Ptashnik, T.M. Petrova, Y.N. Ponomarev, K.P. Shine, A.A. Solodov, A.M. Solodov, Near-infrared water vapour self-continuum at close to room temperature, Journal of Quantitative Spectroscopy & Radiative Transfer, 120 (2013) 23-35. 10.1016/j.jqsrt.2013.02.016.

3 x 1 1440 x 640
2016

Figure 7. Temperature dependence of the water self-continuum cross sections, CS, from Grenoble CRDS [60], CAVIAR FTS [23], from Tomsk FTS [55] and Bicknell et al. CI [62] near the low energy edge (5875 cm-1), near the centre (6121 cm-1) and near the high energy edge (6665 cm-1) of the 6300 cm-1 window. Bicknell et al. reported only the sum of the self and foreign continua with a 30% error bar.

[23] I.V. Ptashnik, R.A. McPheat, K.P. Shine, K.M. Smith, R.G. Williams, Water vapor self-continuum absorption in near-infrared windows derived from laboratory measurements, Journal of Geophysical Research-Atmospheres, 116 (2011), D16305. 10.1029/2011JD015603.
[55] I.V. Ptashnik, T.M. Petrova, Y.N. Ponomarev, K.P. Shine, A.A. Solodov, A.M. Solodov, Near-infrared water vapour self-continuum at close to room temperature, Journal of Quantitative Spectroscopy & Radiative Transfer, 120 (2013) 23-35. 10.1016/j.jqsrt.2013.02.016.
[62] W.E. Bicknell, S.D. Cecca, M.K. Griffin, Search for low-absorption regimes in the 1.6 and 2.1 μm atmospheric windows, Journal of Directed Energy, 2 (2006) 151-161.
[60] D. Mondelain, S. Manigand, S. Kassi, A. Campargue, Temperature dependence of the water vapor self-continuum by cavity ring-down spectroscopy in the 1.6 lm transparency window, J. Geophys. Res. – Atmos. 119 (2014) 5625–5639, http://dx.doi.org/10.1002/2013jd021319.

3 x 1 1440 x 640
2016

Figure 5. Spectral behavior of the water–carbon dioxide continuum in the 3–4 μm region. The data are a result of averaging over all four temperatures. The insert represents the temperature dependence of the binary absorption coefficients at three selected wavenumbers, designated in the plot by arrows. The bottom solid line shows the spectral behavior of the self-continuum [11] scaled roughly to the experimental data.
[11] Baranov YuI. The continuum absorption in H2O-N2 mixtures in the 3  5 μm spectral region at temperatures from 326 to 363 K. J Quant Spectrosc Radiat Transf 2011;112:2281–6.

1 x 2 800 x 1280
2016

Figure 4. Spectral behavior of the water–carbon dioxide continuum in the 7 to 9 μm region. The data are a result of averaging over all four temperatures. The insert represents the temperature dependence of the binary absorption coefficients at four selected wavenumbers, designated in the plot by arrows. The thin solid line shows the spectral behavior of the MT_CKD [11] self-continuum fitted to the experimental poit at 1128 cm-1 and scaled to the experimental data/ The lower trace represents the pure CO2 spectrum in arbitrary units.
[11] Baranov YuI. The continuum absorption in H2O-N2 mixtures in the 3  5 μm spectral region at temperatures from 326 to 363 K. J Quant Spectrosc Radiat Transf 2011;112:2281–6.

 

1 x 2 800 x 1280
2017

Figure 6. Impact of the line-mixing in the region of the R branch of the 00031–10002 band. Upper panel: CRDS spectrum, recorded for a density of 8.61 amagat (open circles) compared to the spectra simulations of the CO2 lines with (light grey) and without (red solid line) the line mixing effects. Lower panel: corresponding (Obs.–Sim.) residuals after subtraction of these contributions. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this.

