Цитирующие графики GrafOnto. Стадии обработки цитирующих графиков
В белой строке все характеристики цитирующего графика В желтой строке только библиографические данные цитируемого (оригинального) графика соответствующего цитирующему графику В зелёной строке все характеристики цитируемого графика Число цитирующих графиков, связанных с каждым из типов вещества
Молекулы: 882
Комплексы: 140
Смеси: 274
Цитирующие графики, связанные с молекулами
Год издания
Библиографическая ссылка
В-тво
Номер и подпись к графику
Физическая величина по оси X
Физическая величина по оси Y
Комментарий к примитивному графику
1985
P. Codastefano, P. Dore and L. Nencini , Far Infrared Absorption Spectra in Gaseous Methane from 138° to 296°K, Phenomena Induced by Intermolecular Interactions, NATO ASI series 127, Editor(s) G. Birnbaum, Springer US, 1985 , Pages 119.
CH4
T=195 К
P=1 атм
1. Birnbaum, G. (1975) (195K, 0-600 cm⁻¹)
Волновое число (см⁻¹)
Поглощение (произвольные единицы)
Absorption coefficients A(V) at 195° (upper) and 296°K (lower). Birnbaum (1975). A(v) are plotted in arbitrary units. In our data the maximum value is 1.22 10-5 cm-1 amagat-2 at 195°K.
Birnbaum, G. Far infrared collision‐induced spectrum in gaseous methane. I. Band shape and temperature dependence J. Chern. Phys., 62:59, 1975.
1975
Birnbaum, G. , Far infrared collision‐induced spectrum in gaseous methane. I. Band shape and temperature dependence, The Journal of Chemical Physics, 1975 , Volume 62 , Pages 59.
Волновое число (см⁻¹)
Коэффициент поглощения (см⁻¹)
1985
P. Codastefano, P. Dore and L. Nencini , Far Infrared Absorption Spectra in Gaseous Methane from 138° to 296°K, Phenomena Induced by Intermolecular Interactions, NATO ASI series 127, Editor(s) G. Birnbaum, Springer US, 1985 , Pages 119.
CH4
T=195 К
P=1 атм
1. Present results (195K, 0-600 cm⁻¹)
Волновое число (см⁻¹)
Поглощение (произвольные единицы)
Absorption coefficients A(V) at 195°. Present results. A(v) are plotted in arbitrary units. In our data the maximum value is 1.22 10-5 cm-1 amagat-2 at 195°K.
Birnbaum, G. Far infrared collision‐induced spectrum in gaseous methane. I. Band shape and temperature dependence J. Chern. Phys., 62:59, 1975.
1975
Birnbaum, G. , Far infrared collision‐induced spectrum in gaseous methane. I. Band shape and temperature dependence, The Journal of Chemical Physics, 1975 , Volume 62 , Pages 59.
Волновое число (см⁻¹)
Коэффициент поглощения (см⁻¹)
1985
P. Codastefano, P. Dore and L. Nencini , Far Infrared Absorption Spectra in Gaseous Methane from 138° to 296°K, Phenomena Induced by Intermolecular Interactions, NATO ASI series 127, Editor(s) G. Birnbaum, Springer US, 1985 , Pages 119.
CH4
T=296 К
P=1 атм
1a. Birnbaum, G. (1975) (296K, 0-600 cm⁻¹)
Волновое число (см⁻¹)
Поглощение (произвольные единицы)
Absorption coefficients A(V) at 296°K. Birnbaum (1975). A(v) are plotted in arbitrary units. In our data the maximum value is 9.24 10-6 cm-1 amagat-2 at 296°K.
Birnbaum, G. Far infrared collision‐induced spectrum in gaseous methane. I. Band shape and temperature dependence J. Chem. Phys., 62:59, 1975.
1975
Birnbaum, G. , Far infrared collision‐induced spectrum in gaseous methane. I. Band shape and temperature dependence, The Journal of Chemical Physics, 1975 , Volume 62 , Pages 59.
Волновое число (см⁻¹)
Коэффициент поглощения (см⁻¹)
1987
Aleksandra Borysow, Lothar Frommhold , Collision-induced rototranslational absorption spectra of binary methane complexes (CH4 -CH4 ), Journal of Molecular Spectroscopy, 1987 , Volume 123 , Issue 2, Pages 293–309.
CH4
T=295 К
P=∅
1. P. Codastefano, et al. (1986). Experimental data ( 295K, 0-600 cm⁻¹)
Волновое число (см⁻¹)
Коэффициент поглощения (см⁻¹Амага⁻²)
Absorption coefficients α(ω) of CH4 + CH4 . Dots: experimental data at temperatures 295°K from (20).
[20]. P. Codastefano, P. Dore, and L . Nencini, J . Quant. Spectrosc. Radiat. Transfer 35, 255-263 (1986).
1986
P. Codastefano, P. Dore and L. Nencini , Temperature dependence of the far-infrared absorption spectrum of gaseous methane, Journal of Quantitative Spectroscopy and Radiative Transfer, 1986 , Volume 35 , Issue 4, Pages 255-263.
CH4
T=163 К
P=1 атм
4a. The best-fit curve obtained by using the MLEW model to describe the line profiles (R=1.6)
Волновое число (см⁻¹)
Коэффициент поглощения (см⁻¹Амага⁻²)
The best-fit curve obtained by using the MLEW model to describe the single line profiles.
1987
Aleksandra Borysow, Lothar Frommhold , Collision-induced rototranslational absorption spectra of binary methane complexes (CH4 -CH4 ), Journal of Molecular Spectroscopy, 1987 , Volume 123 , Issue 2, Pages 293–309.
CH4
T=243 К
P=∅
1a. P. Codastefano, et al. (1986). Experimental data (243K, 0-600 cm⁻¹)
Волновое число (см⁻¹)
Коэффициент поглощения (см⁻¹Амага⁻²)
Absorption coefficients α(ω) of CH4 + CH4 at temperature 243°K. Dots: experimental data at temperature 243°K from (20).
[20]. P. Codastefano, P. Dore, and L . Nencini, J . Quant. Spectrosc. Radiat. Transfer 35, 255-263 (1986).
1986
P. Codastefano, P. Dore and L. Nencini , Temperature dependence of the far-infrared absorption spectrum of gaseous methane, Journal of Quantitative Spectroscopy and Radiative Transfer, 1986 , Volume 35 , Issue 4, Pages 255-263.
CH4
T=243 К
P=1 атм
3. Experimentally determined absorption band. (243K, 50-700 cm⁻¹)
Волновое число (см⁻¹)
Коэффициент поглощения (см⁻¹Амага⁻²)
Experimentally determined absorption band at 243°K.
1987
Aleksandra Borysow, Lothar Frommhold , Collision-induced rototranslational absorption spectra of binary methane complexes (CH4 -CH4 ), Journal of Molecular Spectroscopy, 1987 , Volume 123 , Issue 2, Pages 293–309.
CH4
T=195 К
P=∅
1b. P. Codastefano, et al. (1986). Experimental data (195K, 0-600 cm⁻¹)
Волновое число (см⁻¹)
Коэффициент поглощения (см⁻¹Амага⁻²)
Absorption coefficients α(ω) of CH4 +CH4 at temperature 195°K. Dots: experimental data at temperatures 195°K from (20).
[20]. P. Codastefano, P. Dore, and L . Nencini, J . Quant. Spectrosc. Radiat. Transfer 35, 255-263 (1986).
1986
P. Codastefano, P. Dore and L. Nencini , Temperature dependence of the far-infrared absorption spectrum of gaseous methane, Journal of Quantitative Spectroscopy and Radiative Transfer, 1986 , Volume 35 , Issue 4, Pages 255-263.
CH4
T=195 К
P=1 атм
1. Absorption coefficients of gaseous methane (195K, 0-600 cm⁻¹)
Волновое число (см⁻¹)
Коэффициент поглощения (см⁻¹Амага⁻²)
Experimentally determined absorption coefficients of gaseous methane at 195°K.
1987
Aleksandra Borysow, Lothar Frommhold , Collision-induced rototranslational absorption spectra of binary methane complexes (CH4 -CH4 ), Journal of Molecular Spectroscopy, 1987 , Volume 123 , Issue 2, Pages 293–309.
CH4
T=175 К
P=∅
1c. P. Codastefano, et al. (1986). Experimental data (175K, 0-600 cm⁻¹)
Волновое число (см⁻¹)
Коэффициент поглощения (см⁻¹Амага⁻²)
Absorption coefficients α(ω) of CH4 + CH4 at temperature 195°K. Dots: experimental data at temperatures 175°K from (20).
[20]. P. Codastefano, P. Dore, and L . Nencini, J . Quant. Spectrosc. Radiat. Transfer 35, 255-263 (1986).
1986
P. Codastefano, P. Dore and L. Nencini , Temperature dependence of the far-infrared absorption spectrum of gaseous methane, Journal of Quantitative Spectroscopy and Radiative Transfer, 1986 , Volume 35 , Issue 4, Pages 255-263.
CH4
T=175 К
P=1 атм
1. Absorption coefficients of gaseous methane (175K, 0-600 cm⁻¹)
Волновое число (см⁻¹)
Коэффициент поглощения (см⁻¹Амага⁻²)
Experimentally determined absorption coefficients of gaseous methane at 175°K.
1987
Aleksandra Borysow, Lothar Frommhold , Collision-induced rototranslational absorption spectra of binary methane complexes (CH4 -CH4 ), Journal of Molecular Spectroscopy, 1987 , Volume 123 , Issue 2, Pages 293–309.
CH4
T=163 К
P=∅
1d. P. Codastefano, et al. (1986). Experimental data (163K, 0-600 cm⁻¹)
Волновое число (см⁻¹)
Коэффициент поглощения (см⁻¹Амага⁻²)
Absorption coefficients α(ω) of CH4 + CH4 at temperature 163°K. Dots: experimental data at temperatures 163°K from (20).
[20]. P. Codastefano, P. Dore, and L . Nencini, J . Quant. Spectrosc. Radiat. Transfer 35, 255-263 (1986).
1986
P. Codastefano, P. Dore and L. Nencini , Temperature dependence of the far-infrared absorption spectrum of gaseous methane, Journal of Quantitative Spectroscopy and Radiative Transfer, 1986 , Volume 35 , Issue 4, Pages 255-263.
CH4
T=150 К
P=1 атм
1. Absorption coefficients of gaseous methane (150K, 0-600 cm⁻¹)
Волновое число (см⁻¹)
Коэффициент поглощения (см⁻¹Амага⁻²)
Experimentally determined absorption coefficients of gaseous methane at 150°K.
1987
Aleksandra Borysow, Lothar Frommhold , Collision-induced rototranslational absorption spectra of binary methane complexes (CH4 -CH4 ), Journal of Molecular Spectroscopy, 1987 , Volume 123 , Issue 2, Pages 293–309.
CH4
T=151 К
P=∅
1e. P. Codastefano, et al. (1986). Experimental data (151K, 0-600 cm⁻¹)
Волновое число (см⁻¹)
Коэффициент поглощения (см⁻¹Амага⁻²)
Absorption coefficients α(ω) of CH4 + CH4 at temperature 151°K. Dots: experimental data at temperatures 151°K from (20).
[20]. P. Codastefano, P. Dore, and L . Nencini, J . Quant. Spectrosc. Radiat. Transfer 35, 255-263 (1986).
1986
P. Codastefano, P. Dore and L. Nencini , Temperature dependence of the far-infrared absorption spectrum of gaseous methane, Journal of Quantitative Spectroscopy and Radiative Transfer, 1986 , Volume 35 , Issue 4, Pages 255-263.
CH4
T=150 К
P=1 атм
1. Absorption coefficients of gaseous methane (150K, 0-600 cm⁻¹)
Волновое число (см⁻¹)
Коэффициент поглощения (см⁻¹Амага⁻²)
Experimentally determined absorption coefficients of gaseous methane at 150°K.
1987
Aleksandra Borysow, Lothar Frommhold , Collision-induced rototranslational absorption spectra of binary methane complexes (CH4 -CH4 ), Journal of Molecular Spectroscopy, 1987 , Volume 123 , Issue 2, Pages 293–309.
CH4
T=140 К
P=∅
1f. P. Codastefano, et al. (1986). Experimental data (151K, 0-600 cm⁻¹)
Волновое число (см⁻¹)
Коэффициент поглощения (см⁻¹Амага⁻²)
Absorption coefficients α(ω) of CH4 + CH4 at temperature 140°K. Dots: experimental data at temperatures 140°K from (20).
[20]. P. Codastefano, P. Dore, and L . Nencini,J . Quant. Spectrosc. Radiat. Transfer 35,255-263 (1986).
1986
P. Codastefano, P. Dore and L. Nencini , Temperature dependence of the far-infrared absorption spectrum of gaseous methane, Journal of Quantitative Spectroscopy and Radiative Transfer, 1986 , Volume 35 , Issue 4, Pages 255-263.
CH4
T=150 К
P=1 атм
1. Absorption coefficients of gaseous methane (150K, 0-600 cm⁻¹)
Волновое число (см⁻¹)
Коэффициент поглощения (см⁻¹Амага⁻²)
Experimentally determined absorption coefficients of gaseous methane at 150°K.
1987
Aleksandra Borysow, Lothar Frommhold , Collision-induced rototranslational absorption spectra of binary methane complexes (CH4 -CH4 ), Journal of Molecular Spectroscopy, 1987 , Volume 123 , Issue 2, Pages 293–309.
CH4
T=126 К
P=∅
1g. I.R. Dagg, et al. (1986). Absorption coefficients of CH₄-CH₄. (126K, 0-600 cm⁻¹)
Волновое число (см⁻¹)
Коэффициент поглощения (см⁻¹Амага⁻²)
Absorption coefficients α(ω) of CH4 -CH4 at different temperatures. Dots: experimental data at temperature 126°K from (22).
22. I. R. Dagg, A. Anderson, S. Yan, W. Smith, C. G. Joslin, and L. A. A. Read, Canad. J. Phys., 1986, in press.
1986
Dagg I.R., Anderson A., Yan S., Smith W. , The quadrupole moment of cyanogen: a comparative study of collision-induced absorption in gaseous C2 N2 , CO2 , and mixtures with argon, Canadian Journal of Physics, 1986 , Volume 64 , Pages 1475–81.
1988
Régis Courtin , Pressure-induced absorption coefficients for radiative transfer calculations in Titan's atmosphere, Icarus, 1988 , Volume 75 , Issue 2, Pages 245-254.
CH4
T=140 К
P=1 атм
3. Codastefano, P., et al. (1985, 1986). (140K, 0-450 cm⁻¹)
Волновое число (см⁻¹)
Коэффициент поглощения (см⁻¹атм⁻²)
The collision-induced spectrum of pure CH4 at 140°K. The measurements are from Codastefano et al. (1985, 1986).
Codastefano, P., P. Dore, and L. Nencini 1985. Far-infrared absorption spectra in gaseous methane from 138 to 296 K. In Phenomena Induced by Intermolecular Interactions (G. Birnbaum, Ed.), pp. 119-128. Plenum, New York.
Codastefano, P., P. Dore, and L. Nencini. 1986. Temperature dependence of the far-infrared absorption spectrum of gaseous methane. J. Quant. Spectrosc. Radiat. Transfer 35, 255-263.
1986
P. Codastefano, P. Dore and L. Nencini , Temperature dependence of the far-infrared absorption spectrum of gaseous methane, Journal of Quantitative Spectroscopy and Radiative Transfer, 1986 , Volume 35 , Issue 4, Pages 255-263.
CH4
T=163 К
P=1 атм
4a. The best-fit curve: (b) hexadecapolar contribution (R=1.6)
Волновое число (см⁻¹)
Коэффициент поглощения (см⁻¹Амага⁻²)
The best-fit curve obtained by using the MLEW model to describe the single line profiles. (b) hexadecapolar contribution.
1988
Régis Courtin , Pressure-induced absorption coefficients for radiative transfer calculations in Titan's atmosphere, Icarus, 1988 , Volume 75 , Issue 2, Pages 245-254.
CH4
T=163 К
P=1 атм
3a. Codastefano, P., et al. (1985, 1986). (163K, 0-450 cm⁻¹)
Волновое число (см⁻¹)
Коэффициент поглощения (см⁻¹атм⁻²)
The collision-induced spectrum of pure CH4 at 163°K. The measurements are from Codastefano et al. (1985, 1986).
Codastefano, P., P. Dore, and L. Nencini 1985. Far-infrared absorption spectra in gaseous methane from 138° to 296°K. In Phenomena Induced by Intermolecular Interactions (G. Birnbaum, Ed.), pp. 119-128. Plenum, New York.
Codastefano, P., P. Dore, and L. Nencini. 1986. Temperature dependence of the far-infrared absorption spectrum of gaseous methane. J. Quant. Spectrosc. Radiat. Transfer 35, 255-263.
1986
P. Codastefano, P. Dore and L. Nencini , Temperature dependence of the far-infrared absorption spectrum of gaseous methane, Journal of Quantitative Spectroscopy and Radiative Transfer, 1986 , Volume 35 , Issue 4, Pages 255-263.
CH4
T=243 К
P=1 атм
3. The best-fit curve: (a) octupolar contribution
Волновое число (см⁻¹)
Коэффициент поглощения (см⁻¹Амага⁻²)
The best-fit curve obtained by using the ab inifio computed single line profiles.[4,5] (a) octupolar contribution.
4. G. Birnbaum, L. Frommhold, L. Nencini and H. Sutter, Chem. Phyx Left. 100, 292 (1983).
5. J. Borysow and L. Frommhold, “The Infrared and Raman Line Shapes of Pairs of Interacting Molecules,” in Phenomena Induced by Intermolecular Interactions (edited by G. Birnbaum), Plenum, New York (1985).
1988
Régis Courtin , Pressure-induced absorption coefficients for radiative transfer calculations in Titan's atmosphere, Icarus, 1988 , Volume 75 , Issue 2, Pages 245-254.
CH4
T=195 К
P=1 атм
3b. Codastefano, P., et al. (1985, 1986). (195K, 0-450 cm⁻¹)
Волновое число (см⁻¹)
Коэффициент поглощения (см⁻¹атм⁻²)
The collision-induced spectrum of pure CH4 at 195°K. The measurements are from Codastefano et al. (1985, 1986).
Codastefano, P., P. Dore, and L. Nencini 1985. Far-infrared absorption spectra in gaseous methane from 138° to 296°K. In Phenomena Induced by Intermolecular Interactions (G. Birnbaum, Ed.), pp. 119-128. Plenum, New York.
Codastefano, P., P. Dore, and L. Nencini. 1986. Temperature dependence of the far-infrared absorption spectrum of gaseous methane. J. Quant. Spectrosc. Radiat. Transfer 35, 255-263.
1985
P. Codastefano, P. Dore and L. Nencini , Far Infrared Absorption Spectra in Gaseous Methane from 138° to 296°K, Phenomena Induced by Intermolecular Interactions, NATO ASI series 127, Editor(s) G. Birnbaum, Springer US, 1985 , Pages 119.
Волновое число (см⁻¹)
Поглощение (произвольные единицы)
1988
Régis Courtin , Pressure-induced absorption coefficients for radiative transfer calculations in Titan's atmosphere, Icarus, 1988 , Volume 75 , Issue 2, Pages 245-254.
CH4
T=295 К
P=1 атм
3c. Codastefano, P., et al. (1985, 1986). (295K, 0-450 cm⁻¹)
Волновое число (см⁻¹)
Коэффициент поглощения (см⁻¹атм⁻²)
The collision-induced spectrum of pure CH4 at 295°K. The measurements are from Codastefano et al. (1985, 1986).
Codastefano, P., P. Dore, and L. Nencini 1985. Far-infrared absorption spectra in gaseous methane from 138 to 296 K. In Phenomena Induced by Intermolecular Interactions (G. Birnbaum, Ed.), pp. 119-128. Plenum, New York.
Codastefano, P., P. Dore, and L. Nencini. 1986. Temperature dependence of the far-infrared absorption spectrum of gaseous methane. J. Quant. Spectrosc. Radiat. Transfer 35, 255-263.
1985
P. Codastefano, P. Dore and L. Nencini , Far Infrared Absorption Spectra in Gaseous Methane from 138° to 296°K, Phenomena Induced by Intermolecular Interactions, NATO ASI series 127, Editor(s) G. Birnbaum, Springer US, 1985 , Pages 119.
Волновое число (см⁻¹)
Поглощение (произвольные единицы)
1988
Régis Courtin , Pressure-induced absorption coefficients for radiative transfer calculations in Titan's atmosphere, Icarus, 1988 , Volume 75 , Issue 2, Pages 245-254.
CH4
T=126 К
P=1 атм
4. Dagg et al. (1986). The collision-induced spectrum of N₂ + CH₄. (126K, 15.1 cm⁻¹)
Волновое число (см⁻¹)
Коэффициент поглощения (см⁻¹атм⁻²)
The collision-induced spectrum of N2 -CH4 mixture at 126°K. The measurements are from Dagg et al. (1986). Microwave data at 15.1 cm-1.
Dagg, I. R., A. Anderson, S. Yan, W. Smith, G. G. Joslin, and L. A. A. Read, 1986. Collision-induced absorption in gaseous mixtures of nitrogen and methane. Canad. J. Phys. 64, 1467-1474.
1986
I. R. Dagg, A. Anderson, S. Yan, W. Smith, C. G. Joslin, and L. A. A. Read , Collision-induced absorption in gaseous mixtures of nitrogen and methane, Canadian Journal of Physics, 1986 , Volume 64 , Issue 11, Pages 1467-1474.
Волновое число (см⁻¹)
Коэффициент поглощения (см⁻¹Амага⁻²)
1993
Borysow, Aleksandra; Tang, Chunmei , Far Infrared CIA Spectra of N2 -CH4 Pairs for Modeling of Titan's Atmosphere, Icarus, 1993 , Volume 105 , Issue 1, Pages 175-183.
CH4
T=∅
P=∅
1. McKay, C.P., et al. (1989). Collision-induced intensities due to CH₄+CH₄ pairs (0-500 cm⁻¹)
Волновое число (см⁻¹)
Оптическая глубина
Total column optical depth in the thermal IR for Titan’s atmosphere. Collision-induced intensities due to CH4 +CH4 pairs are marked.
C. P. McKay, J. B. Pollack, R. Courtin, The thermal structureof Titan's atmosphere, Icarus, 1989, Volume 80, Pages 23, DOI: 10.1016/0019-1035(89)90160-7.
1989
C. P. McKay, J. B. Pollack, R. Courtin , The thermal structureof Titan's atmosphere, Icarus, 1989 , Volume 80 , Pages 23.
2005
Michael Buser and Lothar Frommhol , Collision-induced rototranslational absorption in compressed methane gas, Physical Review, A, 2005 , Volume 72 , Issue 4,
CH4
T=163 К
P=1 атм
1. P. Codastefano, et al. (1986) (163K, 0-650 cm⁻¹)
Волновое число (см⁻¹)
Коэффициент поглощения (см⁻¹Амага⁻²)
Existing measurements [17] at temperatures of 163°K in methane.
P. Codastefano, P. Dore, L. Nencini, Temperature dependence of the far-infrared absorption spectrum of gaseous methane, Journal of Quantitative Spectroscopy and Radiative Transfer, Volume 35, Issue 4, April 1986, Pages 255-263, https://doi.org/10.1016/0022-4073(86)90079-8
1986
P. Codastefano, P. Dore and L. Nencini , Temperature dependence of the far-infrared absorption spectrum of gaseous methane, Journal of Quantitative Spectroscopy and Radiative Transfer, 1986 , Volume 35 , Issue 4, Pages 255-263.
CH4
T=163 К
P=1 атм
4a. Experimentally determined absorption band. (163K, 50-600 cm⁻¹)
Волновое число (см⁻¹)
Коэффициент поглощения (см⁻¹Амага⁻²)
Experimentally determined absorption band at 163°K and the best-fit curve obtained by using the MLEW model to describe the single line profiles. (a) octupolar contribution; (b) hexadecapolar contribution. (R=1.6)
2005
Michael Buser and Lothar Frommhol , Collision-induced rototranslational absorption in compressed methane gas, Physical Review, A, 2005 , Volume 72 , Issue 4,
CH4
T=195 К
P=1 атм
1a. P. Codastefano, et al. (1986) (195K, 0-650 cm⁻¹)
Волновое число (см⁻¹)
Коэффициент поглощения (см⁻¹Амага⁻²)
Existing measurements [17] at temperatures of 195°K in methane.
P. Codastefano, P. Dore, and L. Nencini, J. Quant. Spectrosc.Radiat. Transf. 35, 255 (1986).
1986
P. Codastefano, P. Dore and L. Nencini , Temperature dependence of the far-infrared absorption spectrum of gaseous methane, Journal of Quantitative Spectroscopy and Radiative Transfer, 1986 , Volume 35 , Issue 4, Pages 255-263.
CH4
T=195 К
P=1 атм
1. Absorption coefficients of gaseous methane (195K, 0-600 cm⁻¹)
Волновое число (см⁻¹)
Коэффициент поглощения (см⁻¹Амага⁻²)
Experimentally determined absorption coefficients of gaseous methane at 195°K.
2005
Michael Buser and Lothar Frommhol , Collision-induced rototranslational absorption in compressed methane gas, Physical Review, A, 2005 , Volume 72 , Issue 4,
CH4
T=243 К
P=1 атм
1b. P. Codastefano, et al. (1986) (243K, 0-650 cm⁻¹)
Волновое число (см⁻¹)
Коэффициент поглощения (см⁻¹Амага⁻²)
Existing measurements [17] at temperatures of 243°K in methane.
[17]. P. Codastefano, P. Dore, L. Nencini, Temperature dependence of the far-infrared absorption spectrum of gaseous methane, Journal of Quantitative Spectroscopy and Radiative Transfer, Volume 35, Issue 4, April 1986, Pages 255-263, https://doi.org/10.1016/0022-4073(86)90079-8
1986
P. Codastefano, P. Dore and L. Nencini , Temperature dependence of the far-infrared absorption spectrum of gaseous methane, Journal of Quantitative Spectroscopy and Radiative Transfer, 1986 , Volume 35 , Issue 4, Pages 255-263.
CH4
T=243 К
P=1 атм
3. Experimentally determined absorption band. (243K, 50-700 cm⁻¹)
Волновое число (см⁻¹)
Коэффициент поглощения (см⁻¹Амага⁻²)
Experimentally determined absorption band at 243°K.
2005
Michael Buser and Lothar Frommhol , Collision-induced rototranslational absorption in compressed methane gas, Physical Review, A, 2005 , Volume 72 , Issue 4,
CH4
T=297 К
P=1 атм
1c. P. Codastefano, et al. (1986) (297K, 0-650 cm⁻¹)
Волновое число (см⁻¹)
Коэффициент поглощения (см⁻¹Амага⁻²)
Existing measurements [17] at temperatures of 293°K in methane.
P. Codastefano, P. Dore, L. Nencini, Temperature dependence of the far-infrared absorption spectrum of gaseous methane, Journal of Quantitative Spectroscopy and Radiative Transfer, Volume 35, Issue 4, April 1986, Pages 255-263, https://doi.org/10.1016/0022-4073(86)90079-8
1986
P. Codastefano, P. Dore and L. Nencini , Temperature dependence of the far-infrared absorption spectrum of gaseous methane, Journal of Quantitative Spectroscopy and Radiative Transfer, 1986 , Volume 35 , Issue 4, Pages 255-263.
CH4
T=243 К
P=1 атм
3. Experimentally determined absorption band. (243K, 50-700 cm⁻¹)
Волновое число (см⁻¹)
Коэффициент поглощения (см⁻¹Амага⁻²)
Experimentally determined absorption band at 243°K.
2006
Frommhold L. , Collision Induced Absorption in Gases. Cambridge Monographs on Atomic, Molecular, and Chemical Physics, Unknown, 2006 ,
CH4
T=296 К
P=∅
3c-22. P. Dore, et al. (1989). The rototranslational spectrum of CH₄-CH₄. Experiment
Волновое число (см⁻¹)
Коэффициент поглощения (см⁻¹Амага⁻²)
Rototranslational absorption spectra of CH4 -CH4 pairs [141] at 296°K in the frequency range 50-400 cm-1 . Measurement (Dore et al. (1989))
P. Dore, M. Moraldi, J. D. Poll, and G. Birnbaum. Analysis of rototranslational absorption spectra induced in low-density gases of non-polar molecules: The methane case. Molec. Phys., 66:335, 1989
1989
P. Dore, M. Moraldi, J. D. Poll, and G. Birnbaum , Analysis of rototranslational absorption spectra induced in low-density gases of non-polar molecules: The methane case, Molecular Physics, 1989 , Volume 66 , Pages 335.
CH4
T=296 К
P=1 атм
1. Methane absorption coefficient at 296K. Experimental spectrum
Волновое число (см⁻¹)
Коэффициент поглощения (см⁻¹Амага⁻²)
Methane absorption coefficient at 296°K. Experimental spectrum.
1964
V. Robert Stull, Philip J. Wyatt, and Gilbert N. Plass , The Infrared Transmittance of Carbon Dioxide, Applied Optics, 1964 , Volume 3 , Issue 2, Pages 243–254.
CO2
T=∅
P=0.0205263 атм
1. Burch Darrell E., et al. (1962). Experiment P=15.6 mmHg
Волновое число (см⁻¹)
Пропускание (%)
The transmittance. The experimental measurements of Burch et al. [6] for a pressure of 15.6 mm Hg and 46.4 atm-cm of CO2 .
[6] Burch Darrell E., David A. Gryvnak, and Dudley Williams, Total Absorptance of Carbon Dioxide in the Infrared, Appl. Opt. 1, 759-765 (1962) https://doi.org/10.1364/AO.1.000759
1962
Darrell E. Burch, David A. Gryvnak, and Dudley Williams , Total Absorptance of Carbon Dioxide in the Infrared, Applied Optics, 1962 , Volume 1 , Pages 759-765.
1964
V. Robert Stull, Philip J. Wyatt, and Gilbert N. Plass , The Infrared Transmittance of Carbon Dioxide, Applied Optics, 1964 , Volume 3 , Issue 2, Pages 243–254.
CO2
T=∅
P=0.180263 атм
2. Burch Darrell E., et al. (1962). Experiment P=137 mmHg
Волновое число (см⁻¹)
Пропускание (%)
The transmittance. The experimental measurements of Burch et al. [6] for a pressure of 137 mm Hg and 0.195 atm-cm of CO2 .
[6] Burch Darrell E., David A. Gryvnak, and Dudley Williams, Total Absorptance of Carbon Dioxide in the Infrared, Appl. Opt. 1, 759-765 (1962) https://doi.org/10.1364/AO.1.000759
1962
Darrell E. Burch, David A. Gryvnak, and Dudley Williams , Total Absorptance of Carbon Dioxide in the Infrared, Applied Optics, 1962 , Volume 1 , Pages 759-765.
1964
V. Robert Stull, Philip J. Wyatt, and Gilbert N. Plass , The Infrared Transmittance of Carbon Dioxide, Applied Optics, 1964 , Volume 3 , Issue 2, Pages 243–254.
CO2
T=∅
P=0.713158 атм
3. Burch Darrell E., et al. (1962). Experiment P=542 mmHg
Волновое число (см⁻¹)
Пропускание (%)
The transmittance. The experimental measurements of Burch et al. [6] for a pressure of 542 mm Hg and 0.759 atm-cm of CO2
[6] Burch Darrell E., David A. Gryvnak, and Dudley Williams, Total Absorptance of Carbon Dioxide in the Infrared, Appl. Opt. 1, 759-765 (1962) https://doi.org/10.1364/AO.1.000759
1962
Darrell E. Burch, David A. Gryvnak, and Dudley Williams , Total Absorptance of Carbon Dioxide in the Infrared, Applied Optics, 1962 , Volume 1 , Pages 759-765.
1966
W. Ho, I. A. Kaufman, and P. Thaddeus , Microwave Absorption in Compressed CO2 , Journal of Chemical Physics, 1966 , Volume 45 , Issue 3, Pages 877.
CO2
T=∅
P=∅
5. G. Birnbaum, et al. (1962)
Волновое число (см⁻¹)
Заданная функция
Observations of induced absorption in carbon dioxide. The absorption coefficient/density [2], which at low densities is given by α/ρ2 =2πνA in the notation of Eq. (3), is plotted instead of the dielectric loss to allow better comparison with the infrared observations. MB, Maryott and Birnbaum [9].
Defined function = α/ρ2
9. G. Birnbaum and A. A. Maryott, J. Chem. Phys. 36, 2032 (1962)
1962
G. Birnbaum, A. A. Maryott , Collision‐Induced Microwave Absorption in Compressed Gases. II. Molecular Electric Quadrupole Moments, The Journal of Chemical Physics, 1962 , Volume 36 , Pages 2032.
1966
W. Ho, I. A. Kaufman, and P. Thaddeus , Microwave Absorption in Compressed CO2 , Journal of Chemical Physics, 1966 , Volume 45 , Issue 3, Pages 877.
CO2
T=∅
P=∅
5. H. A. Gebbie, et al. (1963)
Волновое число (см⁻¹)
Заданная функция
Observations of induced absorption in carbon dioxide. The absorption coefficient/density [2], which at low densities is given by α/ρ2 =2πνA in the notation of Eq. (3), is plotted instead of the dielectric loss to allow better comparison with the infrared observations. GS, Gebbie and Stone [7].
Defined function = α/ρ2
7. H. A. Gebbie and N. W. B. Stone, Proc. Phys. Soc. (London) 82, 543 (1963)
1963
Gebbie H.A. and Stone N.W.B. , Collision Induced Absorption in Carbon Dioxide in the Far Infra-red, Proceedings of the Physical Society, 1963 , Volume 82 , Pages 543.
1966
W. Ho, I. A. Kaufman, and P. Thaddeus , Microwave Absorption in Compressed CO2 , Journal of Chemical Physics, 1966 , Volume 45 , Issue 3, Pages 877.
CO2
T=∅
P=∅
5. L. Frenkel, et al. (1966)
Волновое число (см⁻¹)
Заданная функция
Observations of induced absorption in carbon dioxide. The absorption coefficient/density [2], which at low densities is given by α/ρ2 =2πνA in the notation of Eq. (3), is plotted instead of the dielectric loss to allow better comparison with the infrared observations. FW, Frenkel and Woods [8].
Defined function = α/ρ2
8. L. Frenkel and D. Woods, J. Chern. Phys. 44, 2219 (1966).
1966
L. Frenkel and D. Woods , Microwave Absorption in Compressed CO2 , Journal of Chemical Physics, 1966 , Volume 44 , Issue 5, Pages 2219.
1969
Darrell E. Burch, David A. Gryvnak, Richard R. Patty, and Charlotte E. Bartky , Absorption of Infrared Radiant Energy by CO2 and H2 O. IV. Shapes of Collision-Broadened CO2 Lines, Journal of Optical Society of America, 1969 , Volume 59 , Pages 267-278.
CO2
T=∅
P=1 атм
4. P branch
Угловой момент
Нормализованная полуширина (см⁻¹)
Normalized half-width α0 s of self-broadened CO2 lines at 1 atm plotted vs J. The curves for the two branches are based on the following empirical equation, which was derived by Winters, Silverman, and Benedict [1] from data obtained by Madden. [8] α0 s (cm-1 ) = 0.050+0.12 exp[-0.16|m|] +0.00421 |m| exp[- B m (m-1)/kT], where m=J+1, in the R branch, and m = - J in the P branch. This equation is applicable for J<50; for J>50, we assumed a α0 s = 0.05 cm-1 .
1. B. H. Winters, S. Silverman, and W. S. Benedict, J. Quant.Spectry Radiative Transfer 4, 527 (1964)
8. R. P. Madden, J. Chem. Phys. 35, 2083 (1961)
1964
B.H. Winters, S. Silverman, W.S. Benedict , Line shape in the wing beyond the band head of the 4·3 μ band of CO2 , Journal of Quantitative Spectroscopy and Radiation Transfer, 1964 , Volume 4 , Issue 4, Pages 527-537.
Волновое число (см⁻¹) Волновое число (см⁻¹)
Заданная функция Коэффициент поглощения (см⁻¹атм⁻²)
1969
Darrell E. Burch, David A. Gryvnak, Richard R. Patty, and Charlotte E. Bartky , Absorption of Infrared Radiant Energy by CO2 and H2 O. IV. Shapes of Collision-Broadened CO2 Lines, Journal of Optical Society of America, 1969 , Volume 59 , Pages 267-278.
CO2
T=∅
P=1 атм
4. R branch
Угловой момент
Нормализованная полуширина (см⁻¹)
Normalized half-width α0 s of self-broadened CO2 lines at 1 atm plotted vs J. The curves for the two branches are based on the following empirical equation, which was derived by Winters, Silverman, and Benedict [1] from data obtained by Madden. [8] α0 s (cm-1 ) = 0.050+0.12 exp[-0.16|m|] +0.00421 |m| exp[- B m (m-1)/kT], where m=J+1, in the R branch, and m = - J in the P branch. This equation is applicable for J<50; for J>50, we assumed a α0 s = 0.05 cm-1 .
1. B. H. Winters, S. Silverman, and W. S. Benedict, J. Quant.Spectry Radiative Transfer 4, 527 (1964)
8. R. P. Madden, J. Chem. Phys. 35, 2083 (1961)
1961
Robert P. Madden , A High-Resolution Study of CO2 Absorption Spectra between 15 and 18 Microns, Journal of Chemical Physics, 1961 , Volume 35 , Issue 6, Pages 2083.
1969
Кондратьев К.Я., Тимофеев Ю.М. , Численное моделирование функций пропускания для узких спектральных интервалов 15 мкм полосы СО2 , Известия РАН. Серия Физика атмосферы и океана, 1969 , Volume 5 , Number 4, Pages 377-387.
CO2
T=300 К
P=1 атм
6. Stull V.R., et al. (1965). Calculation
Волновое число (см⁻¹)
Пропускание (%)
Сравнение функций пропускания (u=46.4 атм см, р=15.6 мм рт ст). Пунктирная – расчет [18].
[18] Stull V.R., Wyatt P.J., Plass G.N. Infrared transmission studies. Final Report, vol. III. The infrared absorption of carbon dioxide, 1965. Cont. No. AF 04 (695)-96. Los Angeles, California.
1964
V. Robert Stull, Philip J. Wyatt, and Gilbert N. Plass , The Infrared Transmittance of Carbon Dioxide, Applied Optics, 1964 , Volume 3 , Issue 2, Pages 243–254.
CO2
T=∅
P=0.0205263 атм
1. The theoretical calculations of the transmittance. P=15.6 mm Hg
Волновое число (см⁻¹)
Пропускание (%)
A theoretical calculations of the transmittance for a pressure of 15.6 mm Hg and 46.4 atm-cm of CO2 .
1973
Гальцев А.П., Осипов В.М., Шереметьева Т.А. , Определение параметров контура линий СО2 методом минимизации, Известия АН СССР. Серия Физика атмосферы и океана, 1973 , Volume 9 , Number 11, Pages 1195-1200.
CO2
T=∅
P=∅
1a. Burch D.E., et al. (1969). Absorption coefficient in the band edge of 1.4 mkm. CO₂+CO₂
Волновое число (см⁻¹)
Нормализованный коэффициент поглощения (атм⁻¹см⁻¹)STP
Коэффициент поглощения в канте полос 1.4 мкм (a): точки – эксперимент [5].
[5] Burch D.E., Gryvnak D.A., Patty R.R., Bartky Ch.E. Absorption of infrared radiant energy by CO2 and H 2 O. IV. Shapes of collision -broadened CO2 lines. J.Opt.Soc Amer. 1969, 59, No.3, 267-280
1969
Darrell E. Burch, David A. Gryvnak, Richard R. Patty, and Charlotte E. Bartky , Absorption of Infrared Radiant Energy by CO2 and H2 O. IV. Shapes of Collision-Broadened CO2 Lines, Journal of Optical Society of America, 1969 , Volume 59 , Pages 267-278.
CO2
T=273 К
P=1 атм
15. b. Calculated results
Волновое число (см⁻¹)
Нормализованный коэффициент поглощения (атм⁻¹см⁻¹)STP
The + 's represent the values calculated on the basis of lines whose χ is given by the solid curve in the upper panel and whose half-widths are given by Fig. 4.
1973
Гальцев А.П., Осипов В.М., Шереметьева Т.А. , Определение параметров контура линий СО2 методом минимизации, Известия АН СССР. Серия Физика атмосферы и океана, 1973 , Volume 9 , Number 11, Pages 1195-1200.
CO2
T=∅
P=∅
1b. Burch D.E., et al. (1969). Absorption coefficient in the band edge of 2.7 mkm. CO₂+CO₂
Волновое число (см⁻¹)
Нормализованный коэффициент поглощения (атм⁻¹см⁻¹)STP
Коэффициент поглощения в канте полос 2.7 мкм (a): точки – эксперимент [5].
[5] Burch D.E., Gryvnak D.A., Patty R.R., Bartky Ch.E. Absorption of infrared radiant energy by CO2 and H 2 O. IV. Shapes of collision -broadened CO2 lines. J.Opt.Soc Amer. 1969, 59, No.3, 267-280
1969
Darrell E. Burch, David A. Gryvnak, Richard R. Patty, and Charlotte E. Bartky , Absorption of Infrared Radiant Energy by CO2 and H2 O. IV. Shapes of Collision-Broadened CO2 Lines, Journal of Optical Society of America, 1969 , Volume 59 , Pages 267-278.
CO2
T=∅
P=∅
8. CO₂+CO₂ (3770 - 4100 cm⁻¹). Approximation
Волновое число (см⁻¹)
Нормализованный коэффициент поглощения (атм⁻¹см⁻¹)STP
k 0 for self broadening between 3770 and 4100 cm-1 . The curves represent the contribution due to the lines below 3780 cm-1 ; the contribution of the lines between 3780 and 4100 cm-1 has been subtracted from the observed absorption coefficient. The curves are based on data points at wavenumbers where the absorption by nearby lines is small. Because of possible errors in the corrections made, the uncertainty of the curve is large above 3900 cm-1 .
1973
Гальцев А.П., Осипов В.М., Шереметьева Т.А. , Определение параметров контура линий СО2 методом минимизации, Известия АН СССР. Серия Физика атмосферы и океана, 1973 , Volume 9 , Number 11, Pages 1195-1200.
CO2
T=∅
P=∅
1c. Burch D.E., et al. (1969). Absorption coefficient in the band edge of 4.3 mkm. CO₂+CO₂
Волновое число (см⁻¹)
Нормализованный коэффициент поглощения (атм⁻¹см⁻¹)STP
Коэффициент поглощения в канте полос 4.3 мкм (a): точки – эксперимент [5].
[5] Burch D.E., Gryvnak D.A., Patty R.R., Bartky Ch.E. Absorption of infrared radiant energy by CO2 and H 2 O. IV. Shapes of collision -broadened CO2 lines. J.Opt.Soc Amer. 1969, 59, No.3, 267-280
1969
Darrell E. Burch, David A. Gryvnak, Richard R. Patty, and Charlotte E. Bartky , Absorption of Infrared Radiant Energy by CO2 and H2 O. IV. Shapes of Collision-Broadened CO2 Lines, Journal of Optical Society of America, 1969 , Volume 59 , Pages 267-278.
CO2
T=∅
P=1 атм
10. Mixture CO₂. Exp. (2400-2570 cm⁻¹)
Волновое число (см⁻¹)
Нормализованный коэффициент поглощения (атм⁻¹см⁻¹)STP
K for CO2 in the 2400 cm-1 region. The curves represent the contribution of lines below 2400 cm-1 . Above 2570 cm-1 , it is difficult to account for. the contribution of the nearby bands; however, from curve B of Fig. 3, we can set upper 0 limits on K, of 5*10-1 and 5*10-9 (atm cmSTP )-1 at 2710 and 2830 cm-1 , respectively.
1974
Dagg I.R., Reesor. G.E., and Urbaniak J. , Collision Induced Microwave Absorption in CO2 , and CO2 -Ar, CO2 -CH4 Mixtures in the 2.3 cm-1 Region , Canadian Journal of Physics, 1974 , Volume 52 , Issue 11, Pages 973.
CO2
T=296 К
P=∅
6. Frenkel, L. et al (1966)
Волновое число (см⁻¹)
Нормированный на квадрат частоты коэффициент перед квадратом плотности в разложении коэффициента поглощения (см Амага⁻²)
A plot of the absorption coefficient a(v) divided by v2 vs. v, showing the experimental results for a2 (v)/v2 of
Frenkel, L. and Woods, D. Microwave Absorption in Compressed CO2 , J . Chem. Phys. 44, 2219. 1966.
1966
L. Frenkel and D. Woods , Microwave Absorption in Compressed CO2 , Journal of Chemical Physics, 1966 , Volume 44 , Issue 5, Pages 2219.
1974
Dagg I.R., Reesor. G.E., and Urbaniak J. , Collision Induced Microwave Absorption in CO2 , and CO2 -Ar, CO2 -CH4 Mixtures in the 2.3 cm-1 Region , Canadian Journal of Physics, 1974 , Volume 52 , Issue 11, Pages 973.
CO2
T=296 К
P=∅
6. Ho, W., et al. (1971)
Волновое число (см⁻¹)
Нормированный на квадрат частоты коэффициент перед кубом плотности в разложении коэффициента поглощения (см Амага⁻³)
A plot of the absorption coefficient a(v) divided by v2 vs. v, showing the experimental results for α2 (v)/v2 of W. Ho, G.Birnbaum, and A.Rosenberg, Far-Infrared Collision-Induced Absorption in CO2 . I. Temperature Dependence, J. Chem. Phys., v. 55, N 3 (1971) 1028-1038.
1971
Ho, W., Birnbaum, G., Rosenberg, A. , Far-infrared collision-induced absorption in CO2 . I. Temperature dependence, Journal of Chemical Physics, 1971 , Volume 55 , Issue 3, Pages 1028.
Волновое число (см⁻¹)
Коэффициент поглощения (см⁻¹Амага⁻²)
1974
Dagg I.R., Reesor. G.E., and Urbaniak J. , Collision Induced Microwave Absorption in CO2 , and CO2 -Ar, CO2 -CH4 Mixtures in the 2.3 cm-1 Region , Canadian Journal of Physics, 1974 , Volume 52 , Issue 11, Pages 973.
CO2
T=296 К
P=∅
6a. W. Ho, et al. (1971)
Волновое число (см⁻¹)
Нормированный на квадрат частоты коэффициент перед кубом плотности в разложении коэффициента поглощения (см Амага⁻³)
A plot of the absorption coefficient α(v) divided by v2 vs. v, showing the results of
W. Ho, G. BIRNBAUM, AND A. ROSENBERG, Far-Infrared Collision-Induced Absorption in CO2 . 1. Temperature Dependence, J. Chem. Phys., v. 55, N 3 (1971) 1028-1038.
1971
Ho, W., Birnbaum, G., Rosenberg, A. , Far-infrared collision-induced absorption in CO2 . I. Temperature dependence, Journal of Chemical Physics, 1971 , Volume 55 , Issue 3, Pages 1028.
Волновое число (см⁻¹)
Коэффициент поглощения (см⁻¹Амага⁻²)
1974
Гальцев А.П. , Определение функции корреляции флуктуаций частоты по измерениям поглощения в далеких крыльях линий, Оптика и спектроскопия, 1974 , Volume 36 , Issue 2, Pages 309-314.
CO2
T=295 К
P=1 атм
1. Burch D.E., et al. (1969). Experiment
Волновое число (см⁻¹)
Пропускание (%)
Поглощение в полосе 1.4 мкм. р=14.6 атм, u=4.73*104 см атм. Экспериментальные данные [7].
[7] Burch D.E., Gryvnak D.A., Patty R.R., Bartky Ch.E. Absorption of infrared radiant energy by CO2 and H2 O. IV. Shapes of collision -broadened CO2 lines. J.Opt.Soc Amer. 1969, 59, No.3, 267-280.
1969
Darrell E. Burch, David A. Gryvnak, Richard R. Patty, and Charlotte E. Bartky , Absorption of Infrared Radiant Energy by CO2 and H2 O. IV. Shapes of Collision-Broadened CO2 Lines, Journal of Optical Society of America, 1969 , Volume 59 , Pages 267-278.
CO2
T=273 К
P=14.6 атм
1. Spectral curve. Sample C. (7000 cm⁻¹)
Волновое число (см⁻¹)
Пропускание (%)
Representative spectral curves in the 7000 cm-1 region. The curves were obtained with approximately 1 cm-1 slitwidth and correspond to the following samples of pure CO2 .
Sample p (atm) L (meters) u(atm cmsTP)
C 14.6 32.9 47300
1976
Делер В., Тимофеев Ю.М., Шпенкух Д., Москаленко Н.И. , Сравнение теоретических и экспериментальных функций пропускания СО2 в области полосы 15 мкм, Проблемы физики атмосферы. Вып. 13, Изд-во ЛГУ, 1976 , Pages 24-30.
CO2
T=∅
P=0.0205263 атм
2. Kondrat'ev K.Ya., et al. (1969) (580-770 cm⁻¹)
Волновое число (см⁻¹)
Пропускание (%)
Сопоставление экспериментальных функций двух авторов. Сплошная кривая построена по данным [10], пунктир – данные настоящей работы.
1969
Кондратьев К.Я., Тимофеев Ю.М. , Численное моделирование функций пропускания для узких спектральных интервалов 15 мкм полосы СО2 , Известия РАН. Серия Физика атмосферы и океана, 1969 , Volume 5 , Number 4, Pages 377-387.
CO2
T=∅
P=0.0205263 атм
6. Experiment
Волновое число (см⁻¹)
Пропускание (%)
Сравнение функций пропускания (u=46.4 атм см, р=15.6 мм рт ст). Сплошная кривая – эксперимент.
1979
Bernstein L. S. , Robertson D. C., Conant J. A. , Sandford B. P. , Measured and predicted atmospheric transmission in the 4.0-5.3-µm region, and the contribution of continuum absorption CO2 and N2
, Applied Optics, 1979 , Volume 18 , Issue 14, Pages 2454-2461.
CO2
T=∅
P=∅
6. Burch Form Factor. CO₂ continuum
Волновое число (см⁻¹)
Пропускание (%)
Comparison to data of CO2 continuum absorption component calculated with various line shapes.
11. D. E. Burch, D. A. Gryvnak, and J. A. Pembrook, "Investigation of the Absorption of Infrared Radiation by Atmospheric Gases: Water, Nitrogen, and Nitrous Oxide," Aeronutronic, Rep. U4897, Contract F19628-69-C-0263, Philco-Ford Corp., Newport Beach, Calif. (January 1971).
15. D. E. Burch, D. A. Gryvnak, R. R. Patty, and G. E. Bartky, J. Opt. Soc. Am. 59, 267 (1969)
16. D. E. Burch, "Semi-Annual Technical Report Investigation of the Absorption of Infrared Radiation by Atmospheric Gases," Aeronutronic, Rep. U-4784, Contract F19628-69-C-0263, Philco-Ford Corp., Newport Beach, Calif. (15 May 1969).
17. D. E. Burch and D. A. Gryvnak, "Final Technical Report-Ab-sorption by CO2 Between 2400 and 3450 cm- 1 ," Aeronutronic, Rep. U-4910, contract 952672, Philco-Ford Corp., Newport Beach, Calif. (February 1971).
1969
Darrell E. Burch, David A. Gryvnak, Richard R. Patty, and Charlotte E. Bartky , Absorption of Infrared Radiant Energy by CO2 and H2 O. IV. Shapes of Collision-Broadened CO2 Lines, Journal of Optical Society of America, 1969 , Volume 59 , Pages 267-278.
CO2
T=∅
P=0.0353 атм
3. Spectral curve in the 2400 cm⁻¹. Sample A
Волновое число (см⁻¹)
Пропускание (%)
Representative spectral curves in the 2400 cm-1 region. The curves were obtained with approximately 2.5 cm-1 slit width and correspond to the following samples of pure CO2 :
Sample p (atm) L (meters) u(atm cmsTP)
A 0.0353 469 1530
1979
George Birnbaum , The shape of collision broadened lines from resonance to the far wings, Journal of Quantitative Spectroscopy and Radiation Transfer, 1979 , Volume 21 , Issue 6, Pages 597-607.
CO2
T=296 К
P=1 атм
1. Winters B.H., et al. (1964)
Волновое число (см⁻¹)
Заданная функция
Comparison of experimental α(ν) and calculated spectrum αL (ν) (Lorentz contour) of the high frequency wing of the ν3 band of CO2 at room temperature. WSB is obtained from Fig. 2. Ref. (4) by dividing the experimental absorption.by the calculated Lorentz absorption.
Winters B.H., S. Silverman, W.S. Benedict, Line shape in the wing beyond the band head of the 4·3 µ band of CO2 , Journal of Quantitative Spectroscopy and Radiative Transfer, Volume 4, Issue 4, July-August 1964, Pages 527-537
Defined function = a(v_)/aL (v_)
1964
B.H. Winters, S. Silverman, W.S. Benedict , Line shape in the wing beyond the band head of the 4·3 μ band of CO2 , Journal of Quantitative Spectroscopy and Radiation Transfer, 1964 , Volume 4 , Issue 4, Pages 527-537.
CO2
T=∅
P=∅
2. Experimental absorption CO₂
Волновое число (см⁻¹)
Заданная функция
Logarithmic plot of absorption coefficient vs. wave number for pure CO2 .
1979
Гальцев А.П., Цуканов В.В. , Расчет формы колебательно-вращательных поплос поглощения углекислого газа методом статистического моделирования, Оптика и спектроскопия, 1979 , Volume 46 , Issue 3, Pages 467-473.
CO2
T=∅
P=∅
5. Burch D.E., et al. (1969). Experiment
Волновое число (см⁻¹)
Заданная функция
Коэффициент поглощения за кантом полосы 4.3 мкм. данные работы [11].
[11] Burch D.E., Gryvnak D.A., Patty R.R., Bartky Ch.E. Absorption of infrared radiant energy by CO2 and H2 O. IV. Shapes of collision -broadened CO2 lines. J.Opt.Soc Amer. 1969, 59, No.3, 267-280.
Defined function = -ln(k(v))
1969
Darrell E. Burch, David A. Gryvnak, Richard R. Patty, and Charlotte E. Bartky , Absorption of Infrared Radiant Energy by CO2 and H2 O. IV. Shapes of Collision-Broadened CO2 Lines, Journal of Optical Society of America, 1969 , Volume 59 , Pages 267-278.
Волновое число (см⁻¹) Волновое число (см⁻¹)Смещение от центра линии (см⁻¹) Угловой момент
Нормализованный коэффициент поглощения (атм⁻¹см⁻¹)STP Пропускание (%) Поправочный фактор для Лоренцевского контура Нормализованная полуширина (см⁻¹)
1979
Докучаев А.Б., Телегин Г.В., Тонков М.В., Фомин В.В., Фирсов К.М. , Исследование пропускания в микроокнах прозрачности полосы 4.3 мкм СО2 , 5 Всесоюз. Симпозиум по распространению лазерного излучения в атмосфере. Ч. 3. Томск: ИОА СО АН СССР, Издательство ИОА, 1979 , Pages 157-161.
CO2
T=∅
P=∅
1. Telegin G.V., et al. (1979). Calculation with contour
Волновое число (см⁻¹)
Коэффициент поглощения (см⁻¹атм⁻²)
Бинарный коэффициент поглощения (см-1 атм-2 ) – случай СО2 +СО2 .
1984
Телегин Г.В., Фомин В.В. , Аппроксимация температурных зависимостей коэффициенга поглощения в спектре СО2 , Оптика и спектроскопия, 1984 , Issue 5, Pages 821-827.
CO2
T=300 К
P=1 атм
3. Experiment (T=300K)
Волновое число (см⁻¹)
Нормализованный коэффициент поглощения (атм⁻¹см⁻¹)STP
Коэффициент поглощения в чистом углекислом газе для ряда микроокон полосы ν3 (K(ν) (cm-1 atm-1 )STP .
Absorption coefficient in pure carbon dioxide for a series of micro-windows of the ν3 band (K(ν)(cm-1 atm-1 )STP .
1979
Телегин Г.В., Фомин В.В. , Расчет коэффициента поглощения в крыльях полос СО2 , 5 Всесоюз. Симпозиум по распространению лазерного излучения в атмосфере. Ч. 3., Издательство ИОА, 1979 , Pages 152-156.
CO2
T=300 К
P=1 атм
1a. Burch D.E., et al. (1969). Pure CO₂. 4.3 mkm band. Experiment
Волновое число (см⁻¹)
Коэффициент поглощения (см⁻¹атм⁻¹)
Случай самоуширения. РСО2 =1 атм, Т=300°К, эксперимент [2]. 4.3 mkm, m=20, C20 =1.3 10-10 cm-1 .
1969
Darrell E. Burch, David A. Gryvnak, Richard R. Patty, and Charlotte E. Bartky , Absorption of Infrared Radiant Energy by CO2 and H2 O. IV. Shapes of Collision-Broadened CO2 Lines, Journal of Optical Society of America, 1969 , Volume 59 , Pages 267-278.