1 x 2 640 x 960
2017

Рисунок 7.  Spectral functions for the CO2–Ar (a) and CO2–Xe (c) systems: experimental (dots) and calculated data (curves). Experimental data for the infrared region are taken from Ref. [33]. The  Fig. 7(b) shows details of the spectral function in the microwave region with the experimental data obtained for the following wavenumbers: 0.8 [39], 2.3 [40], 4.6 and 15.1 cm-1 [41].
[33] Andreeva G.V, Kudriavtsev A.A., Tonkov M.V, Filippov N.N. Investigation of the integral characteristics off ar-IR absorption spectra of mixtures of CO2  with inert gases. Opt Spectrosc (USSR) 1990;68:623–5.
[39] Maryott A.A., Kryder S.J. Collision-induced microwave absorption in compressed gases. III.CO2-foreign-Gas mixtures. J Chem Phys 1964;41:1580–2.
[40] Dagg I.R., Reesor G.E. ,Urbaniak J.L.Collision-induced microwave-absorption in CO2 and CO2-Ar, CO2-CH4 mixtures in 2.3cm-1 region. Can JPhys1974;52:973–8.
[41] Dagg I.R., Anderson A., Yan S., Smith W. The quadrupole moment of cyanogen: a comparative study of collision-induced absorption in gaseous C2N2, CO2, and mixtures with argon. Can J Phys 1986;64:1475–81.

 

1 x 3 800 x 1920
2017

Figure 5. Spectral function components for the CO2–Ar (a) and CO2–Xe systems (b) at 296 K. The curves show the contributions from collisions responsible for the formation of stable (1) and metastable (2) dimers and ordinary collisions (3).

1 x 2 640 x 960
2017

Figure 1. Left (a):  χ-function calculated by Eq. (10) with the use of the parameters A=20 and Δνwing=11 cm-1 as a function of the detuning frequency.  Right (b): Lorentz profile with a half-width of 5 *10-3 cm-1 (150 MHz) (bold solid line); the same profile with the wings cut off at the  ±25 cm-1 detuning and the cut-off line “brought down” to the zero level (as in the CKD model) (thin solid line); the latter profile with the added wings, which are calculated by Eq. (8) using the χ-function shown on Fig.1a is presented by the dashed line.

2 x 1 1300 x 480
2017

Figure 2. Experimental spectra of the water vapor continuum bands at 1600 cm-1 from the paper17 approximated by the model including the contribution from the water dimers and the empirically calculated contribution from the line wings.The dots are the experimental data,the bold solid curve represents the model, the bold dashed curve, the thin dashed curve,and the thin solid curve are the contributions from the bound dimers,metastable dimers,and line wings, respectively. (a) The contribution from the line wings is calculated using Eqs. (8)–(10). A=32 for the 1600 cm-1 band , Δνwing=11 cm-1 for the both bands. (b) The contribution from the line wings is calculated using Eqs. (8)–(10). A=18.5 for the 3600 cm-1 band, Δνwing=11 cm-1 for the both bands.

[17.] Ptashnik I.V., Shine K.P., Vigasin A.A. Water vapour self-continuum and water dimers: 1. Analysis of recent work. J. Quant. Spectrosc. Radiat. Transf. 2011; 112: 1286–1303.>

2 x 1 1360 x 480
2017

Figure 3. Experimental spectra of the H2O continuum in far infrared [31]  range approximated by the model allowing for the contribution from the water dimers and the empirically calculated contribution from the line wings.The dots are the experimental data,the bold solid curve represents the model,the bold dashed curve,the thin dashed curve,and the thin solid curve are the contributions from the bound dimers,metastable dimers,and line wings, respectively. (a)The contribution from the line wings calculated by using Eqs. (8)–(10). A=14  for the left-hand  panel,and Δνwing=11 cm-1 in both cases. P=1 atm. T=296 K. (b) The contribution from the line wings calculated by using Eqs. (8)–(10). A=14  for the left-hand  panel,and Δνwing=11 cm-1 in both cases. P=1 atm. T=296 K.