CO2
T=∅
P=1 атм
10. Mixture CO₂. Theor. (2400-2570 cm⁻¹)
Волновое число (см⁻¹)
Нормализованный коэффициент поглощения (атм⁻¹см⁻¹)STP
K for CO2 in the 2400 cm-1 region. The curves represent the contribution of lines below 2400 cm-1 . Above 2570 cm-1 , it is difficult to account for. the contribution of the nearby bands; however, from curve B of Fig. 3, we can set upper 0 limits on K, of 5*10-1 and 5*10-9 (atm cmSTP )-1 at 2710 and 2830 cm-1 , respectively.
1979
Телегин Г.В., Фомин В.В. , Расчет коэффициента поглощения в крыльях полос СО2 , 5 Всесоюз. Симпозиум по распространению лазерного излучения в атмосфере. Ч. 3., Издательство ИОА, 1979 , Pages 152-156.
CO2
T=300 К
P=1 атм
1b. Burch D.E., et al. (1969). Pure CO₂. 2.7 mkm band. Experiment
Волновое число (см⁻¹)
Коэффициент поглощения (см⁻¹атм⁻¹)
Случай самоуширения. РСО2 =1 атм, Т=300°К, эксперимент [2]. 2.7 mkm, m=20, C20 =1.8 10-10 cm-1 .
1969
Darrell E. Burch, David A. Gryvnak, Richard R. Patty, and Charlotte E. Bartky , Absorption of Infrared Radiant Energy by CO2 and H2 O. IV. Shapes of Collision-Broadened CO2 Lines, Journal of Optical Society of America, 1969 , Volume 59 , Pages 267-278.
CO2
T=∅
P=∅
8. CO₂+CO₂ (3770 - 4100 cm⁻¹). Experiment
Волновое число (см⁻¹)
Нормализованный коэффициент поглощения (атм⁻¹см⁻¹)STP
k 0 for self broadening between 3770 and 4100 cm-1 . The curves represent the contribution due to the lines below 3780 cm-1 ; the contribution of the lines between 3780 and 4100 cm-1 has been subtracted from the observed absorption coefficient. The curves are based on data points at wavenumbers where the absorption by nearby lines is small. Because of possible errors in the corrections made, the uncertainty of the curve is large above 3900 cm-1 .
1979
Телегин Г.В., Фомин В.В. , Расчет коэффициента поглощения в крыльях полос СО2 , 5 Всесоюз. Симпозиум по распространению лазерного излучения в атмосфере. Ч. 3., Издательство ИОА, 1979 , Pages 152-156.
CO2
T=300 К
P=1 атм
1c. Burch D.E., et al. (1969). Pure CO₂. 1.4 mkm band. Experiment
Волновое число (см⁻¹)
Коэффициент поглощения (см⁻¹атм⁻¹)
Случай самоуширения. РСО2 =1 атм, Т=300°К, эксперимент [2]. 1.4 mkm, m=20, C20 =2.5 10-10 cm-1 .
1969
Darrell E. Burch, David A. Gryvnak, Richard R. Patty, and Charlotte E. Bartky , Absorption of Infrared Radiant Energy by CO2 and H2 O. IV. Shapes of Collision-Broadened CO2 Lines, Journal of Optical Society of America, 1969 , Volume 59 , Pages 267-278.
CO2
T=273 К
P=1 атм
6. Approximation of experimental results
Волновое число (см⁻¹)
Нормализованный коэффициент поглощения (атм⁻¹см⁻¹)STP
K0 s for CO2 self broadening vs v between 6900 and 7100 cm-1 . The various geometrical figures on the solid curve correspond to samples having the following total pressures: X < 2 atm; o ~ 8-10 atm; Δ-15 atm.
1980
Несмелова Л.И., О.Б.Родимова, С.Д.Творогов , Коэффициент поглощения света в крыле полосы 4,3 мкм СО2 , Известия вузов СССР, сер. Физика, 1980 , Volume 10 , Pages 106-107.
CO2
T=213 К
P=∅
1. Буланин М. и др. (1976). Точки c аппроксимационной кривой для экспериментальных данных. (2400-2500 cm⁻¹, T=213K)
Волновое число (см⁻¹)
Коэффициент поглощения (см⁻¹атм⁻²)
Коэффициент поглощения k(ω) за кантом полосы 4.3 мкм СО2 . Расчетное значение k(ω) при температуре Т=213°К [4];
[4] Буланин М.О., Булычев В.П., Гранский П.В., Коузов А.П., Тонков М.В. Исследование функций пропускания СО2 в области полос 4.3 и 15 мкм. В кн.: Проблемы физики атмосферы. Вып. 13, Л., Изд. ЛГУ, 1976, с.14-24.
1976
Буланин М.О., Булычев В.П., Гранский П.В., Коузов А.П., Тонков М.В. , Исследование функций пропускания СО2 в области полос 4.3 и 15 мкм, Проблемы физики атмосферы. Вып. 13, Ленинград, Изд. ЛГУ, Издательство Ленинградского Государственного Университета, 1976 , Pages 14-24.
CO2
T=∅
P=∅
2. CO₂ (T=273K) Experimental data
Волновое число (см⁻¹)
Коэффициент поглощения (см⁻¹атм⁻²)
Коэффициент поглощения СО2 за кантом полосы 4.3 мкм. Прямые найдены по методу наименьших квадратов, а точки – экспериментальные данные.
1980
Несмелова Л.И., О.Б.Родимова, С.Д.Творогов , Коэффициент поглощения света в крыле полосы 4,3 мкм СО2 , Известия вузов СССР, сер. Физика, 1980 , Volume 10 , Pages 106-107.
CO2
T=293 К
P=∅
1. Буланин М. и др. (1976). Точки c аппроксимационной кривой для экспериментальных данных. (2400-2500 cm⁻¹, T=293K)
Волновое число (см⁻¹)
Коэффициент поглощения (см⁻¹атм⁻²)
Коэффициент поглощения k(ω) за кантом полосы 4.3 мкм СО2 . Расчетные значения k(ω) при температуре Т=293°К [4];
[4] Буланин М.О., Булычев В.П., Гранский П.В., Коузов А.П., Тонков М.В. Исследование функций пропускания СО2 в области полос 4.3 и 15 мкм. В кн.: Проблемы физики атмосферы. Вып. 13, Л., Изд. ЛГУ, 1976, с.14-24.
1976
Буланин М.О., Булычев В.П., Гранский П.В., Коузов А.П., Тонков М.В. , Исследование функций пропускания СО2 в области полос 4.3 и 15 мкм, Проблемы физики атмосферы. Вып. 13, Ленинград, Изд. ЛГУ, Издательство Ленинградского Государственного Университета, 1976 , Pages 14-24.
CO2
T=∅
P=∅
2. CO₂ (T=273K) Experimental data
Волновое число (см⁻¹)
Коэффициент поглощения (см⁻¹атм⁻²)
Коэффициент поглощения СО2 за кантом полосы 4.3 мкм. Прямые найдены по методу наименьших квадратов, а точки – экспериментальные данные.
1980
Несмелова Л.И., О.Б.Родимова, С.Д.Творогов , Коэффициент поглощения света в крыле полосы 4,3 мкм СО2 , Известия вузов СССР, сер. Физика, 1980 , Volume 10 , Pages 106-107.
CO2
T=293 К
P=∅
2. Bulanin M.O., et al. (1976). (2400-2500 cm⁻¹, T=293K). Experiment
Волновое число (см⁻¹)
Коэффициент поглощения (см⁻¹атм⁻²)
Коэффициент поглощения k(ω) за кантом полосы 4.3 мкм СО2 . Экспериментальные данные - при температуре Т= 293°К [4];
[4] Буланин М.О., Булычев В.П., Гранский П.В., Коузов А.П., Тонков М.В. Исследование функций пропускания СО2 в области полос 4.3 и 15 мкм. В кн.: Проблемы физики атмосферы. Вып. 13, Л., Изд. ЛГУ, 1976, с.14-24.
1976
Буланин М.О., Булычев В.П., Гранский П.В., Коузов А.П., Тонков М.В. , Исследование функций пропускания СО2 в области полос 4.3 и 15 мкм, Проблемы физики атмосферы. Вып. 13, Ленинград, Изд. ЛГУ, Издательство Ленинградского Государственного Университета, 1976 , Pages 14-24.
CO2
T=∅
P=∅
2. CO₂ (T=273K) Experimental data
Волновое число (см⁻¹)
Коэффициент поглощения (см⁻¹атм⁻²)
Коэффициент поглощения СО2 за кантом полосы 4.3 мкм. Прямые найдены по методу наименьших квадратов, а точки – экспериментальные данные.
1980
Несмелова Л.И., О.Б.Родимова, С.Д.Творогов , Коэффициент поглощения света в крыле полосы 4,3 мкм СО2 , Известия вузов СССР, сер. Физика, 1980 , Volume 10 , Pages 106-107.
CO2
T=310 К
P=∅
2. Bulanin M.O., et al. (1976). (2400-2500 cm⁻¹, T=310K). Experiment
Волновое число (см⁻¹)
Коэффициент поглощения (см⁻¹атм⁻²)
Коэффициент поглощения k(ω) за кантом полосы 4.3 мкм СО2 . Экспериментальные данные - при температурах Т=310°К [4];
[4] Буланин М.О., Булычев В.П., Гранский П.В., Коузов А.П., Тонков М.В. Исследование функций пропускания СО2 в области полос 4.3 и 15 мкм. В кн.: Проблемы физики атмосферы. Вып. 13, Л., Изд. ЛГУ, 1976, с.14-24.
1976
Буланин М.О., Булычев В.П., Гранский П.В., Коузов А.П., Тонков М.В. , Исследование функций пропускания СО2 в области полос 4.3 и 15 мкм, Проблемы физики атмосферы. Вып. 13, Ленинград, Изд. ЛГУ, Издательство Ленинградского Государственного Университета, 1976 , Pages 14-24.
CO2
T=310 К
P=∅
2. CO₂ (T=310K). Experimental data
Волновое число (см⁻¹)
Коэффициент поглощения (см⁻¹атм⁻²)
Коэффициент поглощения СО2 за кантом полосы 4.3 мкм. Прямые найдены по методу наименьших квадратов, а точки – экспериментальные данные.
1980
Несмелова Л.И., О.Б.Родимова, С.Д.Творогов , Коэффициент поглощения света в крыле полосы 4,3 мкм СО2 , Известия вузов СССР, сер. Физика, 1980 , Volume 10 , Pages 106-107.
CO2
T=213 К
P=∅
2. Bulanin M.O., et al. (1980). (2400-2500 cm⁻¹, T=213K). Experiment
Волновое число (см⁻¹)
Коэффициент поглощения (см⁻¹атм⁻²)
Коэффициент поглощения k(ω) за кантом полосы 4.3 мкм СО2 . Экспериментальные данные - при температуре Т=213°К [4];
[4] Буланин М.О., Булычев В.П., Гранский П.В., Коузов А.П., Тонков М.В. Исследование функций пропускания СО2 в области полос 4.3 и 15 мкм. В кн.: Проблемы физики атмосферы. Вып. 13, Л., Изд. ЛГУ, 1976, с.14-24.
1976
Буланин М.О., Булычев В.П., Гранский П.В., Коузов А.П., Тонков М.В. , Исследование функций пропускания СО2 в области полос 4.3 и 15 мкм, Проблемы физики атмосферы. Вып. 13, Ленинград, Изд. ЛГУ, Издательство Ленинградского Государственного Университета, 1976 , Pages 14-24.
CO2
T=∅
P=∅
2. CO₂ (T=273K) Experimental data
Волновое число (см⁻¹)
Коэффициент поглощения (см⁻¹атм⁻²)
Коэффициент поглощения СО2 за кантом полосы 4.3 мкм. Прямые найдены по методу наименьших квадратов, а точки – экспериментальные данные.
1980
Телегин Г.В., Фирсов К.М., Фомин В.В. , Расчет коэффициента поглощения в спектре СО2 . Микроокна полосы 4.3 мкм СО2 , Оптика и спектроскопия, 1980 , Volume 49 , Issue 6, Pages 1159-1163.
CO2
T=∅
P=∅
1. Dokuchaev A.B., et al. (1979). Experimental data
Волновое число (см⁻¹)
Коэффициент поглощения (см⁻¹атм⁻²)
Бинарный коэффициент поглощения в случае СО2 +СО2 . 1 – данные эксперимента [9].
Binary absorption coefficient in the case of CO2 +CO2 . 1 - Experimental data [9].
[9] Докучаев А.Б., Телегин Г.В., Тонков М.В., Фомин В.В., Фирсов К.М., Исследование пропускания в микроокнах прозрачности полосы 4.3 мкм СО2 , 5 Всесоюз. Симпозиум по распространению лазерного излучения в атмосфере. Ч. 3. Томск: ИОА СО АН СССР, Томск, Издательство ИОА, 1979 , Pages 157-161.
1979
Докучаев А.Б., Телегин Г.В., Тонков М.В., Фомин В.В., Фирсов К.М. , Исследование пропускания в микроокнах прозрачности полосы 4.3 мкм СО2 , 5 Всесоюз. Симпозиум по распространению лазерного излучения в атмосфере. Ч. 3. Томск: ИОА СО АН СССР, Издательство ИОА, 1979 , Pages 157-161.
CO2
T=∅
P=∅
1. Experiment
Волновое число (см⁻¹)
Коэффициент поглощения (см⁻¹атм⁻²)
Бинарный коэффициент поглощения (см-1 атм-2 ) – случай СО2 +СО2 .
Binary absorption coefficient (cm-1 atm-2 ) - case of CO2 + CO2 .
1980
Телегин Г.В., Фомин В.В. , Расчет коэффициента поглощения в спектре СО2 . Периферия полос 4.3, 2.7, 1.4 мкм, Оптика и спектроскопия, 1980 , Volume 49 , Issue 4, Pages 668-675.
CO2
T=∅
P=∅
2a. Burch D.E., et al. (1969). 4.3 mkm band. Experiment
Волновое число (см⁻¹)
Коэффициент поглощения (см⁻¹атм⁻¹)
Зависимость коэффициента поглощения от частоты в случае СО2 +СО2 для полосы 4.3 мкм; эксперимент [4].
[4] Burch D.E., Gryvnak D.A., Patty R.R., Bartky Ch.E. Absorption of infrared radiant energy by CO2 and H2 O. IV. Shapes of collision -broadened CO2 lines. J.Opt.Soc Amer. 1969, 59, No.3, 267-280.
1969
Darrell E. Burch, David A. Gryvnak, Richard R. Patty, and Charlotte E. Bartky , Absorption of Infrared Radiant Energy by CO2 and H2 O. IV. Shapes of Collision-Broadened CO2 Lines, Journal of Optical Society of America, 1969 , Volume 59 , Pages 267-278.
CO2
T=∅
P=1 атм
10. Mixture CO₂. Exp. (2400-2570 cm⁻¹)
Волновое число (см⁻¹)
Нормализованный коэффициент поглощения (атм⁻¹см⁻¹)STP
K for CO2 in the 2400 cm-1 region. The curves represent the contribution of lines below 2400 cm-1 . Above 2570 cm-1 , it is difficult to account for. the contribution of the nearby bands; however, from curve B of Fig. 3, we can set upper 0 limits on K, of 5*10-1 and 5*10-9 (atm cmSTP )-1 at 2710 and 2830 cm-1 , respectively.
1980
Телегин Г.В., Фомин В.В. , Расчет коэффициента поглощения в спектре СО2 . Периферия полос 4.3, 2.7, 1.4 мкм, Оптика и спектроскопия, 1980 , Volume 49 , Issue 4, Pages 668-675.
CO2
T=∅
P=∅
2b. Burch D.E., et al. (1969). 2.7 mkm band. Experiment
Волновое число (см⁻¹)
Коэффициент поглощения (см⁻¹атм⁻¹)
Зависимость коэффициента поглощения от частоты в случае СО2 +СО2 для полосы 2.7 мкм; эксперимент [4].
[4] Burch D.E., Gryvnak D.A., Patty R.R., Bartky Ch.E. Absorption of infrared radiant energy by CO2 and H2 O. IV. Shapes of collision -broadened CO2 lines. J.Opt.Soc Amer. 1969, 59, No.3, 267-280.
1969
Darrell E. Burch, David A. Gryvnak, Richard R. Patty, and Charlotte E. Bartky , Absorption of Infrared Radiant Energy by CO2 and H2 O. IV. Shapes of Collision-Broadened CO2 Lines, Journal of Optical Society of America, 1969 , Volume 59 , Pages 267-278.
CO2
T=∅
P=∅
8. CO₂+CO₂ (3770 - 4100 cm⁻¹). Approximation
Волновое число (см⁻¹)
Нормализованный коэффициент поглощения (атм⁻¹см⁻¹)STP
k 0 for self broadening between 3770 and 4100 cm-1 . The curves represent the contribution due to the lines below 3780 cm-1 ; the contribution of the lines between 3780 and 4100 cm-1 has been subtracted from the observed absorption coefficient. The curves are based on data points at wavenumbers where the absorption by nearby lines is small. Because of possible errors in the corrections made, the uncertainty of the curve is large above 3900 cm-1 .
1980
Телегин Г.В., Фомин В.В. , Расчет коэффициента поглощения в спектре СО2 . Периферия полос 4.3, 2.7, 1.4 мкм, Оптика и спектроскопия, 1980 , Volume 49 , Issue 4, Pages 668-675.
CO2
T=∅
P=∅
2c. Burch D.E., et al. (1969). 1.4 mkm band. Experiment
Волновое число (см⁻¹)
Коэффициент поглощения (см⁻¹атм⁻¹)
Зависимость коэффициента поглощения от частоты в случае СО2 +СО2 для полосы 1.4 мкм; эксперимент [4].
[4] Burch D.E., Gryvnak D.A., Patty R.R., Bartky Ch.E. Absorption of infrared radiant energy by CO2 and H2 O. IV. Shapes of collision -broadened CO2 lines. J.Opt.Soc Amer. 1969, 59, No.3, 267-280.
1969
Darrell E. Burch, David A. Gryvnak, Richard R. Patty, and Charlotte E. Bartky , Absorption of Infrared Radiant Energy by CO2 and H2 O. IV. Shapes of Collision-Broadened CO2 Lines, Journal of Optical Society of America, 1969 , Volume 59 , Pages 267-278.
CO2
T=273 К
P=1 атм
6. Approximation of experimental results
Волновое число (см⁻¹)
Нормализованный коэффициент поглощения (атм⁻¹см⁻¹)STP
K0 s for CO2 self broadening vs v between 6900 and 7100 cm-1 . The various geometrical figures on the solid curve correspond to samples having the following total pressures: X < 2 atm; o ~ 8-10 atm; Δ-15 atm.
1981
Curtis P. Rinsland, Mary Ann H. Smith, James M. Russell III, Jae H. Park, and Crofton B. Farmer , Stratospheric measurements of continuous absorption near 2400 cm-1 , Applied Optics, 1981 , Volume 20 , Issue 24, Pages 4167-4171.
CO2
T=230 К
P=1 атм
2. Absorption coefficient computed with the Susskind and Mo (1978) line shape
Волновое число (см⁻¹)
Коэффициент поглощения (см⁻¹атм⁻¹)
Absorption coefficients for continuous absorption by pure CO2 at 230°K. Absorption coefficient computed with the Susskind and Mo26 line shape.
26. J. Susskind and T. Mo, Atmospheric Absorption Spectra near2200 cm-1 and 2400 cm-1 , in Preprint Volume, Third Confer-ence on Atmospheric Radiation (American Meteorological Society, Boston, 1978), p. 219.
1981
Curtis P. Rinsland, Mary Ann H. Smith, James M. Russell III, Jae H. Park, and Crofton B. Farmer , Stratospheric measurements of continuous absorption near 2400 cm-1 , Applied Optics, 1981 , Volume 20 , Issue 24, Pages 4167-4171.
CO2
T=230 К
P=1 атм
2. Absorption coefficients computed with the Burch et al. (1969) line shape
Волновое число (см⁻¹)
Коэффициент поглощения (см⁻¹атм⁻¹)
Absorption coefficients for continuous absorption by pure CO2 at 230°K. Absorption coefficients computed with Burch et al.4 line shape.
1969
Darrell E. Burch, David A. Gryvnak, Richard R. Patty, and Charlotte E. Bartky , Absorption of Infrared Radiant Energy by CO2 and H2 O. IV. Shapes of Collision-Broadened CO2 Lines, Journal of Optical Society of America, 1969 , Volume 59 , Pages 267-278.
Волновое число (см⁻¹) Волновое число (см⁻¹)Смещение от центра линии (см⁻¹) Угловой момент
Нормализованный коэффициент поглощения (атм⁻¹см⁻¹)STP Пропускание (%) Поправочный фактор для Лоренцевского контура Нормализованная полуширина (см⁻¹)
1981
Curtis P. Rinsland, Mary Ann H. Smith, James M. Russell III, Jae H. Park, and Crofton B. Farmer , Stratospheric measurements of continuous absorption near 2400 cm-1 , Applied Optics, 1981 , Volume 20 , Issue 24, Pages 4167-4171.
CO2
T=230 К
P=1 атм
2. Calculated with the B.H. Winters, et al. (1964) line shape
Волновое число (см⁻¹)
Коэффициент поглощения (см⁻¹атм⁻¹)
Absorption coefficients for continuous absorption by pure CO2 at 230°K. Absorption coefficients calculated with the Winters et al3 line shape.
1964
B.H. Winters, S. Silverman, W.S. Benedict , Line shape in the wing beyond the band head of the 4·3 μ band of CO2 , Journal of Quantitative Spectroscopy and Radiation Transfer, 1964 , Volume 4 , Issue 4, Pages 527-537.
Волновое число (см⁻¹) Волновое число (см⁻¹)
Заданная функция Коэффициент поглощения (см⁻¹атм⁻²)
1981
Curtis P. Rinsland, Mary Ann H. Smith, James M. Russell III, Jae H. Park, and Crofton B. Farmer , Stratospheric measurements of continuous absorption near 2400 cm-1 , Applied Optics, 1981 , Volume 20 , Issue 24, Pages 4167-4171.
CO2
T=230 К
P=1 атм
2. Calculated with the M.W.P. Cann et al. (1980) line shape
Волновое число (см⁻¹)
Коэффициент поглощения (см⁻¹атм⁻¹)
Absorption coefficients for continuous absorption by pure CO2 at 230°K. Absorption coefficients calculated with the Cann et al.5 line shape.
1980
M. W. P. Cann, R. W. Nicholls, P. L. Roney, F. D. Findlay, and A. Blanchard, , in , Spectral Line Profiles in the 4.3 Micron Band of Carbon Dioxide, Digest of Topical Meeting on Spectroscopyin Support of Atmospheric Measurements, Sarasota, Fla. (Optical Society of America), paper WP16-1., Unknown, 1980 ,
1981
Войцеховская О.К., Л.И.Несмелова. О.Б.Родимова, О.Н.Сулакшина, Ю.С.Макушкин, С.Д.Творогов , Коэффициент поглощения света в крыле полосы 1.4 мкм СО2 , 6 Всесоюз. Симпозиум по распространению лазерного излучения в атмосфере. Ч. 2., Unknown, 1981 , Pages 16-19.
CO2
T=∅
P=∅
1a. Baranov Yu.I., et al. (1981). CO₂+CO₂. Experiment
Волновое число (см⁻¹)
Коэффициент поглощения (см⁻¹атм⁻¹)
Коэффициент поглощения СО2 в районе 1.4 мкм [2].
[2] Баранов Ю.И., Буланин М.О., Тонков М.В. Исследование крыльев линий колебательно-вращательной полосы 3ν3 СО2 . Оптика и спектроскопия, 50, №3, с. 613-615 (1981).
1981
Баранов Ю.И., Буланин М.О., Тонков М.В. , Исследование крыльев линий колебательно-вращательной полосы 3ν3 СО2 , Оптика и спектроскопия, 1981 , Volume 50 , Number 3, Pages 613-615.
CO2
T=∅
P=4 атм
1a. За кантом полосы 3v3 CO2
Волновое число (см⁻¹)
Коэффициент поглощения (см⁻¹Амага⁻²)
Бинарные коэффициенты поглощения (см-1 амага-2 ) за кантом полосы 3ν3 СО2 . Ar+CO2 .
1981
Войцеховская О.К., Л.И.Несмелова. О.Б.Родимова, О.Н.Сулакшина, Ю.С.Макушкин, С.Д.Творогов , Коэффициент поглощения света в крыле полосы 1.4 мкм СО2 , 6 Всесоюз. Симпозиум по распространению лазерного излучения в атмосфере. Ч. 2., Unknown, 1981 , Pages 16-19.
CO2
T=∅
P=∅
1a. Burch D.E., et al. (1969). CO₂+CO₂. Experiment
Волновое число (см⁻¹)
Коэффициент поглощения (см⁻¹атм⁻¹)
Коэффициент поглощения СО2 в районе 1.4 мкм [1].
[1] Burch D.E., Gryvnak D.A., Patty R.R., Bartky Ch.E. Absorption of infrared radiant energy by CO2 and H2 O. IV. Shapes of collision -broadened CO2 lines. J.Opt.Soc Amer. 1969, 59, No.3, 267-280.
1969
Darrell E. Burch, David A. Gryvnak, Richard R. Patty, and Charlotte E. Bartky , Absorption of Infrared Radiant Energy by CO2 and H2 O. IV. Shapes of Collision-Broadened CO2 Lines, Journal of Optical Society of America, 1969 , Volume 59 , Pages 267-278.
CO2
T=273 К
P=1 атм
6. Approximation of experimental results
Волновое число (см⁻¹)
Нормализованный коэффициент поглощения (атм⁻¹см⁻¹)STP
K0 s for CO2 self broadening vs v between 6900 and 7100 cm-1 . The various geometrical figures on the solid curve correspond to samples having the following total pressures: X < 2 atm; o ~ 8-10 atm; Δ-15 atm.
1981
Войцеховская О.К., Л.И.Несмелова. О.Б.Родимова, О.Н.Сулакшина, Ю.С.Макушкин, С.Д.Творогов , Коэффициент поглощения света в крыле полосы 1.4 мкм СО2 , 6 Всесоюз. Симпозиум по распространению лазерного излучения в атмосфере. Ч. 2., Unknown, 1981 , Pages 16-19.
CO2
T=∅
P=∅
1b. Baranov Yu.I., et al. (1981). CO₂+CO₂. Experiment
Волновое число (см⁻¹)
Коэффициент поглощения (см⁻¹атм⁻¹)
Коэффициент поглощения СО2 в районе 1.4 мкм.
[2] Баранов Ю.И., Буланин М.О., Тонков М.В. Исследование крыльев линий колебательно-вращательной полосы 3ν3 СО2 . Оптика и спектроскопия, 50, №3, с. 613-615 (1981).
1981
Баранов Ю.И., Буланин М.О., Тонков М.В. , Исследование крыльев линий колебательно-вращательной полосы 3ν3 СО2 , Оптика и спектроскопия, 1981 , Volume 50 , Number 3, Pages 613-615.
CO2
T=∅
P=4 атм
1a. За кантом полосы 3v3 CO2
Волновое число (см⁻¹)
Коэффициент поглощения (см⁻¹Амага⁻²)
Бинарные коэффициенты поглощения (см-1 амага-2 ) за кантом полосы 3ν3 СО2 . Ar+CO2 .
1981
Войцеховская О.К., Л.И.Несмелова. О.Б.Родимова, О.Н.Сулакшина, Ю.С.Макушкин, С.Д.Творогов , Коэффициент поглощения света в крыле полосы 1.4 мкм СО2 , 6 Всесоюз. Симпозиум по распространению лазерного излучения в атмосфере. Ч. 2., Unknown, 1981 , Pages 16-19.
CO2
T=∅
P=∅
1b. Burch D.E., et al. (1969). CO₂+CO₂. Experiment
Волновое число (см⁻¹)
Коэффициент поглощения (см⁻¹атм⁻¹)
Коэффициент поглощения СО2 в районе 1.4 мкм.
[1] Burch D.E., Gryvnak D.A., Patty R.R., Bartky Ch.E. Absorption of infrared radiant energy by CO2 and H2 O. IV. Shapes of collision -broadened CO2 lines. J.Opt.Soc Amer. 1969, 59, No.3, 267-280.
1969
Darrell E. Burch, David A. Gryvnak, Richard R. Patty, and Charlotte E. Bartky , Absorption of Infrared Radiant Energy by CO2 and H2 O. IV. Shapes of Collision-Broadened CO2 Lines, Journal of Optical Society of America, 1969 , Volume 59 , Pages 267-278.
CO2
T=273 К
P=15 атм
6. The sample having the following total pressure 15 atm
Волновое число (см⁻¹)
Нормализованный коэффициент поглощения (атм⁻¹см⁻¹)STP
K0 s for CO2 self broadening vs v between 6900 and 7100 cm-1 . The sample having the following total pressure 15 atm.
1982
Несмелова Л.И., О.Б.Родимова, С.Д.Творогов, О.К.Войцеховская, О.Н.Сулакшина , Коэффициент поглощения в крыльях полос углекислого газа в спектральном интервале 790-910 см-1 , Известия вузов СССР, сер. Физика, 1982 , Issue 5, Pages 105-108.
CO2
T=240 К
P=∅
1. Burch D.E. et al. (1970). Experiment, T=240 K
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹)
Коэффициент поглощения СО2 при самоуширении. экспериментальные данные [3] при Т=240°К.
[3] Burch D.E. in Semi-annyal Technical Report. Air Force Research Cambridge Lab., Publ. U-4784 under contract NF 19628-69-C-0263 (31 Jaunary 1970).
1970
Burch D.E. , Investigation of the absorption of infrared radiation by atmospheric gases, Semi-annual Technical report. Air Force Cambridge Research Lab., Publ. U-4784, Unknown, 1970 ,
1982
Несмелова Л.И., О.Б.Родимова, С.Д.Творогов, О.К.Войцеховская, О.Н.Сулакшина , Коэффициент поглощения в крыльях полос углекислого газа в спектральном интервале 790-910 см-1 , Известия вузов СССР, сер. Физика, 1982 , Issue 5, Pages 105-108.
CO2
T=296 К
P=∅
1. Burch D.E. et al. (1970). Experiment, T=296 K
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹)
Коэффициент поглощения СО2 при самоуширении. экспериментальные данные [3] при Т=296K.
[3] Burch D.E. in Semi-annyal Technical Report. Air Force Research Cambridge Lab., Publ. U-4784 under contract NF 19628-69-C-0263 (31 Jaunary 1970).
1973
D. E. Burch, D. A.Gryvnak, and G. H. Piper , Infrared Absorption by H2 O and N2 O, Aeronutronic Report U-6026. contract F19628-73-C-0011, Air Force Cambridge Research Lab., 1973 ,
1982
Несмелова Л.И., О.Б.Родимова, С.Д.Творогов, О.К.Войцеховская, Ю.С.Макушкин, О.Н.Сулакшина , Коэффициент поглощения света в крыльях полос углекислого газа в обдасти 2.7 мкм, 6 Всесоюзн. Симпозиум по молекулярной спектроскопии высокого и сверхвысокого разрешения, тезисы докладов, Томск, , ч.2, Издательство ИОА, 1982 , Pages 62-66.
CO2
T=∅
P=∅
2. Burch D.E., et al. (1969). Absorption coefficient of CO₂+CO₂. Experiment
Волновое число (см⁻¹)
Нормализованный коэффициент поглощения (атм⁻¹см⁻¹)STP
Коэффициент поглощения различных газовых смесей в области 3770-3860 см-1 .
Darrell E. Burch, David A. Gryvnak, Richard R. Patty, and Charlotte E. Bartky, Absorption of Infrared Radiant Energy by CO2 and H2 O. IV. Shapes of Collision-Broadened CO2 Lines, Journal of Optical Society of America, 1969 , Volume 59 , Pages 267-278, DOI: 10.1364/JOSA.59.000267 , http://www.opticsinfobase.org/josa/abstract.cfm?URI=josa-59-3-267 .
1969
Darrell E. Burch, David A. Gryvnak, Richard R. Patty, and Charlotte E. Bartky , Absorption of Infrared Radiant Energy by CO2 and H2 O. IV. Shapes of Collision-Broadened CO2 Lines, Journal of Optical Society of America, 1969 , Volume 59 , Pages 267-278.
CO2
T=∅
P=∅
8. CO₂+CO₂ (3770 - 4100 cm⁻¹). Experiment
Волновое число (см⁻¹)
Нормализованный коэффициент поглощения (атм⁻¹см⁻¹)STP
k 0 for self broadening between 3770 and 4100 cm-1 . The curves represent the contribution due to the lines below 3780 cm-1 ; the contribution of the lines between 3780 and 4100 cm-1 has been subtracted from the observed absorption coefficient. The curves are based on data points at wavenumbers where the absorption by nearby lines is small. Because of possible errors in the corrections made, the uncertainty of the curve is large above 3900 cm-1 .
1982
Несмелова Л.И., О.Б.Родимова, С.Д.Творогов, О.К.Войцеховская, Ю.С.Макушкин, О.Н.Сулакшина , Коэффициент поглощения света в крыльях полос углекислого газа в обдасти 2.7 мкм, 6 Всесоюзн. Симпозиум по молекулярной спектроскопии высокого и сверхвысокого разрешения, тезисы докладов, Томск, , ч.2, Издательство ИОА, 1982 , Pages 62-66.
CO2
T=∅
P=∅
3. Burch D.E., et al. (1969). Absorption coefficient of pure CO₂. Experiment
Волновое число (см⁻¹)
Нормализованный коэффициент поглощения (атм⁻¹см⁻¹)STP
Коэффициент поглощения чистого СО2 в области 3770-4100 см-1 .
arrell E. Burch, David A. Gryvnak, Richard R. Patty, and Charlotte E. Bartky, Absorption of Infrared Radiant Energy by CO2 and H2 O. IV. Shapes of Collision-Broadened CO2 Lines, Journal of Optical Society of America, 1969 , Volume 59 , Pages 267-278, DOI: 10.1364/JOSA.59.000267 , http://www.opticsinfobase.org/josa/abstract.cfm?URI=josa-59-3-267 .
1969
Darrell E. Burch, David A. Gryvnak, Richard R. Patty, and Charlotte E. Bartky , Absorption of Infrared Radiant Energy by CO2 and H2 O. IV. Shapes of Collision-Broadened CO2 Lines, Journal of Optical Society of America, 1969 , Volume 59 , Pages 267-278.
CO2
T=∅
P=∅
8. CO₂+CO₂ (3770 - 4100 cm⁻¹). Approximation
Волновое число (см⁻¹)
Нормализованный коэффициент поглощения (атм⁻¹см⁻¹)STP
k 0 for self broadening between 3770 and 4100 cm-1 . The curves represent the contribution due to the lines below 3780 cm-1 ; the contribution of the lines between 3780 and 4100 cm-1 has been subtracted from the observed absorption coefficient. The curves are based on data points at wavenumbers where the absorption by nearby lines is small. Because of possible errors in the corrections made, the uncertainty of the curve is large above 3900 cm-1 .
1982
Несмелова Л.И., О.Б.Родимова, С.Д.Творогов, О.К.Войцеховская, Ю.С.Макушкин, О.Н.Сулакшина , Интерпретация спектров поглощения углекислого газа за кантами полос, 6 Всесоюзн. Симпозиум по молекулярной спектроскопии высокого и сверхвысокого разрешения, тезисы докладов, Томск, 1982, ч.2, Издательство ИОА, 1982 , Pages 53-61.
CO2
T=300 К
P=1 атм
1. Absorption coefficient in the wing of the band is 1.4 mkm. CO₂+CO₂. Experiment [2,11]
Волновое число (см⁻¹)
Нормализованный коэффициент поглощения (атм⁻¹см⁻¹)STP
Коэффициент поглощения СО2 в крыле полосы 1.4 мкм. Эксперимент [2,11] и Расчет.
The CO2 absorption coefficient in the wing of the band is 1.4 μm. Experiment [2,11] and Calculation.
[2] Burch D.E., Gryvnak D.A., Patty R.R., Bartky Ch.E. Absorption of infrared radiant energy by CO2 and H2 O. IV. Shapes of collision-broadened CO2 lines. J.Opt.Soc Amer. 1969, 59, No.3, 267-280
[11] Баранов Ю.И., Буланин М.О., Тонков М.В. Исследование крыльев линий колебательно-вращательной полосы 3ν3 СО2 . Оптика и спектроскопия, 50, №3, с. 613-615 (1981)
1969
Darrell E. Burch, David A. Gryvnak, Richard R. Patty, and Charlotte E. Bartky , Absorption of Infrared Radiant Energy by CO2 and H2 O. IV. Shapes of Collision-Broadened CO2 Lines, Journal of Optical Society of America, 1969 , Volume 59 , Pages 267-278.
CO2
T=273 К
P=1 атм
6. Approximation of experimental results
Волновое число (см⁻¹)
Нормализованный коэффициент поглощения (атм⁻¹см⁻¹)STP
K0 s for CO2 self broadening vs v between 6900 and 7100 cm-1 . The various geometrical figures on the solid curve correspond to samples having the following total pressures: X < 2 atm; o ~ 8-10 atm; Δ-15 atm.
1982
Несмелова Л.И., О.Б.Родимова, С.Д.Творогов , Коэффициент поглощения в микроокнах полос углекислого газа, Известия вузов СССР, сер. Физика, 1982 , Volume 5 , Number 5, Pages 54-58.
CO2
T=∅
P=∅
2. Baranov Yu.I., et al. (1981). Experiment
Волновое число (см⁻¹)
Коэффициент поглощения (см⁻¹атм⁻¹)
Коэффициент поглощения СО2 при самоуширении в микроокнах и за кантом полосы 1.4 мкм. экспериментальные значения из работы [11].
[11] Баранов Ю.И., Буланин М.О., Тонков М.В. Исследование крыльев линий колебательно-вращательной полосы 3ν3 СО2 . Оптика и спектроскопия, 50, №3, с. 613-615 (1981).
1981
Баранов Ю.И., Буланин М.О., Тонков М.В. , Исследование крыльев линий колебательно-вращательной полосы 3ν3 СО2 , Оптика и спектроскопия, 1981 , Volume 50 , Number 3, Pages 613-615.
CO2
T=296 К
P=4 атм
1b. В микроокнах 3v3. Чистый CO2
Волновое число (см⁻¹)
Коэффициент поглощения (см⁻¹Амага⁻²)
Бинарные коэффициенты поглощения (см-1 амага-2 ) в микроокнах полосы полосы 3ν3 СО2 .
1982
Несмелова Л.И., О.Б.Родимова, С.Д.Творогов , Коэффициент поглощения в микроокнах полос углекислого газа, Известия вузов СССР, сер. Физика, 1982 , Volume 5 , Number 5, Pages 54-58.
CO2
T=∅
P=∅
2. Burch D.E., et al. (1969). Experiment
Волновое число (см⁻¹)
Коэффициент поглощения (см⁻¹атм⁻¹)
Коэффициент поглощения СО2 при самоуширении в микроокнах и за кантом полосы 1.4 мкм. экспериментальные значения из работ [12].
[12] Burch D.E., Gryvnak D.A., Patty R.R., Bartky Ch.E. Absorption of infrared radiant energy by CO2 and H2 O. IV. Shapes of collision -broadened CO2 lines. J.Opt.Soc Amer. 1969, 59, No.3, 267-280.
1969
Darrell E. Burch, David A. Gryvnak, Richard R. Patty, and Charlotte E. Bartky , Absorption of Infrared Radiant Energy by CO2 and H2 O. IV. Shapes of Collision-Broadened CO2 Lines, Journal of Optical Society of America, 1969 , Volume 59 , Pages 267-278.
CO2
T=273 К
P=1 атм
6. The Lorentz curve
Волновое число (см⁻¹)
Нормализованный коэффициент поглощения (атм⁻¹см⁻¹)STP
K0 s for CO2 self broadening vs v between 6900 and 7100 cm-1 . The Lorentz curve represents the absorption coefficient calculated by assuming that the lines have the Lorentz shape.
1982
Несмелова Л.И., О.Б.Родимова, С.Д.Творогов , Коэффициент поглощения света в крыле полосы 4,3 мкм СО2 , Спектроскопия атмосферных газов (Наука, Новосибирск), 1982., Наука, Сибирское отделение, 1982 , Pages 4-16.
CO2
T=293 К
P=∅
1. Bulanin M.O., et al. (1976). T=293K. Experiment
Волновое число (см⁻¹)
Коэффициент поглощения (см⁻¹атм⁻²)
Коэффициент поглощения СО2 при самоуширении при T=293°К. Экспериментальные данные [6].
CO2 absorption coefficient during self-broadening at T = 293°K. Experimental data [6].
[6] Буланин М.О., Булычев В.П., Гранский П.В., Коузов А.П., Тонков М.В., Исследование функций пропускания СО2 в области полос 4.3 и 15 мкм, Проблемы физики атмосферы. Вып. 13, Ленинград, Изд. ЛГУ, Ленинград, Издательство Ленинградского Государственного Университета, 1976 , Pages 14-24.
1976
Буланин М.О., Булычев В.П., Гранский П.В., Коузов А.П., Тонков М.В. , Исследование функций пропускания СО2 в области полос 4.3 и 15 мкм, Проблемы физики атмосферы. Вып. 13, Ленинград, Изд. ЛГУ, Издательство Ленинградского Государственного Университета, 1976 , Pages 14-24.
CO2
T=∅
P=∅
2. CO₂ (T=273K) Experimental data
Волновое число (см⁻¹)
Коэффициент поглощения (см⁻¹атм⁻²)
Коэффициент поглощения СО2 за кантом полосы 4.3 мкм. Прямые найдены по методу наименьших квадратов, а точки – экспериментальные данные.
1982
Несмелова Л.И., О.Б.Родимова, С.Д.Творогов , Коэффициент поглощения света в крыле полосы 4,3 мкм СО2 , Спектроскопия атмосферных газов (Наука, Новосибирск), 1982., Наука, Сибирское отделение, 1982 , Pages 4-16.
CO2
T=300 К
P=1 атм
1. Winters B.H., et al. (1964). Experiment
Волновое число (см⁻¹)
Коэффициент поглощения (см⁻¹атм⁻²)
Коэффициент поглощения СО2 при самоуширении при T=293K.
B.H. Winters, S. Silverman, W.S. Benedict, Line shape in the wing beyond the band head of the 4·3 μ band of CO2 , Journal of Quantitative Spectroscopy and Radiation Transfer, 1964 , Volume 4 , Issue 4, Pages 527-537, DOI: 10.1016/0022-4073(64)90014-7 .
1964
B.H. Winters, S. Silverman, W.S. Benedict , Line shape in the wing beyond the band head of the 4·3 μ band of CO2 , Journal of Quantitative Spectroscopy and Radiation Transfer, 1964 , Volume 4 , Issue 4, Pages 527-537.
CO2
T=300 К
P=∅
2. Experimental absorption CO₂+CO₂
Волновое число (см⁻¹)
Коэффициент поглощения (см⁻¹атм⁻²)
Absorption coefficient a=ln(I0 /I) L p2 for self broadening
1982
Несмелова Л.И., Творогов С.Д. , Зависимость классического потенциала межмолекулярного взаимодействия от температуры и коэффициент поглощения света в крыле полосы 4.3 мкм СО2 , Спектральные проявления межмолекулярных взаимодействий в газах, Наука, Сибирское отделение, 1982 , Pages 127-142.
CO2
T=213 К
P=∅
4. Bulanin M.O., et al. (1976). Experiment (T=213K)
Волновое число (см⁻¹)
Коэффициент поглощения (см⁻¹атм⁻¹)
Коэффициент поглощения СО2 при самоуширении (cm-1 atm-1 ) [14] для температуры 213°К.
[14] Буланин М.О., Булычев В.П., Гранский П.В., Коузов А.П., Тонков М.В. Исследование функций пропускания СО2 в области полос 4.3 и 15 мкм. В кн.: Проблемы физики атмосферы. Вып. 13, Л., Изд. ЛГУ, 1976, с.14-24
1976
Буланин М.О., Булычев В.П., Гранский П.В., Коузов А.П., Тонков М.В. , Исследование функций пропускания СО2 в области полос 4.3 и 15 мкм, Проблемы физики атмосферы. Вып. 13, Ленинград, Изд. ЛГУ, Издательство Ленинградского Государственного Университета, 1976 , Pages 14-24.
CO2
T=∅
P=∅
2. CO₂ (T=273K) Experimental data
Волновое число (см⁻¹)
Коэффициент поглощения (см⁻¹атм⁻²)
Коэффициент поглощения СО2 за кантом полосы 4.3 мкм. Прямые найдены по методу наименьших квадратов, а точки – экспериментальные данные.
1982
Несмелова Л.И., Творогов С.Д. , Зависимость классического потенциала межмолекулярного взаимодействия от температуры и коэффициент поглощения света в крыле полосы 4.3 мкм СО2 , Спектральные проявления межмолекулярных взаимодействий в газах, Наука, Сибирское отделение, 1982 , Pages 127-142.
CO2
T=310 К
P=∅
4. Bulanin M.O., et al. (1976). Experiment
Волновое число (см⁻¹)
Коэффициент поглощения (см⁻¹атм⁻¹)
Коэффициент поглощения СО2 при самоуширении (cm-1 atm-1 ), [14] для температуры 310°K.
[14] Буланин М.О., Булычев В.П., Гранский П.В., Коузов А.П., Тонков М.В. Исследование функций пропускания СО2 в области полос 4.3 и 15 мкм. В кн.: Проблемы физики атмосферы. Вып. 13, Л., Изд. ЛГУ, 1976, с.14-24
1976
Буланин М.О., Булычев В.П., Гранский П.В., Коузов А.П., Тонков М.В. , Исследование функций пропускания СО2 в области полос 4.3 и 15 мкм, Проблемы физики атмосферы. Вып. 13, Ленинград, Изд. ЛГУ, Издательство Ленинградского Государственного Университета, 1976 , Pages 14-24.
CO2
T=310 К
P=∅
2. CO₂ (T=310K). Experimental data
Волновое число (см⁻¹)
Коэффициент поглощения (см⁻¹атм⁻²)
Коэффициент поглощения СО2 за кантом полосы 4.3 мкм. Прямые найдены по методу наименьших квадратов, а точки – экспериментальные данные.
1982
Несмелова Л.И., Творогов С.Д. , Зависимость классического потенциала межмолекулярного взаимодействия от температуры и коэффициент поглощения света в крыле полосы 4.3 мкм СО2 , Спектральные проявления межмолекулярных взаимодействий в газах, Наука, Сибирское отделение, 1982 , Pages 127-142.
CO2
T=300 К
P=∅
4. Winters B.H., et al. (1964). Experiment
Волновое число (см⁻¹)
Коэффициент поглощения (см⁻¹атм⁻¹)
Коэффициент поглощения СО2 при самоуширении (cm-1 atm-1 ) [6].
[6] Winters B.H., Silverman S., Benedict W.S. Line shape in the wing beyond the band head of the 4.3 μ band of CO2 JQSRT V.4, Iss.4, 1964, P.527-537.
1964
B.H. Winters, S. Silverman, W.S. Benedict , Line shape in the wing beyond the band head of the 4·3 μ band of CO2 , Journal of Quantitative Spectroscopy and Radiation Transfer, 1964 , Volume 4 , Issue 4, Pages 527-537.
CO2
T=300 К
P=∅
2. Experimental absorption CO₂+CO₂
Волновое число (см⁻¹)
Коэффициент поглощения (см⁻¹атм⁻²)
Absorption coefficient a=ln(I0 /I) L p2 for self broadening
1982
Телегин Г.В., Фомин В.В. , Аппроксимация температурных зависимостей коэффициенга поглощения в спектре углекислого газа, Тезисы VI Всесоюзного симпозиума по молекулярной спектроскопии высокого и сверхвысокого разрешения, Ч.2, Томск: ИОА СО АН СССР, Издательство ИОА, 1982 , Pages 105-107.
CO2
T=213 К
P=∅
1. Bulanin M.O., et al. (1976). T=213K. Experiment
Волновое число (см⁻¹)
Нормализованный коэффициент поглощения (атм⁻¹см⁻¹)STP
Кэффициент поглощения чистого СО2 на периферии полосы 4.3 мкм. 213°К, эксперимент [5].
[5] Буланин М.О., Булычев В.П., Гранский П.В., Коузов А.П., Тонков М.В. Исследование функций пропускания СО2 в области полос 4.3 и 15 мкм. В кн.: Проблемы физики атмосферы. Вып. 13, Л., Изд. ЛГУ, 1976, с.14-24.
1976
Буланин М.О., Булычев В.П., Гранский П.В., Коузов А.П., Тонков М.В. , Исследование функций пропускания СО2 в области полос 4.3 и 15 мкм, Проблемы физики атмосферы. Вып. 13, Ленинград, Изд. ЛГУ, Издательство Ленинградского Государственного Университета, 1976 , Pages 14-24.
CO2
T=∅
P=∅
2. CO₂ (T=273K) Experimental data
Волновое число (см⁻¹)
Коэффициент поглощения (см⁻¹атм⁻²)
Коэффициент поглощения СО2 за кантом полосы 4.3 мкм. Прямые найдены по методу наименьших квадратов, а точки – экспериментальные данные.
1982
Телегин Г.В., Фомин В.В. , Аппроксимация температурных зависимостей коэффициенга поглощения в спектре углекислого газа, Тезисы VI Всесоюзного симпозиума по молекулярной спектроскопии высокого и сверхвысокого разрешения, Ч.2, Томск: ИОА СО АН СССР, Издательство ИОА, 1982 , Pages 105-107.
CO2
T=273 К
P=∅
1. Bulanin M.O., et al. (1976). T=273K. Experiment
Волновое число (см⁻¹)
Нормализованный коэффициент поглощения (атм⁻¹см⁻¹)STP
Кэффициент поглощения чистого СО2 на периферии полосы 4.3 мкм. 273°К, эксперимент [5].
[5] Буланин М.О., Булычев В.П., Гранский П.В., Коузов А.П., Тонков М.В. Исследование функций пропускания СО2 в области полос 4.3 и 15 мкм. В кн.: Проблемы физики атмосферы. Вып. 13, Л., Изд. ЛГУ, 1976, с.14-24.
1976
Буланин М.О., Булычев В.П., Гранский П.В., Коузов А.П., Тонков М.В. , Исследование функций пропускания СО2 в области полос 4.3 и 15 мкм, Проблемы физики атмосферы. Вып. 13, Ленинград, Изд. ЛГУ, Издательство Ленинградского Государственного Университета, 1976 , Pages 14-24.
CO2
T=∅
P=∅
2. CO₂ (T=273K) Experimental data
Волновое число (см⁻¹)
Коэффициент поглощения (см⁻¹атм⁻²)
Коэффициент поглощения СО2 за кантом полосы 4.3 мкм. Прямые найдены по методу наименьших квадратов, а точки – экспериментальные данные.
1982
Телегин Г.В., Фомин В.В. , Аппроксимация температурных зависимостей коэффициенга поглощения в спектре углекислого газа, Тезисы VI Всесоюзного симпозиума по молекулярной спектроскопии высокого и сверхвысокого разрешения, Ч.2, Томск: ИОА СО АН СССР, Издательство ИОА, 1982 , Pages 105-107.
CO2
T=310 К
P=∅
1. Bulanin M.O., et al. (1976). T=310K. Experiment
Волновое число (см⁻¹)
Нормализованный коэффициент поглощения (атм⁻¹см⁻¹)STP
Кэффициент поглощения чистого СО2 на периферии полосы 4.3 мкм. 310°К эксперимент [5] .
[5] Буланин М.О., Булычев В.П., Гранский П.В., Коузов А.П., Тонков М.В. Исследование функций пропускания СО2 в области полос 4.3 и 15 мкм. В кн.: Проблемы физики атмосферы. Вып. 13, Л., Изд. ЛГУ, 1976, с.14-24.
1976
Буланин М.О., Булычев В.П., Гранский П.В., Коузов А.П., Тонков М.В. , Исследование функций пропускания СО2 в области полос 4.3 и 15 мкм, Проблемы физики атмосферы. Вып. 13, Ленинград, Изд. ЛГУ, Издательство Ленинградского Государственного Университета, 1976 , Pages 14-24.
CO2
T=310 К
P=∅
2. CO₂ (T=310K). Experimental data
Волновое число (см⁻¹)
Коэффициент поглощения (см⁻¹атм⁻²)
Коэффициент поглощения СО2 за кантом полосы 4.3 мкм. Прямые найдены по методу наименьших квадратов, а точки – экспериментальные данные.
1983
Гальцев А.П., Цуканов В.В. , Температурная зависимость коэффициента поглощения за кантом полос углекислого газа., Оптика и спектроскопия, 1983 , Volume 55 , Issue 2, Pages 273-279.
CO2
T=∅
P=∅
2. Bulanin M.O, et al. (1976). Experiment, normalized to the integrated intensity of the band
Волновое число (см⁻¹)
Заданная функция
Ход коэффициента поглощения за кантом полосы ν3 . Точки – данные работы [25] .
Defined function = -ln(k(v)
[25] Буланин М.О., Булычев В.П., Гранский П.В., Коузов А.П., Тонков М.В. Исследование функций пропускания СО2 в области полос 4.3 и 15 мкм. В кн.: Проблемы физики атмосферы. Вып. 13, Л., Изд. ЛГУ, 1976, с.14-24.
1976
Буланин М.О., Булычев В.П., Гранский П.В., Коузов А.П., Тонков М.В. , Исследование функций пропускания СО2 в области полос 4.3 и 15 мкм, Проблемы физики атмосферы. Вып. 13, Ленинград, Изд. ЛГУ, Издательство Ленинградского Государственного Университета, 1976 , Pages 14-24.
Волновое число (см⁻¹) Волновое число (см⁻¹)
Коэффициент поглощения (см⁻¹атм⁻²) Коэффициент пропускания (произвольные единицы)
1983
Гальцев А.П., Цуканов В.В. , Температурная зависимость коэффициента поглощения за кантом полос углекислого газа., Оптика и спектроскопия, 1983 , Volume 55 , Issue 2, Pages 273-279.
CO2
T=∅
P=∅
2. Burch D.E., et al. (1969). Experiment, normalized to the integrated intensity of the band
Волновое число (см⁻¹)
Заданная функция
Ход коэффициента поглощения за кантом полосы ν3. Кружки – данные работы [26].
Defined function = -ln(k(v)
[26] Burch D.E., Gryvnak D.A., Patty R.R., Bartky Ch.E. Absorption of infrared radiant energy by CO2 and H2 O. IV. Shapes of collision -broadened CO2 lines. J.Opt.Soc Amer. 1969, 59, No.3, 267-280.
1969
Darrell E. Burch, David A. Gryvnak, Richard R. Patty, and Charlotte E. Bartky , Absorption of Infrared Radiant Energy by CO2 and H2 O. IV. Shapes of Collision-Broadened CO2 Lines, Journal of Optical Society of America, 1969 , Volume 59 , Pages 267-278.
Волновое число (см⁻¹) Волновое число (см⁻¹)Смещение от центра линии (см⁻¹) Угловой момент
Нормализованный коэффициент поглощения (атм⁻¹см⁻¹)STP Пропускание (%) Поправочный фактор для Лоренцевского контура Нормализованная полуширина (см⁻¹)
1983
Несмелова Л.И., О.Б.Родимова, С.Д.Творогов , Методика расчета поглощения излучения в узких спектральных интервалах колебательно-вращательных спектров молекул, III Всесоюзное совещание по атмосферной оптике и актинометрии. Тезисы докладов, часть II., Издательство ИОА, 1983 , Pages 155-157.
CO2
T=∅
P=∅
2. Burch D.E., et al. (1969). Experiment. Р=14.5 atm, u=47.3 cmSTP
Волновое число (см⁻¹)
Пропускание (%)
Функция пропускания чистого СО2 : Р=14.5 атм, u=47.3 атм см-1 STP ; [3]
[3] Darrell E. Burch, David A. Gryvnak, Richard R. Patty, and Charlotte E. Bartky, Absorption of Infrared Radiant Energy by CO2 and H2 O. IV. Shapes of Collision-Broadened CO2 Lines, Journal of Optical Society of America, 1969 , Volume 59 , Pages 267-278, DOI: 10.1364/JOSA.59.000267 , http://www.opticsinfobase.org/josa/abstract.cfm?URI=josa-59-3-267 .
1969
Darrell E. Burch, David A. Gryvnak, Richard R. Patty, and Charlotte E. Bartky , Absorption of Infrared Radiant Energy by CO2 and H2 O. IV. Shapes of Collision-Broadened CO2 Lines, Journal of Optical Society of America, 1969 , Volume 59 , Pages 267-278.
CO2
T=273 К
P=14.6 атм
1. Spectral curve. Sample C. (7000 cm⁻¹)
Волновое число (см⁻¹)
Пропускание (%)
Representative spectral curves in the 7000 cm-1 region. The curves were obtained with approximately 1 cm-1 slitwidth and correspond to the following samples of pure CO2 .
Sample p (atm) L (meters) u(atm cmsTP)
C 14.6 32.9 47300
1983
Несмелова Л.И., О.Б.Родимова, С.Д.Творогов , Методика расчета поглощения излучения в узких спектральных интервалах колебательно-вращательных спектров молекул, III Всесоюзное совещание по атмосферной оптике и актинометрии. Тезисы докладов, часть II., Издательство ИОА, 1983 , Pages 155-157.