2 x 1 1360 x 480
2017

Figure 9. Spectral dependence of self-continuum cross-section at room temperature in the 2.1 μm window. MT_CKD3.0 model (purple solid line) is compared to (i) FTS results obtained in Tomsk [8, 9] or by the CAVIAR consortium [7], (ii) calorimetric–interferometry data [10] for which the blue open diamond corresponds to the self plus foreign cross-sections while blue full diamond is an approximated estimation of self-continuum cross-section value, (iii) our present and past CRDS [12, 14] and OF-CEAS [12, 13] measurements. The 30-50 % error bars on the Tomsk2015 FTS [9] values and the small error bars on our laser based values are not plotted for clarity. The insert shows the three CRDS measurement points of the present study. (Different symbols are used for the results obtained using upward and downward pressure ramps).

[7] Ptashnik I.V., McPheat R.A., Shine K.P., Smith K.M., Williams R.G. Water vapor self - continuum absorption in near - infrared windows derived from laboratory measurements. J Geophys Res 2011;116:D16305. doi: 10.1029/2011JD015603.
[8] Ptashnik I.V., Petrova T.M., Ponomarev Y.N., Shine K.P., Solodov A.A., Solodov A.M. Near-infrared water vapour self-continuum at close to room temperature, J Quant Spectrosc Radiat Transfer 2013;120:23–35. doi: 10.1016/j.jqsrt.2013.02. 016.
[9] Ptashnik I.V., Petrova T.M, Ponomarev Y.N., Solodov A.A., Solodov A.M. Water vapor continuum absorption in near-IR atmospheric windows. Atmos Oceanic Optics 2015;28:115–20. doi: 10.1134/S102485601502009.
[10] Bicknell W.E., Cecca S.D., Griffin M.K . Search for low-absorption regimes in the 1.6 and 2.1 μm atmospheric windows. J Directed Energy 2006;2:151–61 .
[12] Campargue A., Kassi S., Mondelain D., Vasilchenko S., Romanini D. Accurate laboratory determination of the near infrared water vapor self-continuum: A test of the MT_CKD model. J Geophys Res Atmos, 121,13,180–13,203, 2016, doi: 10.1002/ 2016JD025531.
[13] Mondelain D., Vasilchenko S., Cermak P., Kassi S., Campargue A. The self- and foreign-absorption continua of water vapor by cavity ring-down spectroscopy near 2.35 μm. Phys Chem Chem Phys 2015;17(27) 17762-1777, 35 doi: 10.1039/ C5CP01238D .
[14] Ventrillard I., Romanini D., Mondelain D., Campargue A.. Accurate measurements and temperature dependence of the water vapor self-continuum absorption in the 2.1 μm atmospheric window. J Chem Phys 2015;143. doi: 10.1063/1.4931811.

2 x 1 1600 x 640
2018

Figure 6. Spectral dependence of self-continuum cross-section at room temperature in the 2.1 μm window (4200-5200 cm-1). The two last versions of the MT_CKD model (V3.0 and V3.2) are compared to the cavity-based measurements, to the FTS results obtained in Tomsk (Ptashnik et al., 2013, 2015) or by the CAVIAR consortium (Ptashnik et al., 2011). The 30–50% error bars on the Tomsk2015 FTS values and the small error bars on our laser based values are not plotted, for clarity. The zoom highlights the present CRDS values near 5000 cm-1.