CO2
T=∅
P=∅
2. Burch D.E., et al. (1969). Experiment. Р=0.077 atm, u=3.32 atm cmSTP
Волновое число (см⁻¹)
Пропускание (%)
Функция пропускания чистого СО2 : 1 – Р=0.077 атм, u=3.32 атм смSTP; [3]
[3] Darrell E. Burch, David A. Gryvnak, Richard R. Patty, and Charlotte E. Bartky, Absorption of Infrared Radiant Energy by CO2 and H2 O. IV. Shapes of Collision-Broadened CO2 Lines, Journal of Optical Society of America, 1969>, Volume 59, Pages 267-278, DOI: 10.1364/JOSA.59.000267 , http://www.opticsinfobase.org/josa/abstract.cfm?URI=josa-59-3-267
1969
Darrell E. Burch, David A. Gryvnak, Richard R. Patty, and Charlotte E. Bartky , Absorption of Infrared Radiant Energy by CO2 and H2 O. IV. Shapes of Collision-Broadened CO2 Lines, Journal of Optical Society of America, 1969 , Volume 59 , Pages 267-278.
CO2
T=273 К
P=0.077 атм
1. Spectral curve. Sample A. (7000 cm⁻¹)
Волновое число (см⁻¹)
Пропускание (%)
Representative spectral curves in the 7000 cm-1 region. The curves were obtained with approximately 1 cm-1 slitwidth and correspond to the following samples of pure CO2 .
Sample p (atm) L (meters) u(atm cmSTP ). STP - Standard Temperature and pressure (273K, 1 atm)
A 0.077 469 3320
1983
Несмелова Л.И., О.Б.Родимова, С.Д.Творогов , Методика расчета поглощения излучения в узких спектральных интервалах колебательно-вращательных спектров молекул, III Всесоюзное совещание по атмосферной оптике и актинометрии. Тезисы докладов, часть II., Издательство ИОА, 1983 , Pages 155-157.
CO2
T=∅
P=2 атм
2. Burch D.E., et al. (1969). Experiment. Р=2.0 atm, u=87.1 atm cmSTP
Волновое число (см⁻¹)
Пропускание (%)
Функция пропускания чистого СО2 : Р=2.0 атм, u=87.1 атм смSTP; [3]
Darrell E. Burch, David A. Gryvnak, Richard R. Patty, and Charlotte E. Bartky, Absorption of Infrared Radiant Energy by CO2 and H2 O. IV. Shapes of Collision-Broadened CO2 Lines, Journal of Optical Society of America, 1969, Volume 59, Pages 267-278, DOI: 10.1364/JOSA.59.000267 , http://www.opticsinfobase.org/josa/abstract.cfm?URI=josa-59-3-267 .
1969
Darrell E. Burch, David A. Gryvnak, Richard R. Patty, and Charlotte E. Bartky , Absorption of Infrared Radiant Energy by CO2 and H2 O. IV. Shapes of Collision-Broadened CO2 Lines, Journal of Optical Society of America, 1969 , Volume 59 , Pages 267-278.
CO2
T=273 К
P=14.6 атм
1. Spectral curve. Sample C. (7000 cm⁻¹)
Волновое число (см⁻¹)
Пропускание (%)
Representative spectral curves in the 7000 cm-1 region. The curves were obtained with approximately 1 cm-1 slitwidth and correspond to the following samples of pure CO2 .
Sample p (atm) L (meters) u(atm cmsTP)
C 14.6 32.9 47300
1983
С.Д.Творогов, О.Б.Родимова, Несмелова Л.И. , Спектроскопия крыльев колебательно-вращательных линий газов, XIX Всесоюзный съезд по спектроскопии. Тезисы докладов. Часть II. Спектроскопия простых молекул., Издательство ИОА, 1983 , Pages 254-256.
CO2
T=∅
P=∅
1. Burch D.E., et al. (1969). CO₂+CO₂. Experiment (6990-7020 cm⁻¹)
Волновое число (см⁻¹)
Нормализованный коэффициент поглощения (атм⁻¹см⁻¹)STP
Коэффициент поглощения СО2 в крыле полосы 1.4 мкм. Кружки – экспериментальные данные из работ [2,3], кривые – результаты расчета.
[[2] Burch D.E., Gryvnak D.A., Patty R.R., Bartky Ch.E. Absorption of infrared radiant energy by CO2 and H2 O. IV. Shapes of collision -broadened CO2 lines. J.Opt.Soc Amer. 1969, 59, No.3, 267-280
[3] Баранов Ю.И., Буланин М.О., Тонков М.В. Исследование крыльев линий колебательно-вращательной полосы 3ν3 СО2 . Оптика и спектроскопия, 50, №3, с. 613-615 (1981) .
1969
Darrell E. Burch, David A. Gryvnak, Richard R. Patty, and Charlotte E. Bartky , Absorption of Infrared Radiant Energy by CO2 and H2 O. IV. Shapes of Collision-Broadened CO2 Lines, Journal of Optical Society of America, 1969 , Volume 59 , Pages 267-278.
CO2
T=∅
P=∅
7. Mixture CO₂. Exp. (6990-7010 cm⁻¹)
Волновое число (см⁻¹)
Нормализованный коэффициент поглощения (атм⁻¹см⁻¹)STP
k0 for self broadening between 6990 and 7010 cm-1 . A portion of the curve for self broadening in Fig. 6 is repeated for comparison.
1984
Телегин Г.В., Фомин В.В. , Аппроксимация температурных зависимостей коэффициенга поглощения в спектре СО2 , Оптика и спектроскопия, 1984 , Issue 5, Pages 821-827.
CO2
T=213 К
P=∅
2. Bulanin M.O., et al. (1976). Experiment T= 213 K
Волновое число (см⁻¹)
Нормализованный коэффициент поглощения (атм⁻¹см⁻¹)STP
Коэффициент поглощения в чистом СО2 за кантом полосы ν3 . Экспериментальные данные [3] при Т=213° К. .
Absorption coefficient in pure CO2 behind the ν3 band edge. Experimental data [3 at Т = 213°K.
Буланин М.О., Булычев В.П., Гранский П.В., Коузов А.П., Тонков М.В., Исследование функций пропускания СО2 в области полос 4.3 и 15 мкм, Проблемы физики атмосферы. Вып. 13, Ленинград, Изд. ЛГУ, Ленинград, Издательство Ленинградского Государственного Университета, 1976 , Pages 14-24.
1976
Буланин М.О., Булычев В.П., Гранский П.В., Коузов А.П., Тонков М.В. , Исследование функций пропускания СО2 в области полос 4.3 и 15 мкм, Проблемы физики атмосферы. Вып. 13, Ленинград, Изд. ЛГУ, Издательство Ленинградского Государственного Университета, 1976 , Pages 14-24.
CO2
T=∅
P=∅
2. CO₂ (T=273K) Experimental data
Волновое число (см⁻¹)
Коэффициент поглощения (см⁻¹атм⁻²)
Коэффициент поглощения СО2 за кантом полосы 4.3 мкм. Прямые найдены по методу наименьших квадратов, а точки – экспериментальные данные.
1984
Телегин Г.В., Фомин В.В. , Аппроксимация температурных зависимостей коэффициенга поглощения в спектре СО2 , Оптика и спектроскопия, 1984 , Issue 5, Pages 821-827.
CO2
T=273 К
P=∅
2. Bulanin M.O., et al. (1976). Experiment T= 273 K
Волновое число (см⁻¹)
Нормализованный коэффициент поглощения (атм⁻¹см⁻¹)STP
Коэффициент поглощения в чистом СО2 за кантом полосы ν3 . Экспериментальные данные [3] при Т=273°К.
Absorption coefficient in pure CO2 behind the ν3 band edge. Experimental data [3] at Т = 273°K. .
Буланин М.О., Булычев В.П., Гранский П.В., Коузов А.П., Тонков М.В., Исследование функций пропускания СО2 в области полос 4.3 и 15 мкм, Проблемы физики атмосферы. Вып. 13, Ленинград, Изд. ЛГУ, Ленинград, Издательство Ленинградского Государственного Университета, 1976 , Pages 14-24.
1976
Буланин М.О., Булычев В.П., Гранский П.В., Коузов А.П., Тонков М.В. , Исследование функций пропускания СО2 в области полос 4.3 и 15 мкм, Проблемы физики атмосферы. Вып. 13, Ленинград, Изд. ЛГУ, Издательство Ленинградского Государственного Университета, 1976 , Pages 14-24.
CO2
T=∅
P=∅
2. CO₂ (T=273K) Experimental data
Волновое число (см⁻¹)
Коэффициент поглощения (см⁻¹атм⁻²)
Коэффициент поглощения СО2 за кантом полосы 4.3 мкм. Прямые найдены по методу наименьших квадратов, а точки – экспериментальные данные.
1984
Телегин Г.В., Фомин В.В. , Аппроксимация температурных зависимостей коэффициенга поглощения в спектре СО2 , Оптика и спектроскопия, 1984 , Issue 5, Pages 821-827.
CO2
T=310 К
P=∅
2. Bulanin M.O., et al. (1976). Experiment T= 310 K
Волновое число (см⁻¹)
Нормализованный коэффициент поглощения (атм⁻¹см⁻¹)STP
Коэффициент поглощения в чистом СО2 за кантом полосы ν3 . Экспериментальные данные [3] при Т=310°К.
Absorption coefficient in pure CO2 behind the ν3 band edge. Experimental data [3] at Т = 310°K. .
[
1976
Буланин М.О., Булычев В.П., Гранский П.В., Коузов А.П., Тонков М.В. , Исследование функций пропускания СО2 в области полос 4.3 и 15 мкм, Проблемы физики атмосферы. Вып. 13, Ленинград, Изд. ЛГУ, Издательство Ленинградского Государственного Университета, 1976 , Pages 14-24.
CO2
T=310 К
P=∅
2. CO₂ (T=310K). Experimental data
Волновое число (см⁻¹)
Коэффициент поглощения (см⁻¹атм⁻²)
Коэффициент поглощения СО2 за кантом полосы 4.3 мкм. Прямые найдены по методу наименьших квадратов, а точки – экспериментальные данные.
1985
Несмелова Л.И., О.Б.Родимова, С.Д.Творогов, , Температурная зависимость коэффициента поглощения СО2 в крыле полосы 4.3 мкм, Деп. ВИНИТИ, 1985, №7998-В85, ВИНИТИ, 1985 , Pages 19.
CO2
T=213 К
P=∅
1. Bulanin M.O., et al. (1976). T=213K. Experiment
Волновое число (см⁻¹)
Коэффициент поглощения (см⁻¹Амага⁻²)
Коэффициент поглощения СО2 за кантом полосы 4.3 мкм. [κ] = см-1 амага-2 , ε=190°К, экспериментальные данные [3].
The CO2 absorption coefficient behind the band edge is 4.3 µm. [κ] = cm-1 amaga-2 , ε = 190°K, experimental data [3].
[3] Буланин М.О., Булычев В.П., Гранский П.В., Коузов А.П., Тонков М.В., Исследование функций пропускания СО2 в области полос 4.3 и 15 мкм, Проблемы физики атмосферы. Вып. 13, Ленинград, Изд. ЛГУ, Ленинград, Издательство Ленинградского Государственного Университета, 1976 , Pages 14-24.
1976
Буланин М.О., Булычев В.П., Гранский П.В., Коузов А.П., Тонков М.В. , Исследование функций пропускания СО2 в области полос 4.3 и 15 мкм, Проблемы физики атмосферы. Вып. 13, Ленинград, Изд. ЛГУ, Издательство Ленинградского Государственного Университета, 1976 , Pages 14-24.
CO2
T=∅
P=∅
2. CO₂ (T=273K) Experimental data
Волновое число (см⁻¹)
Коэффициент поглощения (см⁻¹атм⁻²)
Коэффициент поглощения СО2 за кантом полосы 4.3 мкм. Прямые найдены по методу наименьших квадратов, а точки – экспериментальные данные.
1985
Несмелова Л.И., О.Б.Родимова, С.Д.Творогов, , Температурная зависимость коэффициента поглощения СО2 в крыле полосы 4.3 мкм, Деп. ВИНИТИ, 1985, №7998-В85, ВИНИТИ, 1985 , Pages 19.
CO2
T=293 К
P=∅
1. Bulanin M.O., et al. (1976). T=293K. Experiment
Волновое число (см⁻¹)
Коэффициент поглощения (см⁻¹Амага⁻²)
Коэффициент поглощения СО2 за кантом полосы 4.3 мкм. [κ] = см-1 амага-2 , ε=190°К, экспериментальные данные [3].
The CO2 absorption coefficient behind the band edge is 4.3 µm. [κ] = cm-1 amaga-2 , ε = 190°K, experimental data [3].
1976
Буланин М.О., Булычев В.П., Гранский П.В., Коузов А.П., Тонков М.В. , Исследование функций пропускания СО2 в области полос 4.3 и 15 мкм, Проблемы физики атмосферы. Вып. 13, Ленинград, Изд. ЛГУ, Издательство Ленинградского Государственного Университета, 1976 , Pages 14-24.
CO2
T=∅
P=∅
2. CO₂ (T=273K) Experimental data
Волновое число (см⁻¹)
Коэффициент поглощения (см⁻¹атм⁻²)
Коэффициент поглощения СО2 за кантом полосы 4.3 мкм. Прямые найдены по методу наименьших квадратов, а точки – экспериментальные данные.
1985
Несмелова Л.И., О.Б.Родимова, С.Д.Творогов, , Температурная зависимость коэффициента поглощения СО2 в крыле полосы 4.3 мкм, Деп. ВИНИТИ, 1985, №7998-В85, ВИНИТИ, 1985 , Pages 19.
CO2
T=310 К
P=∅
1. Bulanin M.O., et al. (1976). T=310K. Experiment
Волновое число (см⁻¹)
Коэффициент поглощения (см⁻¹Амага⁻²)
Коэффициент поглощения СО2 за кантом полосы 4.3 мкм. [κ] = см-1 амага-2 , ε=190°К, экспериментальные данные [3].
The CO2 absorption coefficient behind the band edge is 4.3 µm. [κ] = cm-1 amaga-2 , ε = 190°K, experimental data [3].
1976
Буланин М.О., Булычев В.П., Гранский П.В., Коузов А.П., Тонков М.В. , Исследование функций пропускания СО2 в области полос 4.3 и 15 мкм, Проблемы физики атмосферы. Вып. 13, Ленинград, Изд. ЛГУ, Издательство Ленинградского Государственного Университета, 1976 , Pages 14-24.
CO2
T=310 К
P=∅
2. CO₂ (T=310K). Experimental data
Волновое число (см⁻¹)
Коэффициент поглощения (см⁻¹атм⁻²)
Коэффициент поглощения СО2 за кантом полосы 4.3 мкм. Прямые найдены по методу наименьших квадратов, а точки – экспериментальные данные.
1985
Несмелова Л.И., О.Б.Родимова, С.Д.Творогов, , Температурная зависимость коэффициента поглощения СО2 в крыле полосы 4.3 мкм, Деп. ВИНИТИ, 1985, №7998-В85, ВИНИТИ, 1985 , Pages 19.
CO2
T=213 К
P=∅
5a. Bulanin M.O., et al. (1976). Experiment. T=213K
Волновое число (см⁻¹)
Коэффициент поглощения (см⁻¹Амага⁻²)
Коэффициент поглощения СО2 при самоуширении в микроокнах и за кантом полосы 4.3 мкм при различных температурах, расчет с V(T0 ). Эксперимент [3] при Т=213°К.
1976
Буланин М.О., Булычев В.П., Гранский П.В., Коузов А.П., Тонков М.В. , Исследование функций пропускания СО2 в области полос 4.3 и 15 мкм, Проблемы физики атмосферы. Вып. 13, Ленинград, Изд. ЛГУ, Издательство Ленинградского Государственного Университета, 1976 , Pages 14-24.
CO2
T=∅
P=∅
2. CO₂ (T=273K) Experimental data
Волновое число (см⁻¹)
Коэффициент поглощения (см⁻¹атм⁻²)
Коэффициент поглощения СО2 за кантом полосы 4.3 мкм. Прямые найдены по методу наименьших квадратов, а точки – экспериментальные данные.
1985
Несмелова Л.И., О.Б.Родимова, С.Д.Творогов, , Температурная зависимость коэффициента поглощения СО2 в крыле полосы 4.3 мкм, Деп. ВИНИТИ, 1985, №7998-В85, ВИНИТИ, 1985 , Pages 19.
CO2
T=300 К
P=∅
5a. Winters B.H., et al. (1964) and Bulanin M.O., et al. (1976). Experiment. T=300K
Волновое число (см⁻¹)
Коэффициент поглощения (см⁻¹Амага⁻²)
Коэффициент поглощения СО2 при самоуширении в микроокнах и за кантом полосы 4.3 мкм при различных температурах, расчет с V(T0 ). Эксперимент [22, 3] при Т=300°K.
CO2 absorption coefficient for self-broadening in micro-windows and behind the band edge of 4.3 μm at different temperatures, calculation with V (T0 ). Experiment [22, 3] at T=300K.
1964
B.H. Winters, S. Silverman, W.S. Benedict , Line shape in the wing beyond the band head of the 4·3 μ band of CO2 , Journal of Quantitative Spectroscopy and Radiation Transfer, 1964 , Volume 4 , Issue 4, Pages 527-537.
CO2
T=300 К
P=∅
2. Experimental absorption CO₂+CO₂
Волновое число (см⁻¹)
Коэффициент поглощения (см⁻¹атм⁻²)
Absorption coefficient a=ln(I0 /I) L p2 for self broadening
1985
Несмелова Л.И., О.Б.Родимова, С.Д.Творогов, , Температурная зависимость коэффициента поглощения СО2 в крыле полосы 4.3 мкм, Деп. ВИНИТИ, 1985, №7998-В85, ВИНИТИ, 1985 , Pages 19.
CO2
T=300 К
P=∅
5b. Winters B.H., et al. (1964) and Буланин М.О., et al. (1976). Experiment T=300K
Волновое число (см⁻¹)
Коэффициент поглощения (см⁻¹Амага⁻²)
Коэффициент поглощения СО2 при самоуширении в микроокнах и за кантом полосы 4.3 мкм при различных температурах, расчет с V(T). Эксперимент [22,3] при Т=300°K.
CO2 absorption coefficient for self-broadening in micro-windows and behind the band edge of 4.3 μm at different temperatures, calculation with V (T). Experiment [22,3] at T = 300°K.
1964
B.H. Winters, S. Silverman, W.S. Benedict , Line shape in the wing beyond the band head of the 4·3 μ band of CO2 , Journal of Quantitative Spectroscopy and Radiation Transfer, 1964 , Volume 4 , Issue 4, Pages 527-537.
CO2
T=300 К
P=∅
2. Experimental absorption CO₂+CO₂
Волновое число (см⁻¹)
Коэффициент поглощения (см⁻¹атм⁻²)
Absorption coefficient a=ln(I0 /I) L p2 for self broadening
1985
Несмелова Л.И., О.Б.Родимова, С.Д.Творогов, , Температурная зависимость коэффициента поглощения СО2 в крыле полосы 4.3 мкм, Деп. ВИНИТИ, 1985, №7998-В85, ВИНИТИ, 1985 , Pages 19.
CO2
T=213 К
P=∅
5b. Буланин М.О., et al. (1976). Experiment T=213K
Волновое число (см⁻¹)
Коэффициент поглощения (см⁻¹Амага⁻²)
Коэффициент поглощения СО2 при самоуширении в микроокнах и за кантом полосы 4.3 мкм при различных температурах, расчет с V(T). Эксперимент [3] при Т=213°К,.
CO2 absorption coefficient for self-broadening in micro-windows and behind the band edge of 4.3 μm at different temperatures, calculation with V (T). Experiment [3] at T=213°K.
1976
Буланин М.О., Булычев В.П., Гранский П.В., Коузов А.П., Тонков М.В. , Исследование функций пропускания СО2 в области полос 4.3 и 15 мкм, Проблемы физики атмосферы. Вып. 13, Ленинград, Изд. ЛГУ, Издательство Ленинградского Государственного Университета, 1976 , Pages 14-24.
CO2
T=∅
P=∅
2. CO₂ (T=273K) Experimental data
Волновое число (см⁻¹)
Коэффициент поглощения (см⁻¹атм⁻²)
Коэффициент поглощения СО2 за кантом полосы 4.3 мкм. Прямые найдены по методу наименьших квадратов, а точки – экспериментальные данные.
1985
Несмелова Л.И., О.Б.Родимова, С.Д.Творогов, , Температурная зависимость коэффициента поглощения СО2 в крыле полосы 4.3 мкм, Деп. ВИНИТИ, 1985, №7998-В85, ВИНИТИ, 1985 , Pages 19.
CO2
T=300 К
P=∅
5c. Winters B.H., et al. (1964) and Буланин М.О., et al. (1976). Experiment T=300K
Волновое число (см⁻¹)
Коэффициент поглощения (см⁻¹Амага⁻²)
Коэффициент поглощения СО2 при самоуширении в микроокнах и за кантом полосы 4.3 мкм. Эксперимент [22,3] при Т=300°К.
CO2 absorption coefficient for self-broadening in micro-windows and behind the band edge of 4.3 µm. Experiment [22,3] at T = 300°K.
1964
B.H. Winters, S. Silverman, W.S. Benedict , Line shape in the wing beyond the band head of the 4·3 μ band of CO2 , Journal of Quantitative Spectroscopy and Radiation Transfer, 1964 , Volume 4 , Issue 4, Pages 527-537.
CO2
T=300 К
P=∅
2. Experimental absorption CO₂+CO₂
Волновое число (см⁻¹)
Коэффициент поглощения (см⁻¹атм⁻²)
Absorption coefficient a=ln(I0 /I) L p2 for self broadening
1985
Несмелова Л.И., О.Б.Родимова, С.Д.Творогов, , Температурная зависимость коэффициента поглощения СО2 в крыле полосы 4.3 мкм, Деп. ВИНИТИ, 1985, №7998-В85, ВИНИТИ, 1985 , Pages 19.
CO2
T=300 К
P=∅
5c. Буланин М.О., et al. (1976). Experiment T=213K
Волновое число (см⁻¹)
Коэффициент поглощения (см⁻¹Амага⁻²)
Коэффициент поглощения СО2 при самоуширении в микроокнах и за кантом полосы 4.3 мкм. Эксперимент [3] при Т=213°К.
CO2 absorption coefficient for self-broadening in micro-windows and behind the band edge of 4.3 µm. Experiment [3] at T=213°K.
[3] Буланин М.О., Булычев В.П., Гранский П.В., Коузов А.П., Тонков М.В., Исследование функций пропускания СО2 в области полос 4.3 и 15 мкм, Проблемы физики атмосферы. Вып. 13, Ленинград, Изд. ЛГУ, 1976 , Pages 14-24.
1976
Буланин М.О., Булычев В.П., Гранский П.В., Коузов А.П., Тонков М.В. , Исследование функций пропускания СО2 в области полос 4.3 и 15 мкм, Проблемы физики атмосферы. Вып. 13, Ленинград, Изд. ЛГУ, Издательство Ленинградского Государственного Университета, 1976 , Pages 14-24.
CO2
T=310 К
P=∅
2. CO₂ (T=310K). Experimental data
Волновое число (см⁻¹)
Коэффициент поглощения (см⁻¹атм⁻²)
Коэффициент поглощения СО2 за кантом полосы 4.3 мкм. Прямые найдены по методу наименьших квадратов, а точки – экспериментальные данные.
1986
Несмелова Л.И., О.Б.Родимова, С.Д.Творогов , Температурная зависимость коэффициента поглощения СО2 в крыле полосы 4.3 мкм, 7 Всесоюзн. симпозиум по молекулярной спектроскопии высокого и сверхвысокого разрешения, тезисы докладов, Томск, 1986, Издательство ИОА, 1986 , Pages 143-147.
CO2
T=273 К
P=∅
1. Adiks T.G., et al. (1984). Experiment. T=273K
Волновое число (см⁻¹)
Коэффициент поглощения (см⁻¹Амага⁻²)
Коэффициент поглощения СО2 за кантом полосы 4.3 мкм. {κ}=см-1 амага-2 , ε=190 К, экспериментальные данные [5].
[5] Адикс Т. Г., Гальцев А. П. Температурная зависимость коэффициента поглощения в канте полосы 4,3 мкм СО2 , Изв. АН СССР, сер.ФАО, 1984, т. 20, № 7, с. 653-657.
1984
Адикс Т. Г., Гальцев А. П. , Температурная зависимость коэффициента поглощения в канте полосы 4,3 мкм СО2 , Известия РАН. Серия Физика атмосферы и океана, 1984 , Volume 20 , Number 7, Pages 653-657.
CO2
T=273 К
P=∅
3. Absorption coefficient behind the edge of the band 4.3 mkm. T=273K
Волновое число (см⁻¹)
Коэффициент поглощения (см⁻¹ (кг / м³)⁻²)
Значения коэффициента К2 *106 , см-1 (кг/м3 )-2 за кантом полосы 4.3 мкм.
The values of the coefficient K2 * 106 , cm-1 (kg / m3 ) -2 behind the edge of the band 4.3 μm.
1986
Несмелова Л.И., О.Б.Родимова, С.Д.Творогов , Температурная зависимость коэффициента поглощения СО2 в крыле полосы 4.3 мкм, 7 Всесоюзн. симпозиум по молекулярной спектроскопии высокого и сверхвысокого разрешения, тезисы докладов, Томск, 1986, Издательство ИОА, 1986 , Pages 143-147.
CO2
T=298 К
P=∅
1. Adiks T.G., et al. (1984). Experiment. T=298K
Волновое число (см⁻¹)
Коэффициент поглощения (см⁻¹Амага⁻²)
Коэффициент поглощения СО2 за кантом полосы 4.3 мкм. {κ}=см-1 амага-2 , ε=190 К, экспериментальные данные [5].
[5] Адикс Т. Г., Гальцев А. П. Температурная зависимость коэффициента поглощения в канте полосы 4,3 мкм СО2 , Изв. АН СССР, сер.ФАО, 1984, т. 20, № 7, с. 653-657.
1984
Адикс Т. Г., Гальцев А. П. , Температурная зависимость коэффициента поглощения в канте полосы 4,3 мкм СО2 , Известия РАН. Серия Физика атмосферы и океана, 1984 , Volume 20 , Number 7, Pages 653-657.
CO2
T=298 К
P=∅
3. Absorption coefficient behind the edge of the band 4.3 mkm. T=298K
Волновое число (см⁻¹)
Коэффициент поглощения (см⁻¹ (кг / м³)⁻²)
Значения коэффициента К2 *106 , см-1 (кг/м3 )-2 за кантом полосы 4.3 мкм.
The values of the coefficient K2 * 106 , cm-1 (kg / m3 ) -2 behind the edge of the band 4.3 μm.
1986
Несмелова Л.И., О.Б.Родимова, С.Д.Творогов , Температурная зависимость коэффициента поглощения СО2 в крыле полосы 4.3 мкм, 7 Всесоюзн. симпозиум по молекулярной спектроскопии высокого и сверхвысокого разрешения, тезисы докладов, Томск, 1986, Издательство ИОА, 1986 , Pages 143-147.
CO2
T=333 К
P=∅
1. Adiks T.G., et al. (1984). Experiment. T=333K
Волновое число (см⁻¹)
Коэффициент поглощения (см⁻¹Амага⁻²)
Коэффициент поглощения СО2 за кантом полосы 4.3 мкм. {κ}=см-1 амага-2 , ε=190 К, экспериментальные данные [5].
[5] Адикс Т. Г., Гальцев А. П. Температурная зависимость коэффициента поглощения в канте полосы 4,3 мкм СО2 , Изв. АН СССР, сер.ФАО, 1984, т. 20, № 7, с. 653-657.
1984
Адикс Т. Г., Гальцев А. П. , Температурная зависимость коэффициента поглощения в канте полосы 4,3 мкм СО2 , Известия РАН. Серия Физика атмосферы и океана, 1984 , Volume 20 , Number 7, Pages 653-657.
CO2
T=333 К
P=∅
3. Absorption coefficient behind the edge of the band 4.3 mkm. T=333K
Волновое число (см⁻¹)
Коэффициент поглощения (см⁻¹ (кг / м³)⁻²)
Значения коэффициента К2 *106 , см-1 (кг/м3 )-2 за кантом полосы 4.3 мкм.
The values of the coefficient K2 * 106 , cm-1 (kg / m3 ) -2 behind the edge of the band 4.3 μm.