  1. Ptashnik, I. V., McPheat, R. A., Shine, K. P., Smith, K. M., and Williams, R. G.: Water vapor self – continuum absorption in near – infrared windows derived from laboratory measurements, J. Geophys. Res., 116, D16305, https://doi.org/10.1029/2011JD015603, 2011a.
  2. Ptashnik, I. V., Petrova, T. M., Ponomarev, Y. N., Shine, K. P., Solodov, A. A., and Solodov, A. M.: Near-infrared water vapour self-continuum at close to room temperature, J. Quant. Spectrosc. Ra. Transf., 120, 23–35, https://doi.org/10.1016/j.jqsrt.2013.02.016, 2013.
  3. Ptashnik, I. V., Petrova, T. M., Ponomarev, Y. N., Solodov, A. A., and Solodov, A. M.: Water vapor continuum absorption in near-IR atmospheric windows, Atmos. Ocean. Opt., 28, 115–120, https://doi.org/10.1134/S1024856015020098, 2015.
  4. Didier Mondelain, Semen Vasilchenko, Peter Cermak, Samir Kassi,· Alain Campargue, The self- and foreign-absorption continua of water vapor by cavity ring-down spectroscopy near 2.35 µm, Physical Chemistry Chemical Physics, 2015; 17(27), 17762-17770 DOI: 10.1039/C5CP01238D
  5. Ventrillard, I., Romanini, D., Mondelain, D., and Campargue, A. Accurate measurements and temperature dependence of the water vapor self-continuum absorption in the 2.1 μm atmospheric window, J. Chem. Phys., 143, 134304, https://doi.org/10.1063/1.4931811, 2015.
  6. Campargue, A., Kassi, S., Mondelain, D., Vasilchenko, S., and Romanini, D. Accurate laboratory determination of the near infrared water vapor self-continuum: A test of the MT_CKD model, J. Geophys. Res.-Atmos., 121, 180–13,203, https://doi.org/10.1002/2016JD025531, 2016.
  7. Richard, L., Vasilchenko, S., Mondelain, D., Ventrillard, I., Romanini, D., and Campargue, A. Water vapor self-continuum absorption measurements in the 4.0 and 2.1 μm transparency windows, J. Quant. Spectrosc. Ra. Transf., 201, 171–179, 2017.
1 x 2 800 x 960
2018

Figure 7. Temperature dependence of the water vapour self-continuum cross-sections near 5006 cm-1 obtained by OFCEAS and CRDS (open and full red circles, respectively), by FTS (green squares: CAVIAR; full blue circles: Baranov and Lafferty, 2011; open blue squares: Tomsk 2013). The MT_CKD3.2 values which are normalised to the number density at 1 atm and 296°K were multiplied by 296/T . The D0 slope corresponds to an exp(D0=kT ) function, D0 ~ 1100 cm-1 being the dissociation energy of the water dimer molecule.

1. Ptashnik, I.V., McPheat, R.A., Shine, K.P., Smith, K. M., and Williams, R.G.: Water vapor self – continuum absorption in near – infrared windows derived from laboratory measurements, J. Geophys. Res., 116, D16305, 2011, https://doi.org/10.1029/2011JD015603.
2.  Baranov, Y.I. and Lafferty, W. J.: The water-vapor continuum and selective absorption in the 3–5 µm spectral region at temperatures from 311° to 363°K, J. Quant. Spectrosc. Ra. Transf., 112, 1304–1313, 2011, https://doi.org/10.1016/j.jqsrt.2011.01.024.
3. Ptashnik, I. V., Petrova, T. M., Ponomarev, Y. N., Shine, K. P., Solodov, A. A., and Solodov, A. M.: Near-infrared water vapour self-continuum at close to room temperature, J. Quant. Spectrosc. Rad. Transf., 120, 23–35, 2013, https://doi.org/10.1016/j.jqsrt.2013.02.016.

3 x 1 1440 x 640
2019

Figure 5. Infrared absorption cross sections for the ν1 + ν6 band of methanol at a temperature of T = 298°K. The sample consisted of 202.2 μmol/mol of CH3OH-in-air at p equal to (a) 0.833 kPa, (b) 5.490 kPa, and (c) 26.859 kPa. Shown in (d) is a sample of 45.89 μmol/mol CH3OH-in-air at p = 101.575 kPa.

1 x 4 1440 x 480
2019

Figure 3. Comparison of the self-continuum optical depth retrieved within 1600 cm−1 (left panel) and 3600 cm−1 (right panel) absorption bands using HITRAN-2012 [26] with weak lines from UCL [27] and using HITRAN-2016 [31]. Measurement conditions: 11.5 mb pure water vapour at 288.5°K, path length 28.8 m.

[26] Rothman L., Gordon I., Babikov I., Barbe A., C. Benner D., et al. The HITRAN 2012 molecular spectroscopic database. JQSRT 2013;130:4–50.
[27] Shillings A., Ball S., Barber M., Tennyson J., Jones R. An upper limit for water dimer absorption in the 750 nm spectral region and a revised water line list, Atmos Chem Phys 2011;10:23345–80.
[31] Gordon I.E., Rothman L.S., Hill C., Kochanov R.V., Tan Y., Bernath P.F., Birk M., et al. The HITRAN 2016 molecular spectroscopic database. JQSRT 2017;203:3–69.