1986
Несмелова Л.И., О.Б.Родимова, С.Д.Творогов , Температурная зависимость коэффициента поглощения СО2 в крыле полосы 4.3 мкм, 7 Всесоюзн. симпозиум по молекулярной спектроскопии высокого и сверхвысокого разрешения, тезисы докладов, Томск, 1986, Издательство ИОА, 1986 , Pages 143-147.
CO2
T=363 К
P=∅
1. Adiks T.G., et al. (1984). Experiment. T=363K
Волновое число (см⁻¹)
Коэффициент поглощения (см⁻¹Амага⁻²)
Коэффициент поглощения СО2 за кантом полосы 4.3 мкм. {κ}=см-1 амага-2 , ε=190 К, экспериментальные данные [5].
[5] Адикс Т. Г., Гальцев А. П. Температурная зависимость коэффициента поглощения в канте полосы 4,3 мкм СО2 , Изв. АН СССР, сер.ФАО, 1984, т. 20, № 7, с. 653-657.
1984
Адикс Т. Г., Гальцев А. П. , Температурная зависимость коэффициента поглощения в канте полосы 4,3 мкм СО2 , Известия РАН. Серия Физика атмосферы и океана, 1984 , Volume 20 , Number 7, Pages 653-657.
CO2
T=363 К
P=∅
3. Absorption coefficient behind the edge of the band 4.3 mkm. T=363K
Волновое число (см⁻¹)
Коэффициент поглощения (см⁻¹ (кг / м³)⁻²)
Значения коэффициента К2 *106 , см-1 (кг/м3 )-2 за кантом полосы 4.3 мкм.
The values of the coefficient K2 * 106 , cm-1 (kg / m3 ) -2 behind the edge of the band 4.3 μm.
1987
Несмелова Л.И., О.Б.Родимова, С.Д.Творогов , Температурная зависимость коэффициента поглощения за кантом полосы 4.3 мкм СО2 , Доклады АН СССР, сер. мат., физ., 1987 , Volume 294 , Number 1, Pages 68-71.
CO2
T=∅
P=∅
1. Adiks T.G., et al. (1984). (2400 cm⁻¹)
Температура (К)
Коэффициент поглощения (см⁻¹Амага⁻²)
Зависимость κ от температуры в крыле полосы 4.3 мкм СО2 . Экспериментальные данные [3]. ω=2400 cm-1 .
Temperature dependence of κ in the wing of the 4.3 µm CO2 band. Experimental data [3]. ω=2400 cm-1 .
1984
Адикс Т. Г., Гальцев А. П. , Температурная зависимость коэффициента поглощения в канте полосы 4,3 мкм СО2 , Известия РАН. Серия Физика атмосферы и океана, 1984 , Volume 20 , Number 7, Pages 653-657.
Волновое число (см⁻¹)
Коэффициент поглощения (см⁻¹ (кг / м³)⁻²)
1987
Несмелова Л.И., О.Б.Родимова, С.Д.Творогов , Температурная зависимость коэффициента поглощения за кантом полосы 4.3 мкм СО2 , Доклады АН СССР, сер. мат., физ., 1987 , Volume 294 , Number 1, Pages 68-71.
CO2
T=∅
P=∅
1. Adiks T.G., et al. (1984). (2410 cm⁻¹)
Температура (К)
Коэффициент поглощения (см⁻¹Амага⁻²)
Зависимость κ от температуры в крыле полосы 4.3 мкм СО2 . Экспериментальные данные [3]. ω=2410 cm-1 .
Temperature dependence of κ in the wing of the 4.3 µm CO2 band. Experimental data [3]. ω=2100 cm-1 .
Адикс Т. Г., Гальцев А. П., Температурная зависимость коэффициента поглощения в канте полосы 4,3 мкм СО2 , Известия РАН. Серия Физика атмосферы и океана, 1984 , Т. 20 , № 7, Страницы 653-657.
1984
Адикс Т. Г., Гальцев А. П. , Температурная зависимость коэффициента поглощения в канте полосы 4,3 мкм СО2 , Известия РАН. Серия Физика атмосферы и океана, 1984 , Volume 20 , Number 7, Pages 653-657.
Волновое число (см⁻¹)
Коэффициент поглощения (см⁻¹ (кг / м³)⁻²)
1987
Несмелова Л.И., О.Б.Родимова, С.Д.Творогов , Температурная зависимость коэффициента поглощения за кантом полосы 4.3 мкм СО2 , Доклады АН СССР, сер. мат., физ., 1987 , Volume 294 , Number 1, Pages 68-71.
CO2
T=∅
P=∅
1. Adiks T.G., et al. (1984). (2420 cm⁻¹)
Температура (К)
Коэффициент поглощения (см⁻¹Амага⁻²)
Зависимость κ от температуры в крыле полосы 4.3 мкм СО2 . Экспериментальные данные [3]. ω=2420 cm-1 .
Temperature dependence of κ in the wing of the 4.3 µm CO2 band. Experimental data [3]. ω=2420 cm-1 .
1984
Адикс Т. Г., Гальцев А. П. , Температурная зависимость коэффициента поглощения в канте полосы 4,3 мкм СО2 , Известия РАН. Серия Физика атмосферы и океана, 1984 , Volume 20 , Number 7, Pages 653-657.
Волновое число (см⁻¹)
Коэффициент поглощения (см⁻¹ (кг / м³)⁻²)
1987
Несмелова Л.И., О.Б.Родимова, С.Д.Творогов , Температурная зависимость коэффициента поглощения за кантом полосы 4.3 мкм СО2 , Доклады АН СССР, сер. мат., физ., 1987 , Volume 294 , Number 1, Pages 68-71.
CO2
T=∅
P=∅
1. Adiks T.G., et al. (1984). (2430 cm⁻¹)
Температура (К)
Коэффициент поглощения (см⁻¹Амага⁻²)
Зависимость κ от температуры в крыле полосы 4.3 мкм СО2 . Экспериментальные данные [3]. ω=2430 cm-1 .
Temperature dependence of κ in the wing of the 4.3 µm CO2 band. Experimental data [3]. ω=2430 cm-1 .
1984
Адикс Т. Г., Гальцев А. П. , Температурная зависимость коэффициента поглощения в канте полосы 4,3 мкм СО2 , Известия РАН. Серия Физика атмосферы и океана, 1984 , Volume 20 , Number 7, Pages 653-657.
Волновое число (см⁻¹)
Коэффициент поглощения (см⁻¹ (кг / м³)⁻²)
1987
Несмелова Л.И., О.Б.Родимова, С.Д.Творогов , Температурная зависимость коэффициента поглощения за кантом полосы 4.3 мкм СО2 , Доклады АН СССР, сер. мат., физ., 1987 , Volume 294 , Number 1, Pages 68-71.
CO2
T=∅
P=∅
1. Adiks T.G., et al. (1984). (2440 cm⁻¹)
Температура (К)
Коэффициент поглощения (см⁻¹Амага⁻²)
Зависимость κ от температуры в крыле полосы 4.3 мкм СО2 . Экспериментальные данные [3]. ω=2440 cm-1 .
Temperature dependence of κ in the wing of the 4.3 µm CO2 band. Experimental data [3]. ω=2440 cm-1 .
1984
Адикс Т. Г., Гальцев А. П. , Температурная зависимость коэффициента поглощения в канте полосы 4,3 мкм СО2 , Известия РАН. Серия Физика атмосферы и океана, 1984 , Volume 20 , Number 7, Pages 653-657.
Волновое число (см⁻¹)
Коэффициент поглощения (см⁻¹ (кг / м³)⁻²)
1987
Несмелова Л.И., О.Б.Родимова, С.Д.Творогов , Температурная зависимость коэффициента поглощения за кантом полосы 4.3 мкм СО2 , Доклады АН СССР, сер. мат., физ., 1987 , Volume 294 , Number 1, Pages 68-71.
CO2
T=∅
P=∅
1. Adiks T.G., et al. (1984). (2450 cm⁻¹)
Температура (К)
Коэффициент поглощения (см⁻¹Амага⁻²)
Зависимость κ от температуры в крыле полосы 4.3 мкм СО2 . Экспериментальные данные [3]. ω=2430 cm-1 .
Temperature dependence of κ in the wing of the 4.3 µm CO2 band. Experimental data [3]. ω=2430 cm-1 .
1984
Адикс Т. Г., Гальцев А. П. , Температурная зависимость коэффициента поглощения в канте полосы 4,3 мкм СО2 , Известия РАН. Серия Физика атмосферы и океана, 1984 , Volume 20 , Number 7, Pages 653-657.
Волновое число (см⁻¹)
Коэффициент поглощения (см⁻¹ (кг / м³)⁻²)
1987
Несмелова Л.И., О.Б.Родимова, С.Д.Творогов , Температурная зависимость коэффициента поглощения за кантом полосы 4.3 мкм СО2 , Доклады АН СССР, сер. мат., физ., 1987 , Volume 294 , Number 1, Pages 68-71.
CO2
T=∅
P=∅
1. Bulanin M.O., et al. (1976). (2400 cm⁻¹)
Температура (К)
Коэффициент поглощения (см⁻¹Амага⁻²)
Зависимость κ от температуры в крыле полосы 4.3 мкм СО2 ; Экспериментальные данные [2]. ω=
1976
Буланин М.О., Булычев В.П., Гранский П.В., Коузов А.П., Тонков М.В. , Исследование функций пропускания СО2 в области полос 4.3 и 15 мкм, Проблемы физики атмосферы. Вып. 13, Ленинград, Изд. ЛГУ, Издательство Ленинградского Государственного Университета, 1976 , Pages 14-24.
Волновое число (см⁻¹) Волновое число (см⁻¹)
Коэффициент поглощения (см⁻¹атм⁻²)Коэффициент пропускания (произвольные единицы)
1987
Несмелова Л.И., О.Б.Родимова, С.Д.Творогов , Температурная зависимость коэффициента поглощения за кантом полосы 4.3 мкм СО2 , Доклады АН СССР, сер. мат., физ., 1987 , Volume 294 , Number 1, Pages 68-71.
CO2
T=∅
P=∅
1. Bulanin M.O., et al. (1976). (2410 cm⁻¹)
Температура (К)
Коэффициент поглощения (см⁻¹Амага⁻²)
Зависимость κ от температуры в крыле полосы 4.3 мкм СО2 ; Экспериментальные данные [2]. ω=2410 см-1 .
[2] Буланин М.О., Булычев В.П., Гранский П.В., Коузов А.П., Тонков М.В., Исследование функций пропускания СО2 в области полос 4.3 и 15 мкм, Проблемы физики атмосферы. Вып. 13, Ленинград, Изд. ЛГУ,
Ленинград, Издательство Ленинградского Государственного Университета, 1976 , Pages 14-24.
1976
Буланин М.О., Булычев В.П., Гранский П.В., Коузов А.П., Тонков М.В. , Исследование функций пропускания СО2 в области полос 4.3 и 15 мкм, Проблемы физики атмосферы. Вып. 13, Ленинград, Изд. ЛГУ, Издательство Ленинградского Государственного Университета, 1976 , Pages 14-24.
Волновое число (см⁻¹) Волновое число (см⁻¹)
Коэффициент поглощения (см⁻¹атм⁻²)Коэффициент пропускания (произвольные единицы)
1987
Несмелова Л.И., О.Б.Родимова, С.Д.Творогов , Температурная зависимость коэффициента поглощения за кантом полосы 4.3 мкм СО2 , Доклады АН СССР, сер. мат., физ., 1987 , Volume 294 , Number 1, Pages 68-71.
CO2
T=∅
P=∅
1. Bulanin M.O., et al. (1976). (2420 cm⁻¹)
Температура (К)
Коэффициент поглощения (см⁻¹Амага⁻²)
Зависимость κ от температуры в крыле полосы 4.3 мкм СО2 ; Экспериментальные данные [2]. ω=
1976
Буланин М.О., Булычев В.П., Гранский П.В., Коузов А.П., Тонков М.В. , Исследование функций пропускания СО2 в области полос 4.3 и 15 мкм, Проблемы физики атмосферы. Вып. 13, Ленинград, Изд. ЛГУ, Издательство Ленинградского Государственного Университета, 1976 , Pages 14-24.
Волновое число (см⁻¹) Волновое число (см⁻¹)
Коэффициент поглощения (см⁻¹атм⁻²)Коэффициент пропускания (произвольные единицы)
1987
Несмелова Л.И., О.Б.Родимова, С.Д.Творогов , Температурная зависимость коэффициента поглощения за кантом полосы 4.3 мкм СО2 , Доклады АН СССР, сер. мат., физ., 1987 , Volume 294 , Number 1, Pages 68-71.
CO2
T=∅
P=∅
1. Bulanin M.O., et al. (1976). (2430 cm⁻¹)
Температура (К)
Коэффициент поглощения (см⁻¹Амага⁻²)
Зависимость κ от температуры в крыле полосы 4.3 мкм СО2 ; Экспериментальные данные [2]. ω=2430 cm-1 .
Temperature dependence of κ in the wing of the 4.3 µm CO2 band;Experimental data [2]. ω=2430 cm-1 .
1976
Буланин М.О., Булычев В.П., Гранский П.В., Коузов А.П., Тонков М.В. , Исследование функций пропускания СО2 в области полос 4.3 и 15 мкм, Проблемы физики атмосферы. Вып. 13, Ленинград, Изд. ЛГУ, Издательство Ленинградского Государственного Университета, 1976 , Pages 14-24.
Волновое число (см⁻¹) Волновое число (см⁻¹)
Коэффициент поглощения (см⁻¹атм⁻²)Коэффициент пропускания (произвольные единицы)
1987
Несмелова Л.И., О.Б.Родимова, С.Д.Творогов , Температурная зависимость коэффициента поглощения за кантом полосы 4.3 мкм СО2 , Доклады АН СССР, сер. мат., физ., 1987 , Volume 294 , Number 1, Pages 68-71.
CO2
T=∅
P=∅
1. Bulanin M.O., et al. (1976). (2440 cm⁻¹)
Температура (К)
Коэффициент поглощения (см⁻¹Амага⁻²)
Зависимость κ от температуры в крыле полосы 4.3 мкм СО2 ; Экспериментальные данные [2]. ω=2440 cm-1 .
Temperature dependence of κ in the wing of the 4.3 µm CO2 band;Experimental data [2]. ω=2440 cm-1 .
1976
Буланин М.О., Булычев В.П., Гранский П.В., Коузов А.П., Тонков М.В. , Исследование функций пропускания СО2 в области полос 4.3 и 15 мкм, Проблемы физики атмосферы. Вып. 13, Ленинград, Изд. ЛГУ, Издательство Ленинградского Государственного Университета, 1976 , Pages 14-24.
Волновое число (см⁻¹) Волновое число (см⁻¹)
Коэффициент поглощения (см⁻¹атм⁻²)Коэффициент пропускания (произвольные единицы)
1987
Несмелова Л.И., О.Б.Родимова, С.Д.Творогов , Температурная зависимость коэффициента поглощения за кантом полосы 4.3 мкм СО2 , Доклады АН СССР, сер. мат., физ., 1987 , Volume 294 , Number 1, Pages 68-71.
CO2
T=∅
P=∅
1. Bulanin M.O., et al. (1976). (2450 cm⁻¹)
Температура (К)
Коэффициент поглощения (см⁻¹Амага⁻²)
Зависимость κ от температуры в крыле полосы 4.3 мкм СО2 ; Экспериментальные данные [2]. ω=2450 cm-1 .
Temperature dependence of κ in the wing of the 4.3 µm CO2 band. Experimental data [2]. ω=2450 cm-1 .
[2] Буланин М.О., Булычев В.П., Гранский П.В., Коузов А.П., Тонков М.В., Исследование функций пропускания СО2 в области полос 4.3 и 15 мкм, Проблемы физики атмосферы. Вып. 13, Ленинград, Изд. ЛГУ, Ленинград, Издательство Ленинградского Государственного Университета, 1976 , Pages 14-24.
1976
Буланин М.О., Булычев В.П., Гранский П.В., Коузов А.П., Тонков М.В. , Исследование функций пропускания СО2 в области полос 4.3 и 15 мкм, Проблемы физики атмосферы. Вып. 13, Ленинград, Изд. ЛГУ, Издательство Ленинградского Государственного Университета, 1976 , Pages 14-24.
Волновое число (см⁻¹) Волновое число (см⁻¹)
Коэффициент поглощения (см⁻¹атм⁻²)Коэффициент пропускания (произвольные единицы)
1987
Несмелова Л.И., О.Б.Родимова, С.Д.Творогов , Температурная зависимость коэффициента поглощения за кантом полосы 4.3 мкм СО2 , Доклады АН СССР, сер. мат., физ., 1987 , Volume 294 , Number 1, Pages 68-71.
CO2
T=∅
P=∅
1. Le Doucen R., et al. (1985). (2400 cm⁻¹)
Температура (К)
Коэффициент поглощения (см⁻¹Амага⁻²)
Зависимость κ от температуры в крыле полосы 4.3 мкм СО2 . Экспериментальные данные [4]. ω=2400 cm-1 .
Temperature dependence of κ in the wing of the 4.3 µm CO2 band. Experimental data [4]. ω=2400 cm-1 .
х2ъ R. Le Doucen, C. Cousin, C. Boulet, and A. Henry, Temperature dependence of the absorption in the region beyond the 4.3-µm band head of CO2 . 1: Pure CO2 case, Applied Optics, 1985 , Volume 24 , Pages 897-906, DOI: 10.1364/AO.24.000897 , http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-24-6-897 .
1985
R. Le Doucen, C. Cousin, C. Boulet, and A. Henry , Temperature dependence of the absorption in the region beyond the 4.3-µm band head of CO2 . 1: Pure CO2 case, Applied Optics, 1985 , Volume 24 , Pages 897-906.
Волновое число (см⁻¹) Волновое число (см⁻¹) Волновое число (см⁻¹)
Заданная функция Коэффициент поглощения (см⁻¹Амага⁻²)Поправочный фактор формы линии
1987
Несмелова Л.И., О.Б.Родимова, С.Д.Творогов , Температурная зависимость коэффициента поглощения за кантом полосы 4.3 мкм СО2 , Доклады АН СССР, сер. мат., физ., 1987 , Volume 294 , Number 1, Pages 68-71.
CO2
T=∅
P=∅
1. Le Doucen R., et al. (1985). (2410 cm⁻¹)
Температура (К)
Коэффициент поглощения (см⁻¹Амага⁻²)
Зависимость κ от температуры в крыле полосы 4.3 мкм СО2 . Экспериментальные данные [4]. ω=2400 cm-1 .
Temperature dependence of κ in the wing of the 4.3 µm CO2 band. Experimental data [4]. ω=2400 cm-1 .
[2] R. Le Doucen, C. Cousin, C. Boulet, and A. Henry, Temperature dependence of the absorption in the region beyond the 4.3-µm band head of CO2 . 1: Pure CO2 case, Applied Optics, 1985 , Volume 24 , Pages 897-906, DOI: 10.1364/AO.24.000897 , http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-24-6-897 .
1985
R. Le Doucen, C. Cousin, C. Boulet, and A. Henry , Temperature dependence of the absorption in the region beyond the 4.3-µm band head of CO2 . 1: Pure CO2 case, Applied Optics, 1985 , Volume 24 , Pages 897-906.
Волновое число (см⁻¹) Волновое число (см⁻¹) Волновое число (см⁻¹)
Заданная функция Коэффициент поглощения (см⁻¹Амага⁻²)Поправочный фактор формы линии
1987
Несмелова Л.И., О.Б.Родимова, С.Д.Творогов , Температурная зависимость коэффициента поглощения за кантом полосы 4.3 мкм СО2 , Доклады АН СССР, сер. мат., физ., 1987 , Volume 294 , Number 1, Pages 68-71.
CO2
T=∅
P=∅
1. Le Doucen R., et al. (1985). (2420 cm⁻¹)
Температура (К)
Коэффициент поглощения (см⁻¹Амага⁻²)
Зависимость κ от температуры в крыле полосы 4.3 мкм СО2 . Экспериментальные данные [4]. ω=2420 cm-1 .
Temperature dependence of κ in the wing of the 4.3 µm CO2 band. Experimental data [4]. ω=2420 cm-1 .
1985
R. Le Doucen, C. Cousin, C. Boulet, and A. Henry , Temperature dependence of the absorption in the region beyond the 4.3-µm band head of CO2 . 1: Pure CO2 case, Applied Optics, 1985 , Volume 24 , Pages 897-906.
Волновое число (см⁻¹) Волновое число (см⁻¹) Волновое число (см⁻¹)
Заданная функция Коэффициент поглощения (см⁻¹Амага⁻²)Поправочный фактор формы линии
1987
Несмелова Л.И., О.Б.Родимова, С.Д.Творогов , Температурная зависимость коэффициента поглощения за кантом полосы 4.3 мкм СО2 , Доклады АН СССР, сер. мат., физ., 1987 , Volume 294 , Number 1, Pages 68-71.
CO2
T=∅
P=∅
1. Le Doucen R., et al. (1985). (2430 cm⁻¹)
Температура (К)
Коэффициент поглощения (см⁻¹Амага⁻²)
Зависимость κ от температуры в крыле полосы 4.3 мкм СО2 . Экспериментальные данные [4]. ω=2430 cm-1 .
Temperature dependence of κ in the wing of the 4.3 µm CO2 band. Experimental data [4]. ω=2430 cm-1 .
1985
R. Le Doucen, C. Cousin, C. Boulet, and A. Henry , Temperature dependence of the absorption in the region beyond the 4.3-µm band head of CO2 . 1: Pure CO2 case, Applied Optics, 1985 , Volume 24 , Pages 897-906.
Волновое число (см⁻¹) Волновое число (см⁻¹) Волновое число (см⁻¹)
Заданная функция Коэффициент поглощения (см⁻¹Амага⁻²)Поправочный фактор формы линии
1987
Несмелова Л.И., О.Б.Родимова, С.Д.Творогов , Температурная зависимость коэффициента поглощения за кантом полосы 4.3 мкм СО2 , Доклады АН СССР, сер. мат., физ., 1987 , Volume 294 , Number 1, Pages 68-71.
CO2
T=∅
P=∅
1. Le Doucen R., et al. (1985). (2440 cm⁻¹)
Температура (К)
Коэффициент поглощения (см⁻¹Амага⁻²)
Зависимость κ от температуры в крыле полосы 4.3 мкм СО2 . Экспериментальные данные [4]. ω=2440 cm-1 .
Temperature dependence of κ in the wing of the 4.3 µm CO2 band. Experimental data [4]. ω=2440 cm-1 .
[4] R. Le Doucen, C. Cousin, C. Boulet, and A. Henry, Temperature dependence of the absorption in the region beyond the 4.3-µm band head of CO2 . 1: Pure CO2 case, Applied Optics, 1985 , Volume 24 , Pages 897-906, DOI: 10.1364/AO.24.000897 , http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-24-6-897 .
1985
R. Le Doucen, C. Cousin, C. Boulet, and A. Henry , Temperature dependence of the absorption in the region beyond the 4.3-µm band head of CO2 . 1: Pure CO2 case, Applied Optics, 1985 , Volume 24 , Pages 897-906.
Волновое число (см⁻¹) Волновое число (см⁻¹) Волновое число (см⁻¹)
Заданная функция Коэффициент поглощения (см⁻¹Амага⁻²)Поправочный фактор формы линии
1987
Несмелова Л.И., О.Б.Родимова, С.Д.Творогов , Температурная зависимость коэффициента поглощения за кантом полосы 4.3 мкм СО2 , Доклады АН СССР, сер. мат., физ., 1987 , Volume 294 , Number 1, Pages 68-71.
CO2
T=∅
P=∅
1. Le Doucen R., et al. (1985). (2450 cm⁻¹)
Температура (К)
Коэффициент поглощения (см⁻¹Амага⁻²)
Зависимость κ от температуры в крыле полосы 4.3 мкм СО2 . Экспериментальные данные [4]. ω=2450 cm-1 . Temperature dependence of κ in the wing of the 4.3 µm CO2 band. Experimental data [4]. ω=2450 cm-1 .
[4] R. Le Doucen, C. Cousin, C. Boulet, and A. Henry, Temperature dependence of the absorption in the region beyond the 4.3-µm band head of CO2 . 1: Pure CO2 case, Applied Optics, 1985 , Volume 24 , Pages 897-906, DOI: 10.1364/AO.24.000897 , http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-24-6-897 .
1985
R. Le Doucen, C. Cousin, C. Boulet, and A. Henry , Temperature dependence of the absorption in the region beyond the 4.3-µm band head of CO2 . 1: Pure CO2 case, Applied Optics, 1985 , Volume 24 , Pages 897-906.
Волновое число (см⁻¹) Волновое число (см⁻¹) Волновое число (см⁻¹)
Заданная функция Коэффициент поглощения (см⁻¹Амага⁻²)Поправочный фактор формы линии
1987
Несмелова Л.И., О.Б.Родимова, С.Д.Творогов , Температурная зависимость коэффициента поглощения за кантом полосы 4.3 мкм СО2 , Доклады АН СССР, сер. мат., физ., 1987 , Volume 294 , Number 1, Pages 68-71.
CO2
T=218 К
P=∅
2. Le Doucen R., et al. (1985). Experiment. T=218K
Смещение от центра линии (см⁻¹)
Коэффициент поглощения (см⁻¹Амага⁻²)
Контур отдельной линии; Контур, найденный в [4] для температуры
1985
R. Le Doucen, C. Cousin, C. Boulet, and A. Henry , Temperature dependence of the absorption in the region beyond the 4.3-µm band head of CO2 . 1: Pure CO2 case, Applied Optics, 1985 , Volume 24 , Pages 897-906.
Волновое число (см⁻¹) Волновое число (см⁻¹) Волновое число (см⁻¹)
Заданная функция Коэффициент поглощения (см⁻¹Амага⁻²)Поправочный фактор формы линии
1987
Несмелова Л.И., О.Б.Родимова, С.Д.Творогов , Температурная зависимость коэффициента поглощения за кантом полосы 4.3 мкм СО2 , Доклады АН СССР, сер. мат., физ., 1987 , Volume 294 , Number 1, Pages 68-71.
CO2
T=296 К
P=∅
2. Le Doucen R., et al. (1985). Experiment. T=296K
Смещение от центра линии (см⁻¹)
Коэффициент поглощения (см⁻¹Амага⁻²)
Контур отдельной линии; Контур, найденный в [4] для температуры 296
1985
R. Le Doucen, C. Cousin, C. Boulet, and A. Henry , Temperature dependence of the absorption in the region beyond the 4.3-µm band head of CO2 . 1: Pure CO2 case, Applied Optics, 1985 , Volume 24 , Pages 897-906.
Волновое число (см⁻¹) Волновое число (см⁻¹) Волновое число (см⁻¹)
Заданная функция Коэффициент поглощения (см⁻¹Амага⁻²)Поправочный фактор формы линии
1987
Несмелова Л.И., О.Б.Родимова, С.Д.Творогов , О природе температурной зависимости коэффициента поглощения в далеком крыле полосы 4.3 мкм СО2 , Известия вузов СССР, сер. Физика, 1987 , Number 12, Pages 42-45.
CO2
T=298 К
P=∅
2. Adiks T.G., et al. (1984). Experiment. T=298K
Волновое число (см⁻¹)
Коэффициент поглощения (см⁻¹Амага⁻²)
Коэффициент поглощения κ(ω,T) в крыле полосы 4.3 мкм СО2 . Эксперимент: Т=193°К [5].
The absorption coefficient κ (ω, T) in the wing of the 4.3 µm CO2 band. Experiment: T = 193°K [5].
[4] Адикс Т. Г., Гальцев А. П. Температурная зависимость коэффициента поглощения в канте полосы 4,3 мкм СО2, Изв. АН СССР, сер.ФАО, 1984, т. 20, № 7, с. 653-657.
1984
Адикс Т. Г., Гальцев А. П. , Температурная зависимость коэффициента поглощения в канте полосы 4,3 мкм СО2 , Известия РАН. Серия Физика атмосферы и океана, 1984 , Volume 20 , Number 7, Pages 653-657.
CO2
T=298 К
P=∅
3. Absorption coefficient behind the edge of the band 4.3 mkm. T=298K
Волновое число (см⁻¹)
Коэффициент поглощения (см⁻¹ (кг / м³)⁻²)
Значения коэффициента К2 *106 , см-1 (кг/м3 )-2 за кантом полосы 4.3 мкм.
The values of the coefficient K2 * 106 , cm-1 (kg / m3 ) -2 behind the edge of the band 4.3 μm.
1987
Несмелова Л.И., О.Б.Родимова, С.Д.Творогов , О природе температурной зависимости коэффициента поглощения в далеком крыле полосы 4.3 мкм СО2 , Известия вузов СССР, сер. Физика, 1987 , Number 12, Pages 42-45.