2 x 1 1600 x 640
2019

Figure 2. Example of pure water vapour continuum cross-section spectra within the 1600 and 3600 cm–1 bands, retrieved from high-resolution Fourier-transform spectra at below room temperatures [25] (solid circles) and at room and higher temperatures [24] (empty circles). Uncertainty in the retrieved continuum is shown for 288.5°К (15.35°C). The MT_CKD-3.2 self-continuum model [28] is also shown for comparison.

[24] Paynter D.J., Ptashnik I.V., Shine K.P., Smith K.M., McPheat R., Williams R.G. Laboratory measurements of the water vapor continuum in the 1200–80 00 cm–1 region between 293°K and 351K. J Geophys Res 2009;114:D21301
[25] Ptashnik I.V., Klimeshina T.E., Petrova T.M., Solodov A.A., Solodov A.M. Water vapor continuum absorption in the 2.7 and 6.25 μm bands at decreased temperatures. Atmos Oceanic Opt 2016;29(3):211–15.
[28] Mlawer E., Payne V., Moncet J.L., Delamere M., Alvarado M., Tobin D. Development and evaluation of the MT_CKD model of continuum absorption. Philos Trans Royal Soc A 2012;370:2520–56.

2 x 1 1600 x 640
2019

Figure 5. Example of fitting of b- (green) + q-dimer (grey) model spectra to the experimental continuum, obtained in this work at different temperatures. The resulting total model (sum of b- and q-dimer) absorption is shown in red. For more accurate fitting, the wavenumbers of stable WD transition at 3597 and 3730 cm–1 [12] were shifted to 3616 and 3717 cm–1 respectively. The νi(PA) and νi(PD) on the top panels denote respectively proton-acceptor and proton-donor H2O unit in WD, while i = 1,2,3 mean correspondingly symmetric stretching, bending, and asymmetric stretching oscillations in the water unit. The values of Kq and Kb (in atm–1) that lead to a best fit are shown in the legends of each frame. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

2 x 4 1600 x 1920
2019

Figure 6. Equilibrium constants of the bound (left panel) and quasibound (right panel) water dimers derived in this work from fitting the model in Eq. (3) to experimental continua for two different absorption bands. Kb values retrieved from spectroscopic measurements in microwaves by Serov et al., theoretical calculations by Buryak and Vigasin, and modified Kb values from Scribano et al. calculations (see the text for details) are shown for comparison. The error bars represent the error in the experimental data on the derived continuum and error in fitting the model to the experimental data.

  1. Buryak I., Vigasin A.A. Classical calculation of the equilibrium constants for true bound dimers using complete potential energy surface. J Chem Phys 2015;143:234304–8
  2. Scribano Y., Goldman N., Saykally R.J., Leforestier C. Water dimers in the atmosphere III: equilibrium constant from a flexible potential. J Phys Chem. 2006;110:5411-19.
  3. Serov E.A. , Koshelev M.A. , Odintsova T.A. , Parshin V.V. , Tretyakov M.Yu. Rotationally resolved water dimer spectra in atmospheric air and pure water vapour in the 188–258 GHz range. Phys. Chem. Chem. Phys., 2014;16(47):26221–33

2 x 1 1600 x 480
2019

Figure 7. Total equilibrium constant (Kb+q), derived in this work. The data from Tretyakov et al. [44] , Ruscic [43] and Leforestier [42] are also shown for comparison. Thick grey line shows the ratio (right axis) of the total equilibrium constant derived from fitting in this work to that derived in [44] from SVC.

[42] Leforestier C. Water dimer equilibrium constant calculation: a quantum formulation including metastable states. J Chem Phys 2014;140:074106.
[43] Ruscic B. Active thermochemical tables: water and water dimer. J Phys Chem A 2013;117(46):11940-53.
[44] Tretyakov M.Yu., Serov E.A., Odintsova T.A. Equilibrium thermodynamic state of water vapour and the collisional interaction of molecules. Radiophys Quant Electron 2012;54(10):700-16

1 x 2 800 x 960

rows starting from
In all rows 281


>