CO2
T=193 К
P=∅
2. Le Doucen R., et al. (1985). Experiment. T=193K
Волновое число (см⁻¹)
Коэффициент поглощения (см⁻¹Амага⁻²)
Коэффициент поглощения κ(ω,T) в крыле полосы 4.3 мкм СО2 . Эксперимент: Т=298°, 296°К [4].
The absorption coefficient κ (ω, T) in the wing of the 4.3 µm CO2 band. Experiment: T = 298°, 296°K [4];
[5] Le Doucen R., Cousin C., Boulet C., Henry A. Temperature dependence of the absorption in the region beyond the 4.3 mm band of CO2. I: Pure CO2 case, Appl. Opt. 24, No.6, 897-906 (1985)
1985
R. Le Doucen, C. Cousin, C. Boulet, and A. Henry , Temperature dependence of the absorption in the region beyond the 4.3-µm band head of CO2 . 1: Pure CO2 case, Applied Optics, 1985 , Volume 24 , Pages 897-906.
CO2
T=193 К
P=∅
1. Normalized Absorption Coefficient. T=193K
Волновое число (см⁻¹)
Коэффициент поглощения (см⁻¹Амага⁻²)
Table 1 . Observed Normalized Absorptlon CoeffIcIent A0 (σ,T) In cm-1 amagat-2 at Selected Temperatures
1987
Несмелова Л.И., О.Б.Родимова, С.Д.Творогов , О природе температурной зависимости коэффициента поглощения в далеком крыле полосы 4.3 мкм СО2 , Известия вузов СССР, сер. Физика, 1987 , Number 12, Pages 42-45.
CO2
T=296 К
P=∅
2. Le Doucen R., et al. (1985). Experiment. T=296K
Волновое число (см⁻¹)
Коэффициент поглощения (см⁻¹Амага⁻²)
Коэффициент поглощения κ(ω,T) в крыле полосы 4.3 мкм СО2 . Эксперимент: T=296°К [5]К.
The absorption coefficient κ (ω, T) in the wing of the 4.3 µm CO2 band. Experiment: T = 296°K [5];
[5] Le Doucen R., Cousin C., Boulet C., Henry A. Temperature dependence of the absorption in the region beyond the 4.3 mm band of CO2 . I: Pure CO2 case, Appl. Opt. 24, No.6, 897-906 (1985).
1985
R. Le Doucen, C. Cousin, C. Boulet, and A. Henry , Temperature dependence of the absorption in the region beyond the 4.3-µm band head of CO2 . 1: Pure CO2 case, Applied Optics, 1985 , Volume 24 , Pages 897-906.
CO2
T=296 К
P=∅
1. Normalized Absorption Coefficient.T=296K
Волновое число (см⁻¹)
Коэффициент поглощения (см⁻¹Амага⁻²)
Table 1 . Observed Normalized Absorptlon CoeffIcIent A0 (σ,T) In cm-1 amagat-2 at Selected Temperatures
1988
Кузнецов М.Н. , Расчет поглощения крыльями линий СО2 в полосе 4.3 мкм, Известия РАН. Серия Физика атмосферы и океана, 1988 , Volume 24 , Number 4, Pages 394-402.
CO2
T=∅
P=∅
2a. Burch D.E., et al. (1969). Experiment
Волновое число (см⁻¹)
Коэффициент поглощения (см⁻¹атм⁻¹)
Коэффициент поглощения крыльями линий СО2 : самоуширение, данные [2].
Coefficient of absorption by the wings of CO2 lines: self-broadening, data [2].
1969
Darrell E. Burch, David A. Gryvnak, Richard R. Patty, and Charlotte E. Bartky , Absorption of Infrared Radiant Energy by CO2 and H2 O. IV. Shapes of Collision-Broadened CO2 Lines, Journal of Optical Society of America, 1969 , Volume 59 , Pages 267-278.
CO2
T=∅
P=1 атм
10. Mixture CO₂. Exp. (2400-2570 cm⁻¹)
Волновое число (см⁻¹)
Нормализованный коэффициент поглощения (атм⁻¹см⁻¹)STP
K for CO2 in the 2400 cm-1 region. The curves represent the contribution of lines below 2400 cm-1 . Above 2570 cm-1 , it is difficult to account for. the contribution of the nearby bands; however, from curve B of Fig. 3, we can set upper 0 limits on K, of 5*10-1 and 5*10-9 (atm cmSTP )-1 at 2710 and 2830 cm-1 , respectively.
1988
Кузнецов М.Н. , Расчет поглощения крыльями линий СО2 в полосе 4.3 мкм, Известия РАН. Серия Физика атмосферы и океана, 1988 , Volume 24 , Number 4, Pages 394-402.
CO2
T=∅
P=∅
2a. Sattarov, K., et al. (1983). Experiment
Волновое число (см⁻¹)
Коэффициент поглощения (см⁻¹атм⁻¹)
Коэффициент поглощения крыльями линий СО2 : самоуширение, данные [4,11].
Coefficient of absorption by the wings of CO2 lines: self-broadening, data [4,11].
1980
Телегин Г.В., Фирсов К.М., Фомин В.В. , Расчет коэффициента поглощения в спектре СО2 . Микроокна полосы 4.3 мкм СО2 , Оптика и спектроскопия, 1980 , Volume 49 , Issue 6, Pages 1159-1163.
CO2
T=∅
P=∅
1. Dokuchaev A.B., et al. (1979). Experimental data
Волновое число (см⁻¹)
Коэффициент поглощения (см⁻¹атм⁻²)
Бинарный коэффициент поглощения в случае СО2 +СО2 . 1 – данные эксперимента [9].
Binary absorption coefficient in the case of CO2 +CO2 . 1 - Experimental data [9].
[9] Докучаев А.Б., Телегин Г.В., Тонков М.В., Фомин В.В., Фирсов К.М., Исследование пропускания в микроокнах прозрачности полосы 4.3 мкм СО2 , 5 Всесоюз. Симпозиум по распространению лазерного излучения в атмосфере. Ч. 3. Томск: ИОА СО АН СССР, Томск, Издательство ИОА, 1979 , Pages 157-161.
1988
Кузнецов М.Н. , Расчет поглощения крыльями линий СО2 в полосе 4.3 мкм, Известия РАН. Серия Физика атмосферы и океана, 1988 , Volume 24 , Number 4, Pages 394-402.
CO2
T=∅
P=∅
2a. Winters B.H., et al. (1964). Experiment
Волновое число (см⁻¹)
Коэффициент поглощения (см⁻¹атм⁻¹)
Коэффициент поглощения крыльями линий СО2 : самоуширение, данные [1]
Coefficient of absorption by the wings of CO2 lines: self-broadening, data [1].
[1] B.H. Winters, S. Silverman, W.S. Benedict,
Line shape in the wing beyond the band head of the 4·3 μ band of CO2 , Journal of Quantitative Spectroscopy and Radiation Transfer, 1964 , Volume 4 , Issue 4, Pages 527-537, DOI: 10.1016/0022-4073(64)90014-7 .
1964
B.H. Winters, S. Silverman, W.S. Benedict , Line shape in the wing beyond the band head of the 4·3 μ band of CO2 , Journal of Quantitative Spectroscopy and Radiation Transfer, 1964 , Volume 4 , Issue 4, Pages 527-537.
CO2
T=300 К
P=∅
2. Experimental absorption CO₂+CO₂
Волновое число (см⁻¹)
Коэффициент поглощения (см⁻¹атм⁻²)
Absorption coefficient a=ln(I0 /I) L p2 for self broadening
1989
J.-.M. Hartmann , Measurements and calculations of CO2 room-temperature high-pressure spectra in the 4.3 μm region, Journal of Chemical Physics, 1989 , Volume 90 , Issue 6, Pages 2944–2950.
CO2
T=296 К
P=1 атм
1. Normalized absorption coefficient. CO₂. (T=296K)
Волновое число (см⁻¹)
Коэффициент поглощения (см⁻¹Амага⁻²)
Normalized absorption coefficient (in cm-1 amagat-2 ) beyond the bandhead.
34. R. Le Doucen, C. Cousin, C. Boulet, and A. Henry, Appl. Opt. 24, 897 (1985)
1985
R. Le Doucen, C. Cousin, C. Boulet, and A. Henry , Temperature dependence of the absorption in the region beyond the 4.3-µm band head of CO2 . 1: Pure CO2 case, Applied Optics, 1985 , Volume 24 , Pages 897-906.
CO2
T=296 К
P=∅
1. Normalized Absorption Coefficient.T=296K
Волновое число (см⁻¹)
Коэффициент поглощения (см⁻¹Амага⁻²)
Table 1 . Observed Normalized Absorptlon CoeffIcIent A0 (σ,T) In cm-1 amagat-2 at Selected Temperatures
1989
Jean-Michel Hartmann and Marie-Yvonne Perrin , Measurements of pure CO2 absorption beyond the ν3 bandhead at high temperature, Applied Optics, 1989 , Volume 28 , Pages 2550-2553.
CO2
T=751 К
P=∅
5c. Calculation with the Lorentzian model Khee (296K) factor [4,5]
Волновое число (см⁻¹)
Коэффициент поглощения (см⁻¹Амага⁻²)
Wavenumber dependence of the pure CO2 normalized absorption coefficient at 751°K; Calculation with the Lorentzian model Khee (296K) factor [4,5].
1985
R. Le Doucen, C. Cousin, C. Boulet, and A. Henry , Temperature dependence of the absorption in the region beyond the 4.3-µm band head of CO2 . 1: Pure CO2 case, Applied Optics, 1985 , Volume 24 , Pages 897-906.
CO2
T=296 К
P=∅
5a. Normalized absorption coefficient. CO₂. T=296K
Волновое число (см⁻¹)
Коэффициент поглощения (см⁻¹Амага⁻²)
Wave number dependence of the normalized absorption coefficient A0 (σ,T), in cm-1 amagat-2 , for temperature: 296°K.
1990
Tvorogov S.D., Nesmelova L.I., Rodimova O.B. , Far wings of spectral lines: theory, interpretation and application in atmospheric optics, Proceedings of ASA Workshop, 1990. Tomsk, Издательство ИОА, 1990 , Pages 14-18.
CO2
T=291 К
P=∅
3. Hartmann J.M. (1989). Calculation taking interference into account (ro=1.62 amagat)
Волновое число (см⁻¹)
Пропускание (%)
CO2 transmittance spectrum. T=291°K, L=4.4 cm. Calculation taking interference into account [4. 1 – ρ=1.62 amagat.
[4] Hartmann J.M. J. Chem. Phys. 1989. V.90. No.8. P.2944
1989
J.-.M. Hartmann , Measurements and calculations of CO2 room-temperature high-pressure spectra in the 4.3 μm region, Journal of Chemical Physics, 1989 , Volume 90 , Issue 6, Pages 2944–2950.
CO2
T=291 К
P=∅
3. Experimental transmission spectra. d=1.62 amagat
Волновое число (см⁻¹)
Пропускание (%)
Transmission spectra at 291°K for the densities 1.62 amagat. Experimental.
1990
Tvorogov S.D., Nesmelova L.I., Rodimova O.B. , Far wings of spectral lines: theory, interpretation and application in atmospheric optics, Proceedings of ASA Workshop, 1990. Tomsk, Издательство ИОА, 1990 , Pages 14-18.
CO2
T=291 К
P=∅
3. Hartmann J.M. (1989). Calculation taking interference into account (ro=17 amagat)
Волновое число (см⁻¹)
Пропускание (%)
CO2 transmittance spectrum. T=291°K, L=4.4 cm. Calculation taking interference into account [4], 2 – ρ=17 amagat.
J.-.M. Hartmann, Measurements and calculations of CO2 room-temperature high-pressure spectra in the 4.3 μm region, Journal of Chemical Physics, 1989 , Volume 90 , Issue 6, Pages 2944–2950, DOI: 10.1063/1.455894
1989
J.-.M. Hartmann , Measurements and calculations of CO2 room-temperature high-pressure spectra in the 4.3 μm region, Journal of Chemical Physics, 1989 , Volume 90 , Issue 6, Pages 2944–2950.
CO2
T=291 К
P=∅
3. Experimental transmission spectra. d=17.0 amagat
Волновое число (см⁻¹)
Пропускание (%)
Transmission spectra at 291°K for the densities 17.0 amagat. Experimental.
1990
Tvorogov S.D., Nesmelova L.I., Rodimova O.B. , Far wings of spectral lines: theory, interpretation and application in atmospheric optics, Proceedings of ASA Workshop, 1990. Tomsk, Издательство ИОА, 1990 , Pages 14-18.
CO2
T=291 К
P=∅
3. Hartmann J.M. (1989). Calculation taking interference into account (ro=77 amagat)
Волновое число (см⁻¹)
Пропускание (%)
CO2 transmittance spectrum. T=291°K, L=4.4 cm. Calculation taking interference into account [4]. 3- ρ=77 amagat.
[4] J.-.M. Hartmann, Measurements and calculations of CO2 room-temperature high-pressure spectra in the 4.3 μm region, Journal of Chemical Physics, 1989 , Volume 90 , Issue 6, Pages 2944–2950, DOI: 10.1063/1.455894
1989
J.-.M. Hartmann , Measurements and calculations of CO2 room-temperature high-pressure spectra in the 4.3 μm region, Journal of Chemical Physics, 1989 , Volume 90 , Issue 6, Pages 2944–2950.
CO2
T=291 К
P=∅
5. Experimental Transmission spectrum. d=77.1 amagat
Волновое число (см⁻¹)
Пропускание (%)
Transmission spectra at 291°K for the densities 77.1 amagat. Experimental.
1990
Tvorogov S.D., Nesmelova L.I., Rodimova O.B. , Far wings of spectral lines: theory, interpretation and application in atmospheric optics, Proceedings of ASA Workshop, 1990. Tomsk, Издательство ИОА, 1990 , Pages 14-18.
CO2
T=291 К
P=∅
3. Hartmann J.M. (1989). Experiment (ro=1.62 amagat)
Волновое число (см⁻¹)
Пропускание (%)
CO2 transmittance spectrum. T=291°K, L=4.4 cm. Experiment [4]. 1 – ρ=1.62 amagat
[4] J.-.M. Hartmann, Measurements and calculations of CO2 room-temperature high-pressure spectra in the 4.3 μm region, Journal of Chemical Physics, 1989 , Volume 90 , Issue 6, Pages 2944–2950, DOI: 10.1063/1.455894 .
1989
J.-.M. Hartmann , Measurements and calculations of CO2 room-temperature high-pressure spectra in the 4.3 μm region, Journal of Chemical Physics, 1989 , Volume 90 , Issue 6, Pages 2944–2950.
CO2
T=291 К
P=∅
3. Experimental transmission spectra. d=1.62 amagat
Волновое число (см⁻¹)
Пропускание (%)
Transmission spectra at 291°K for the densities 1.62 amagat. Experimental.
1990
Tvorogov S.D., Nesmelova L.I., Rodimova O.B. , Far wings of spectral lines: theory, interpretation and application in atmospheric optics, Proceedings of ASA Workshop, 1990. Tomsk, Издательство ИОА, 1990 , Pages 14-18.
CO2
T=291 К
P=∅
3. Hartmann J.M. (1989). Experiment (ro=17 amagat)
Волновое число (см⁻¹)
Пропускание (%)
CO2 transmittance spectrum. T=291°K, L=4.4 cm. Experiment [4]. 2 – ρ=17 amagat.
[4] J.-.M. Hartmann, Measurements and calculations of CO2 room-temperature high-pressure spectra in the 4.3 μm region, Journal of Chemical Physics, 1989 , Volume 90 , Issue 6, Pages 2944–2950, DOI: 10.1063/1.455894 .
1989
J.-.M. Hartmann , Measurements and calculations of CO2 room-temperature high-pressure spectra in the 4.3 μm region, Journal of Chemical Physics, 1989 , Volume 90 , Issue 6, Pages 2944–2950.
CO2
T=291 К
P=∅
3. Experimental transmission spectra. d=17.0 amagat
Волновое число (см⁻¹)
Пропускание (%)
Transmission spectra at 291°K for the densities 17.0 amagat. Experimental.
1990
Tvorogov S.D., Nesmelova L.I., Rodimova O.B. , Far wings of spectral lines: theory, interpretation and application in atmospheric optics, Proceedings of ASA Workshop, 1990. Tomsk, Издательство ИОА, 1990 , Pages 14-18.
CO2
T=291 К
P=∅
3. Hartmann J.M. (1989). Experiment (ro=77 amagat)
Волновое число (см⁻¹)
Пропускание (%)
CO2 transmittance spectrum. T=291°K, L=4.4 cm. Experiment [4] 3- ρ=77 amagat.
[4] J.-.M. Hartmann, Measurements and calculations of CO2 room-temperature high-pressure spectra in the 4.3 μm region, Journal of Chemical Physics, 1989 , Volume 90 , Issue 6, Pages 2944–2950, DOI: 10.1063/1.455894 .
1989
J.-.M. Hartmann , Measurements and calculations of CO2 room-temperature high-pressure spectra in the 4.3 μm region, Journal of Chemical Physics, 1989 , Volume 90 , Issue 6, Pages 2944–2950.
CO2
T=291 К
P=∅
5. Experimental Transmission spectrum. d=77.1 amagat
Волновое число (см⁻¹)
Пропускание (%)
Transmission spectra at 291°K for the densities 77.1 amagat. Experimental.
1991
Jean-Michel Hartmann, Christian Boulet , Line mixing and finite duration of collision effects in pure CO2 infrared spectra: Fitting and scaling analysis, Journal of Chemical Physics, 1991 , Volume 94 , Pages 6406.
CO2
T=291 К
P=∅
1. Table 1. J. M. Hartmann, et al., (T=291K)
Волновое число (см⁻¹)
Коэффициент поглощения (см⁻¹Амага⁻²)
Normalized pure CO2, absorption coefficients beyond the ν3 bandhead.
[4] J. M. Hartmann and M. Y. Perrin, Appl. Opt. 28, 2550 (1989).
1989
Jean-Michel Hartmann and Marie-Yvonne Perrin , Measurements of pure CO2 absorption beyond the ν3 bandhead at high temperature, Applied Optics, 1989 , Volume 28 , Pages 2550-2553.
CO2
T=291 К
P=∅
1. Normalized Absorption Coefficient. T=291K
Волновое число (см⁻¹)
Коэффициент поглощения (см⁻¹Амага⁻²)
Table 1 . Experimentally Determined Pure CO2 Normalized Absorption Coefficient (in cm-1 Am-2 ).
1991
Jean-Michel Hartmann, Christian Boulet , Line mixing and finite duration of collision effects in pure CO2 infrared spectra: Fitting and scaling analysis, Journal of Chemical Physics, 1991 , Volume 94 , Pages 6406.
CO2
T=594 К
P=∅
1. Table 1. J. M. Hartmann, et al., (T=594K)
Волновое число (см⁻¹)
Коэффициент поглощения (см⁻¹Амага⁻²)
Normalized pure CO2, absorption coefficients beyond the ν3 bandhead.
[4] J. M. Hartmann and M. Y. Perrin, Appl. Opt. 28, 2550 (1989).
1989
Jean-Michel Hartmann and Marie-Yvonne Perrin , Measurements of pure CO2 absorption beyond the ν3 bandhead at high temperature, Applied Optics, 1989 , Volume 28 , Pages 2550-2553.
CO2
T=534 К
P=∅
1. Normalized Absorption Coefficient. T=534K
Волновое число (см⁻¹)
Коэффициент поглощения (см⁻¹Амага⁻²)
Table 1 . Experimentally Determined Pure CO2 Normalized Absorption Coefficient (in cm-1 Am-2 ).
1991
Jean-Michel Hartmann, Christian Boulet , Line mixing and finite duration of collision effects in pure CO2 infrared spectra: Fitting and scaling analysis, Journal of Chemical Physics, 1991 , Volume 94 , Pages 6406.
CO2
T=296 К
P=∅
1. Table 1. R. Le Doucen, et al., (T=296K)
Волновое число (см⁻¹)
Коэффициент поглощения (см⁻¹Амага⁻²)
Normalized pure CO2, absorption coefficients beyond the ν3 bandhead.
[3] R. Le Doucen, C. Cousin, C. Boulet, and A. Henry, Appl. Opt. 24, 897 (1985)
1985
R. Le Doucen, C. Cousin, C. Boulet, and A. Henry , Temperature dependence of the absorption in the region beyond the 4.3-µm band head of CO2 . 1: Pure CO2 case, Applied Optics, 1985 , Volume 24 , Pages 897-906.
CO2
T=296 К
P=∅
1. Normalized Absorption Coefficient.T=296K
Волновое число (см⁻¹)
Коэффициент поглощения (см⁻¹Амага⁻²)
Table 1 . Observed Normalized Absorptlon CoeffIcIent A0 (σ,T) In cm-1 amagat-2 at Selected Temperatures
1991
Jean-Michel Hartmann, Christian Boulet , Line mixing and finite duration of collision effects in pure CO2 infrared spectra: Fitting and scaling analysis, Journal of Chemical Physics, 1991 , Volume 94 , Pages 6406.
CO2
T=296 К
P=∅
11. Experiment [3-5]. P branch. (T=296K)
Волновое число (см⁻¹)
Коэффициент поглощения (см⁻¹Амага⁻²)
Pure CO2 normalized absorption coefficients at 296 K. experimental data (Refs. 3-5);
[4] J. M. Hartmann and M. Y. Perrin, Appl. Opt. 28, 2550 (1989).
[5] M. Y. Perrin and J. M. Hartmann, J. Quant. Spectrosc. Radiat. Transfer 42, 311 (1989).
1989
Jean-Michel Hartmann and Marie-Yvonne Perrin , Measurements of pure CO2 absorption beyond the ν3 bandhead at high temperature, Applied Optics, 1989 , Volume 28 , Pages 2550-2553.
Волновое число (см⁻¹) Волновое число (см⁻¹)
Коэффициент поглощения (см⁻¹Амага⁻²)Пропускание (%)
1991
Jean-Michel Hartmann, Christian Boulet , Line mixing and finite duration of collision effects in pure CO2 infrared spectra: Fitting and scaling analysis, Journal of Chemical Physics, 1991 , Volume 94 , Pages 6406.
CO2
T=296 К
P=∅
11. Experiment [3-5]. R branch. (T=296K)
Волновое число (см⁻¹)
Коэффициент поглощения (см⁻¹Амага⁻²)
Pure CO2 normalized absorption coefficients at 296 K. experimental data (Refs. 3-5);
[3] R. Le Doucen, C. Cousin, C. Boulet, and A. Henry, Appl. Opt. 24, 897 (1985)
[4] J. M. Hartmann and M. Y. Perrin, Appl. Opt. 28, 2550 (1989).
[5] M. Y. Perrin and J. M. Hartmann, J. Quant. Spectrosc. Radiat. Transfer 42, 311 (1989).
1989
Jean-Michel Hartmann and Marie-Yvonne Perrin , Measurements of pure CO2 absorption beyond the ν3 bandhead at high temperature, Applied Optics, 1989 , Volume 28 , Pages 2550-2553.
CO2
T=291 К
P=∅
1. Normalized Absorption Coefficient. T=291K
Волновое число (см⁻¹)
Коэффициент поглощения (см⁻¹Амага⁻²)
Table 1 . Experimentally Determined Pure CO2 Normalized Absorption Coefficient (in cm-1 Am-2 ).
1991
Jean-Michel Hartmann, Christian Boulet , Line mixing and finite duration of collision effects in pure CO2 infrared spectra: Fitting and scaling analysis, Journal of Chemical Physics, 1991 , Volume 94 , Pages 6406.
CO2
T=296 К
P=∅
8. Absorption coefficient. P branch (T=296K)
Волновое число (см⁻¹)
Коэффициент поглощения (см⁻¹Амага⁻²)
Pure CO2 normalized absorption coefficients at 296 K. experimental data (Refs. 2-4);
[3] R. Le Doucen, C. Cousin, C. Boulet, and A. Henry, Appl. Opt. 24, 897 (1985)
[4] J. M. Hartmann and M. Y. Perrin, Appl. Opt. 28, 2550 (1989).
[5] M. Y. Perrin and J. M. Hartmann, J. Quant. Spectrosc. Radiat. Transfer 42, 311 (1989).
1985
R. Le Doucen, C. Cousin, C. Boulet, and A. Henry , Temperature dependence of the absorption in the region beyond the 4.3-µm band head of CO2 . 1: Pure CO2 case, Applied Optics, 1985 , Volume 24 , Pages 897-906.
Волновое число (см⁻¹) Волновое число (см⁻¹) Волновое число (см⁻¹)
Заданная функция Коэффициент поглощения (см⁻¹Амага⁻²)Поправочный фактор формы линии
1991
Jean-Michel Hartmann, Christian Boulet , Line mixing and finite duration of collision effects in pure CO2 infrared spectra: Fitting and scaling analysis, Journal of Chemical Physics, 1991 , Volume 94 , Pages 6406.
CO2
T=296 К
P=∅
8. Absorption coefficient. R branch (T=296K)
Волновое число (см⁻¹)
Коэффициент поглощения (см⁻¹Амага⁻²)
Pure CO2 normalized absorption coefficients at 296 K. + experimental data (Refs. 2-4);
[3] R. Le Doucen, C. Cousin, C. Boulet, and A. Henry, Appl. Opt. 24, 897 (1985)
[4] J. M. Hartmann and M. Y. Perrin, Appl. Opt. 28, 2550 (1989).
[5] M. Y. Perrin and J. M. Hartmann, J. Quant. Spectrosc. Radiat. Transfer 42, 311 (1989).
1989
Jean-Michel Hartmann and Marie-Yvonne Perrin , Measurements of pure CO2 absorption beyond the ν3 bandhead at high temperature, Applied Optics, 1989 , Volume 28 , Pages 2550-2553.
CO2
T=291 К
P=∅
1. Normalized Absorption Coefficient. T=291K
Волновое число (см⁻¹)
Коэффициент поглощения (см⁻¹Амага⁻²)
Table 1 . Experimentally Determined Pure CO2 Normalized Absorption Coefficient (in cm-1 Am-2 ).
1991
Несмелова Л.И., О.Б.Родимова, С.Д.Творогов , О поведении коэффициента поглощения при изменении давления в крыле полосы 4.3 мкм СО2 , Оптика атмосферы и океана, 1991 , Volume 4 , Issue 7, Pages 745-752.
CO2
T=291 К
P=1 атм
6a. J. M. Hartmann (1989). Transmission spectra. ro=1.62 Амага. Experiment
Волновое число (см⁻¹)
Пропускание (%)
Спектр пропускания СО2 при Т=291 К, l=4.4 см, эксперимент [4]. ρ=1.62 Амага.
[4] J. M. Hartmann. Measurements and calculations of CO2 room temperature high pressure spectra in the 4.3 μm region. The Journal of Chemical Physics 90, 2944 (1989); doi: 10.1063/1.455894. http://dx.doi.org/10.1063/1.4558944-2950.
1989
J.-.M. Hartmann , Measurements and calculations of CO2 room-temperature high-pressure spectra in the 4.3 μm region, Journal of Chemical Physics, 1989 , Volume 90 , Issue 6, Pages 2944–2950.
CO2
T=291 К
P=∅
3. Experimental transmission spectra. d=1.62 amagat
Волновое число (см⁻¹)
Пропускание (%)
Transmission spectra at 291°K for the densities 1.62 amagat. Experimental.
1991
Несмелова Л.И., О.Б.Родимова, С.Д.Творогов , О поведении коэффициента поглощения при изменении давления в крыле полосы 4.3 мкм СО2 , Оптика атмосферы и океана, 1991 , Volume 4 , Issue 7, Pages 745-752.
CO2
T=291 К
P=1 атм
6a. J. M. Hartmann (1989). Transmission spectra. ro=17 Amagat. Calculation
Волновое число (см⁻¹)
Пропускание (%)
Спектр пропускания СО2 при Т=291 К, расчет с учетом смешивания линий [4], ρ=17 Амага.
[4] J. M. Hartmann. Measurements and calculations of CO2 roomtemperature highpressure spectra in the 4.3 μm region. The Journal of Chemical Physics 90, 2944 (1989); doi: 10.1063/1.455894. http://dx.doi.org/10.1063/1.4558944-2950.
1989
J.-.M. Hartmann , Measurements and calculations of CO2 room-temperature high-pressure spectra in the 4.3 μm region, Journal of Chemical Physics, 1989 , Volume 90 , Issue 6, Pages 2944–2950.
CO2
T=291 К
P=∅
3. Experimental transmission spectra. d=7.27 amagat
Волновое число (см⁻¹)
Пропускание (%)
Transmission spectra at 291°K for the densities 1.62,7.27, 17.0 amagat. Experimental.
1991
Несмелова Л.И., О.Б.Родимова, С.Д.Творогов , О поведении коэффициента поглощения при изменении давления в крыле полосы 4.3 мкм СО2 , Оптика атмосферы и океана, 1991 , Volume 4 , Issue 7, Pages 745-752.
CO2
T=291 К
P=1 атм
6a. J. M. Hartmann (1989). Transmission spectra. ro=17 Amagat. Experiment
Волновое число (см⁻¹)
Пропускание (%)
Спектр пропускания СО2 при Т=291 К, l=4.4 см, эксперимент [4]. ρ=17 Амага.
[4] J. M. Hartmann. Measurements and calculations of CO2 roomtemperature highpressure spectra in the 4.3 μm region. The Journal of Chemical Physics 90, 2944 (1989); doi: 10.1063/1.455894. http://dx.doi.org/10.1063/1.4558944-2950.
1989
J.-.M. Hartmann , Measurements and calculations of CO2 room-temperature high-pressure spectra in the 4.3 μm region, Journal of Chemical Physics, 1989 , Volume 90 , Issue 6, Pages 2944–2950.
CO2
T=291 К
P=∅
3. Calculated with the modified Lorentzian model. d=17.0 amagat
Волновое число (см⁻¹)
Пропускание (%)
Transmission spectra at 291°K for the densities 17.0 amagat.Calculated with the modified model Lorentzian.
1991
Несмелова Л.И., О.Б.Родимова, С.Д.Творогов , О поведении коэффициента поглощения при изменении давления в крыле полосы 4.3 мкм СО2 , Оптика атмосферы и океана, 1991 , Volume 4 , Issue 7, Pages 745-752.
CO2
T=291 К
P=1 атм
6a. J. M. Hartmann (1989). Transmission spectra. ro=7.27 Amagat. Calculation
Волновое число (см⁻¹)
Пропускание (%)
Спектр пропускания СО2 при Т=291 К, l=4.4 см, расчет с учетом смешивания линий [4], ρ=7.27 Амага.
[4] J. M. Hartmann. Measurements and calculations of CO2 roomtemperature highpressure spectra in the 4.3 μm region. The Journal of Chemical Physics 90, 2944 (1989); doi: 10.1063/1.455894. http://dx.doi.org/10.1063/1.4558944-2950.
1989
J.-.M. Hartmann , Measurements and calculations of CO2 room-temperature high-pressure spectra in the 4.3 μm region, Journal of Chemical Physics, 1989 , Volume 90 , Issue 6, Pages 2944–2950.
CO2
T=291 К
P=∅
3. Experimental transmission spectra. d=1.62 amagat
Волновое число (см⁻¹)
Пропускание (%)
Transmission spectra at 291°K for the densities 1.62 amagat. Experimental.
1991
Несмелова Л.И., О.Б.Родимова, С.Д.Творогов , О поведении коэффициента поглощения при изменении давления в крыле полосы 4.3 мкм СО2 , Оптика атмосферы и океана, 1991 , Volume 4 , Issue 7, Pages 745-752.
CO2
T=291 К
P=1 атм
6a. J. M. Hartmann (1989). Transmission spectra. ro=7.27 Amagat.1 Experiment
Волновое число (см⁻¹)
Пропускание (%)
Спектр пропускания СО2 при Т=291 К, l=4.4 см, Эксперимент. ρ=7.27 Амага.1
[4] J. M. Hartmann. Measurements and calculations of CO2 roomtemperature highpressure spectra in the 4.3 μm region. The Journal of Chemical Physics 90, 2944 (1989); doi: 10.1063/1.455894. http://dx.doi.org/10.1063/1.4558944-2950.
1989
J.-.M. Hartmann , Measurements and calculations of CO2 room-temperature high-pressure spectra in the 4.3 μm region, Journal of Chemical Physics, 1989 , Volume 90 , Issue 6, Pages 2944–2950.
CO2
T=291 К
P=∅
3. Experimental transmission spectra. d=7.27 amagat
Волновое число (см⁻¹)
Пропускание (%)
Transmission spectra at 291°K for the densities 1.62,7.27, 17.0 amagat. Experimental.
1991
Несмелова Л.И., О.Б.Родимова, С.Д.Творогов , О поведении коэффициента поглощения при изменении давления в крыле полосы 4.3 мкм СО2 , Оптика атмосферы и океана, 1991 , Volume 4 , Issue 7, Pages 745-752.
CO2
T=291 К
P=1 атм
6b. Hartmann J. M., (1989). Transmission spectra. ro=77.1 Амага. Original calculation
Волновое число (см⁻¹)
Пропускание (%)
Спектр пропускания СО2 при Т=291 К, наш расчет: ρ=77.1 Амага.
Hartmann J. M. //J. Chem. Phys. 1989. V. 90. no. 6. P. 2944—2950.
1989
J.-.M. Hartmann , Measurements and calculations of CO2 room-temperature high-pressure spectra in the 4.3 μm region, Journal of Chemical Physics, 1989 , Volume 90 , Issue 6, Pages 2944–2950.
CO2
T=291 К
P=∅
5. Calculated with the modified Lorentzian model. d=77.1 amagat
Волновое число (см⁻¹)
Пропускание (%)
Transmission spectra at 291°K for the densities 77.1 amagat. Calculated with the modified Lorentzian model.
1991
Несмелова Л.И., О.Б.Родимова, С.Д.Творогов , О поведении коэффициента поглощения при изменении давления в крыле полосы 4.3 мкм СО2 , Оптика атмосферы и океана, 1991 , Volume 4 , Issue 7, Pages 745-752.
CO2
T=291 К
P=1 атм
6b. J. M. Hartmann (1989). Transmission spectra. ro=29.3 Амага. Calculation
Волновое число (см⁻¹)
Пропускание (%)
Спектр пропускания СО2 при Т=291 К, расчет с учетом смешивания лини [4], ρ=29.3 Амага.
[4] J. M. Hartmann. Measurements and calculations of CO2 room temperature high pressure spectra in the 4.3 μm region. The Journal of Chemical Physics 90, 2944 (1989); doi: 10.1063/1.455894. http://dx.doi.org/10.1063/1.4558944-2950.
1989
J.-.M. Hartmann , Measurements and calculations of CO2 room-temperature high-pressure spectra in the 4.3 μm region, Journal of Chemical Physics, 1989 , Volume 90 , Issue 6, Pages 2944–2950.
CO2
T=291 К
P=∅
5. Calculated with the ECSA line-mixing model. d=29.3 amagat
Волновое число (см⁻¹)
Пропускание (%)
Transmission spectra at 291°K for the densities 29.3 amagat. Calculated with the ECSA line-mixing model.
1991
Несмелова Л.И., О.Б.Родимова, С.Д.Творогов , О поведении коэффициента поглощения при изменении давления в крыле полосы 4.3 мкм СО2 , Оптика атмосферы и океана, 1991 , Volume 4 , Issue 7, Pages 745-752.
CO2
T=291 К
P=1 атм
6b. J. M. Hartmann (1989). Transmission spectra. ro=29.3 Амага. Experiment
Волновое число (см⁻¹)
Пропускание (%)
Спектр пропускания СО2 при Т=291 К, l=4.4 см, эксперимент [4], ρ=29.3 Амага.
[4] J. M. Hartmann. Measurements and calculations of CO2 room temperature high pressure spectra in the 4.3 μm region. The Journal of Chemical Physics 90, 2944 (1989); doi: 10.1063/1.455894. http://dx.doi.org/10.1063/1.4558944-2950.
1989
J.-.M. Hartmann , Measurements and calculations of CO2 room-temperature high-pressure spectra in the 4.3 μm region, Journal of Chemical Physics, 1989 , Volume 90 , Issue 6, Pages 2944–2950.
CO2
T=291 К
P=∅
5. Experimental Transmission spectrum. d=29.3 amagat
Волновое число (см⁻¹)
Пропускание (%)
Transmission spectra at 291°K for the densities 29.3 amagat. Experimental.
1991
Несмелова Л.И., О.Б.Родимова, С.Д.Творогов , О поведении коэффициента поглощения при изменении давления в крыле полосы 4.3 мкм СО2 , Оптика атмосферы и океана, 1991 , Volume 4 , Issue 7, Pages 745-752.
CO2
T=291 К
P=1 атм
6b. J. M. Hartmann (1989). Transmission spectra. ro=51.5 Амага. Calculation
Волновое число (см⁻¹)
Пропускание (%)
Спектр пропускания СО2 при Т-291 К, расчет с учетом смешивания линий [4], ρ=51.5 Амага.
[4] J. M. Hartmann. Measurements and calculations of CO2 room temperature high pressure spectra in the 4.3 μm region. The Journal of Chemical Physics 90, 2944 (1989); doi: 10.1063/1.455894. http://dx.doi.org/10.1063/1.4558944-2950.
1989
J.-.M. Hartmann , Measurements and calculations of CO2 room-temperature high-pressure spectra in the 4.3 μm region, Journal of Chemical Physics, 1989 , Volume 90 , Issue 6, Pages 2944–2950.
CO2
T=291 К
P=∅
5. Calculated with the modified Lorentzian model. d=51.5 amagat
Волновое число (см⁻¹)
Пропускание (%)
Transmission spectra at 291°K for the densities 51.5 amagat. Calculated with the modified Lorentzian model.
1991
Несмелова Л.И., О.Б.Родимова, С.Д.Творогов , О поведении коэффициента поглощения при изменении давления в крыле полосы 4.3 мкм СО2 , Оптика атмосферы и океана, 1991 , Volume 4 , Issue 7, Pages 745-752.
CO2
T=291 К
P=1 атм
6b. J. M. Hartmann (1989). Transmission spectra. ro=51.5 Амага. Experiment
Волновое число (см⁻¹)
Пропускание (%)
Спектр пропускания СО2 +N2 при Т-291 К, l=4.4 см, эксперимент [4], ρ=51.5 Амага.
[4] J. M. Hartmann. Measurements and calculations of CO2 room temperature high pressure spectra in the 4.3 μm region. The Journal of Chemical Physics 90, 2944 (1989); doi: 10.1063/1.455894. http://dx.doi.org/10.1063/1.4558944-2950.
1989
J.-.M. Hartmann , Measurements and calculations of CO2 room-temperature high-pressure spectra in the 4.3 μm region, Journal of Chemical Physics, 1989 , Volume 90 , Issue 6, Pages 2944–2950.
CO2
T=291 К
P=∅
5. Experimental Transmission spectrum. d=51.5 amagat
Волновое число (см⁻¹)
Пропускание (%)
Transmission spectra at 291°K for the densities 51.5 amagat. Experimental.
1991
Несмелова Л.И., О.Б.Родимова, С.Д.Творогов , О поведении коэффициента поглощения при изменении давления в крыле полосы 4.3 мкм СО2 , Оптика атмосферы и океана, 1991 , Volume 4 , Issue 7, Pages 745-752.
CO2
T=291 К
P=1 атм
6b. J. M. Hartmann (1989). Transmission spectra. ro=77.1 Амага. Calculation
Волновое число (см⁻¹)
Пропускание (%)
Спектр пропускания СО2 при Т=291 К, расчет с учетом смешивания линий [4], ρ=77.1 Амага.
[4] J. M. Hartmann. Measurements and calculations of CO2 room temperature high pressure spectra in the 4.3 μm region. The Journal of Chemical Physics 90, 2944 (1989); doi: 10.1063/1.455894. http://dx.doi.org/10.1063/1.4558944-2950.
1989
J.-.M. Hartmann , Measurements and calculations of CO2 room-temperature high-pressure spectra in the 4.3 μm region, Journal of Chemical Physics, 1989 , Volume 90 , Issue 6, Pages 2944–2950.
CO2
T=291 К
P=∅
5. Calculated with the modified Lorentzian model. d=77.1 amagat
Волновое число (см⁻¹)
Пропускание (%)
Transmission spectra at 291°K for the densities 77.1 amagat. Calculated with the modified Lorentzian model.
1991
Несмелова Л.И., О.Б.Родимова, С.Д.Творогов , О поведении коэффициента поглощения при изменении давления в крыле полосы 4.3 мкм СО2 , Оптика атмосферы и океана, 1991 , Volume 4 , Issue 7, Pages 745-752.
CO2
T=291 К
P=1 атм
6b. J. M. Hartmann (1989). Transmission spectra. ro=77.1 Амага. Experiment
Волновое число (см⁻¹)
Пропускание (%)
Спектр пропускания СО2 при Т=291 К, l=4.4 см, эксперимент [4], ρ=77.1 Амага.
[4] J. M. Hartmann. Measurements and calculations of CO2 roomtemperature highpressure spectra in the 4.3 μm region. The Journal of Chemical Physics 90, 2944 (1989); doi: 10.1063/1.455894. http://dx.doi.org/10.1063/1.4558944-2950.
1989
J.-.M. Hartmann , Measurements and calculations of CO2 room-temperature high-pressure spectra in the 4.3 μm region, Journal of Chemical Physics, 1989 , Volume 90 , Issue 6, Pages 2944–2950.
CO2
T=291 К
P=∅
5. Experimental Transmission spectrum. d=77.1 amagat
Волновое число (см⁻¹)
Пропускание (%)
Transmission spectra at 291°K for the densities 77.1 amagat. Experimental.
1992
L.I.Nesmelova, O.B.Rodimova, and S. D. Tvorogov , On the role of continual and selective absorption in the wing of the 4. 3 μm CO2 band at high pressures and temperatures, SPIE V.1811, SPIE - The international society for optical engineering, 1992 , Pages 291-294.
CO2
T=∅
P=∅
1. C.Cousin, et al., (1986). Experiment, 2387.5 cm⁻¹
Температура (К)
Коэффициент поглощения (см⁻¹Амага⁻²)
Temperature dependence of the 4.3 μm band wing absorption coefficient for some frequencies as measured by experiments [7].
[7] C. Cousin, R. LeDoucen, and C. Boulet, et al., JQSRT 36, No.6, p.521. 1986
1986
C. Cousin, R. Le Doucen, C. Boulet, A. Henry and D. Robert , Line coupling in the temperature and frequency dependences of absorption in the microwindows of the 4.3 μm CO2 band, Journal of Quantitative Spectroscopy and Radiative Transfer, 1986 , Volume 36 , Issue 6, Pages 521-538.
Волновое число (см⁻¹)
Коэффициент поглощения (см⁻¹Амага⁻²)
1992
L.I.Nesmelova, O.B.Rodimova, and S. D. Tvorogov , On the role of continual and selective absorption in the wing of the 4. 3 μm CO2 band at high pressures and temperatures, SPIE V.1811, SPIE - The international society for optical engineering, 1992 , Pages 291-294.
CO2
T=∅
P=∅
1. G. Adiks, et al., (1984). Experiment, 2400 cm⁻¹
Температура (К)
Коэффициент поглощения (см⁻¹Амага⁻²)
Temperature dependence of the 4.3 μm band wing absorption coefficient for some frequencies as measured by experiments [3].
[3] T. G. Adiks and A. P. Gal'tsev, Izv. Akad. Nauk SSSR, FAQ 20, No. 7, p. 653, 1984
1984
Адикс Т. Г., Гальцев А. П. , Температурная зависимость коэффициента поглощения в канте полосы 4,3 мкм СО2 , Известия РАН. Серия Физика атмосферы и океана, 1984 , Volume 20 , Number 7, Pages 653-657.
Волновое число (см⁻¹)
Коэффициент поглощения (см⁻¹ (кг / м³)⁻²)
1992
L.I.Nesmelova, O.B.Rodimova, and S. D. Tvorogov , On the role of continual and selective absorption in the wing of the 4. 3 μm CO2 band at high pressures and temperatures, SPIE V.1811, SPIE - The international society for optical engineering, 1992 , Pages 291-294.
CO2
T=∅
P=∅
1. G. Adiks, et al., (1984). Experiment, 2480 cm⁻¹
Температура (К)
Коэффициент поглощения (см⁻¹Амага⁻²)
Temperature dependence of the 4.3 μm band wing absorption coefficient for some frequencies as measured by experiments [3].
[3] T. G. Adiks and A. P. Gal'tsev, Izv. Akad. Nauk SSSR, FAQ 20, No. 7, p. 653, 1984
1984
Адикс Т. Г., Гальцев А. П. , Температурная зависимость коэффициента поглощения в канте полосы 4,3 мкм СО2 , Известия РАН. Серия Физика атмосферы и океана, 1984 , Volume 20 , Number 7, Pages 653-657.
Волновое число (см⁻¹)
Коэффициент поглощения (см⁻¹ (кг / м³)⁻²)
1992
L.I.Nesmelova, O.B.Rodimova, and S. D. Tvorogov , On the role of continual and selective absorption in the wing of the 4. 3 μm CO2 band at high pressures and temperatures, SPIE V.1811, SPIE - The international society for optical engineering, 1992 , Pages 291-294.
CO2
T=∅
P=∅
1. G. Adiks, et al., (1984). Experiment, 2520 cm⁻¹
Температура (К)
Коэффициент поглощения (см⁻¹Амага⁻²)
Temperature dependence of the 4.3 μm band wing absorption coefficient for some frequencies as measured by experiments [3].
[3] T. G. Adiks and A. P. Gal'tsev, Izv. Akad. Nauk SSSR, FAQ 20, No. 7, p. 653, 1984
1984
Адикс Т. Г., Гальцев А. П. , Температурная зависимость коэффициента поглощения в канте полосы 4,3 мкм СО2 , Известия РАН. Серия Физика атмосферы и океана, 1984 , Volume 20 , Number 7, Pages 653-657.
Волновое число (см⁻¹)
Коэффициент поглощения (см⁻¹ (кг / м³)⁻²)
1992
L.I.Nesmelova, O.B.Rodimova, and S. D. Tvorogov , On the role of continual and selective absorption in the wing of the 4. 3 μm CO2 band at high pressures and temperatures, SPIE V.1811, SPIE - The international society for optical engineering, 1992 , Pages 291-294.
CO2
T=∅
P=∅
1. G. Adiks, et al., (1984). Experiment, 2580 cm⁻¹
Температура (К)
Коэффициент поглощения (см⁻¹Амага⁻²)
Temperature dependence of the 4.3 μm band wing absorption coefficient for some frequencies as measured by experiments [3].
[3] T. G. Adiks and A. P. Gal'tsev, Izv. Akad. Nauk SSSR, FAQ 20, No. 7, p. 653, 1984
1984
Адикс Т. Г., Гальцев А. П. , Температурная зависимость коэффициента поглощения в канте полосы 4,3 мкм СО2 , Известия РАН. Серия Физика атмосферы и океана, 1984 , Volume 20 , Number 7, Pages 653-657.
Волновое число (см⁻¹)
Коэффициент поглощения (см⁻¹ (кг / м³)⁻²)
1992
L.I.Nesmelova, O.B.Rodimova, and S. D. Tvorogov , On the role of continual and selective absorption in the wing of the 4. 3 μm CO2 band at high pressures and temperatures, SPIE V.1811, SPIE - The international society for optical engineering, 1992 , Pages 291-294.
CO2
T=∅
P=∅
1. J.M.Hartmann, et al., (1989). Experiment, 2400 cm⁻¹
Температура (К)
Коэффициент поглощения (см⁻¹Амага⁻²)
Temperature dependence of the 4.3 μm band wing absorption coefficient for some frequencies as measured by experiments [5].
[5] J.M.Hartmann and M.Y.Perrine, Appl.Optics 28, No.13, p.2550-2553, 1989
1989
Jean-Michel Hartmann and Marie-Yvonne Perrin , Measurements of pure CO2 absorption beyond the ν3 bandhead at high temperature, Applied Optics, 1989 , Volume 28 , Pages 2550-2553.
Волновое число (см⁻¹) Волновое число (см⁻¹)
Коэффициент поглощения (см⁻¹Амага⁻²)Пропускание (%)
1992
L.I.Nesmelova, O.B.Rodimova, and S. D. Tvorogov , On the role of continual and selective absorption in the wing of the 4. 3 μm CO2 band at high pressures and temperatures, SPIE V.1811, SPIE - The international society for optical engineering, 1992 , Pages 291-294.
CO2
T=∅
P=∅
1. J.M.Hartmann, et al., (1989). Experiment, 2480 cm⁻¹
Температура (К)
Коэффициент поглощения (см⁻¹Амага⁻²)
Temperature dependence of the 4.3 μm band wing absorption coefficient for some frequencies as measured by experiments [5].
[5] J.M.Hartmann and M.Y.Perrine, Appl.Optics 28, No.13, p.2550-2553, 1989
1989
Jean-Michel Hartmann and Marie-Yvonne Perrin , Measurements of pure CO2 absorption beyond the ν3 bandhead at high temperature, Applied Optics, 1989 , Volume 28 , Pages 2550-2553.
Волновое число (см⁻¹) Волновое число (см⁻¹)
Коэффициент поглощения (см⁻¹Амага⁻²)Пропускание (%)
1992
L.I.Nesmelova, O.B.Rodimova, and S. D. Tvorogov , On the role of continual and selective absorption in the wing of the 4. 3 μm CO2 band at high pressures and temperatures, SPIE V.1811, SPIE - The international society for optical engineering, 1992 , Pages 291-294.
CO2
T=∅
P=∅
1. J.M.Hartmann, et al., (1989). Experiment, 2520 cm⁻¹
Температура (К)
Коэффициент поглощения (см⁻¹Амага⁻²)
Temperature dependence of the 4.3 μm band wing absorption coefficient for some frequencies as measured by experiments [5].
[5] J.M.Hartmann and M.Y.Perrine, Appl.Optics 28, No.13, p.2550-2553, 1989
1989
Jean-Michel Hartmann and Marie-Yvonne Perrin , Measurements of pure CO2 absorption beyond the ν3 bandhead at high temperature, Applied Optics, 1989 , Volume 28 , Pages 2550-2553.
Волновое число (см⁻¹) Волновое число (см⁻¹)
Коэффициент поглощения (см⁻¹Амага⁻²)Пропускание (%)
1992
L.I.Nesmelova, O.B.Rodimova, and S. D. Tvorogov , On the role of continual and selective absorption in the wing of the 4. 3 μm CO2 band at high pressures and temperatures, SPIE V.1811, SPIE - The international society for optical engineering, 1992 , Pages 291-294.
CO2
T=∅
P=∅
1. M.O.Bulanin, et al., (1976). Experiment, 2400 cm⁻¹
Температура (К)
Коэффициент поглощения (см⁻¹Амага⁻²)
Temperature dependence of the 4.3 μm band wing absorption coefficient for some frequencies as measured by experiments [4].
[4] M.O.Bulanin, V.P.Bulychov, P.V.Granskii, et al., In: Problems of Atmospheric Physics, No.13,p.14-24, 1976. (in Russian)
1976
Буланин М.О., Булычев В.П., Гранский П.В., Коузов А.П., Тонков М.В. , Исследование функций пропускания СО2 в области полос 4.3 и 15 мкм, Проблемы физики атмосферы. Вып. 13, Ленинград, Изд. ЛГУ, Издательство Ленинградского Государственного Университета, 1976 , Pages 14-24.
Волновое число (см⁻¹) Волновое число (см⁻¹)
Коэффициент поглощения (см⁻¹атм⁻²)Коэффициент пропускания (произвольные единицы)
1992
L.I.Nesmelova, O.B.Rodimova, and S. D. Tvorogov , On the role of continual and selective absorption in the wing of the 4. 3 μm CO2 band at high pressures and temperatures, SPIE V.1811, SPIE - The international society for optical engineering, 1992 , Pages 291-294.
CO2
T=∅
P=∅
1. M.O.Bulanin, et al., (1976). Experiment, 2480 cm⁻¹
Температура (К)
Коэффициент поглощения (см⁻¹Амага⁻²)
Temperature dependence of the 4.3 μm band wing absorption coefficient for some frequencies as measured by experiments [4].
[4] M.O.Bulanin, V.P.Bulychov, P.V.Granskii, et al., In: Problems of Atmospheric Physics, No.13,p.14-24, 1976. (in Russian)
1976
Буланин М.О., Булычев В.П., Гранский П.В., Коузов А.П., Тонков М.В. , Исследование функций пропускания СО2 в области полос 4.3 и 15 мкм, Проблемы физики атмосферы. Вып. 13, Ленинград, Изд. ЛГУ, Издательство Ленинградского Государственного Университета, 1976 , Pages 14-24.
Волновое число (см⁻¹) Волновое число (см⁻¹)
Коэффициент поглощения (см⁻¹атм⁻²)Коэффициент пропускания (произвольные единицы)
1992
L.I.Nesmelova, O.B.Rodimova, and S. D. Tvorogov , On the role of continual and selective absorption in the wing of the 4. 3 μm CO2 band at high pressures and temperatures, SPIE V.1811, SPIE - The international society for optical engineering, 1992 , Pages 291-294.
CO2
T=∅
P=∅
1. M.O.Bulanin, et al., (1976). Experiment, 2580 cm⁻¹
Температура (К)
Коэффициент поглощения (см⁻¹Амага⁻²)
Temperature dependence of the 4.3 μm band wing absorption coefficient for some frequencies as measured by experiments [2-5,7] and as calculated from the spectral line wing theory.
[4] M.O.Bulanin, V.P.Bulychov, P.V.Granskii, et al., In: Problems of Atmospheric Physics, No.13,p.14-24, 1976. (in Russian)
1976
Буланин М.О., Булычев В.П., Гранский П.В., Коузов А.П., Тонков М.В. , Исследование функций пропускания СО2 в области полос 4.3 и 15 мкм, Проблемы физики атмосферы. Вып. 13, Ленинград, Изд. ЛГУ, Издательство Ленинградского Государственного Университета, 1976 , Pages 14-24.
Волновое число (см⁻¹) Волновое число (см⁻¹)
Коэффициент поглощения (см⁻¹атм⁻²)Коэффициент пропускания (произвольные единицы)
1992
L.I.Nesmelova, O.B.Rodimova, and S. D. Tvorogov , On the role of continual and selective absorption in the wing of the 4. 3 μm CO2 band at high pressures and temperatures, SPIE V.1811, SPIE - The international society for optical engineering, 1992 , Pages 291-294.
CO2
T=∅
P=∅
1. M.O.Bulanin, et al., (1976). Experiment, 2520 cm⁻¹
Температура (К)
Коэффициент поглощения (см⁻¹Амага⁻²)
Temperature dependence of the 4.3 μm band wing absorption coefficient for some frequencies as measured by experiments [4].
[4] M.O.Bulanin, V.P.Bulychov, P.V.Granskii, et al., In: Problems of Atmospheric Physics, No.13,p.14-24, 1976. (in Russian)
1976
Буланин М.О., Булычев В.П., Гранский П.В., Коузов А.П., Тонков М.В. , Исследование функций пропускания СО2 в области полос 4.3 и 15 мкм, Проблемы физики атмосферы. Вып. 13, Ленинград, Изд. ЛГУ, Издательство Ленинградского Государственного Университета, 1976 , Pages 14-24.
Волновое число (см⁻¹) Волновое число (см⁻¹)
Коэффициент поглощения (см⁻¹атм⁻²)Коэффициент пропускания (произвольные единицы)
1992
L.I.Nesmelova, O.B.Rodimova, and S. D. Tvorogov , On the role of continual and selective absorption in the wing of the 4. 3 μm CO2 band at high pressures and temperatures, SPIE V.1811, SPIE - The international society for optical engineering, 1992 , Pages 291-294.
CO2
T=∅
P=∅
1. R.LeDoucen, et al., (1985). Experiment, 2400 cm⁻¹
Температура (К)
Коэффициент поглощения (см⁻¹Амага⁻²)
Temperature dependence of the 4.3 μm band wing absorption coefficient for some frequencies as measured by experiments [2].
[2] R.LeDoucen, C.Cousin, C.Boulet, and A.Henry, Appl.Optics 24, No.6, pp.897-906, 1985
1985
R. Le Doucen, C. Cousin, C. Boulet, and A. Henry , Temperature dependence of the absorption in the region beyond the 4.3-µm band head of CO2 . 1: Pure CO2 case, Applied Optics, 1985 , Volume 24 , Pages 897-906.
Волновое число (см⁻¹) Волновое число (см⁻¹) Волновое число (см⁻¹)
Заданная функция Коэффициент поглощения (см⁻¹Амага⁻²)Поправочный фактор формы линии
1992
L.I.Nesmelova, O.B.Rodimova, and S. D. Tvorogov , On the role of continual and selective absorption in the wing of the 4. 3 μm CO2 band at high pressures and temperatures, SPIE V.1811, SPIE - The international society for optical engineering, 1992 , Pages 291-294.
CO2
T=∅
P=∅
1. R.LeDoucen, et al., (1985). Experiment, 2480 cm⁻¹
Температура (К)
Коэффициент поглощения (см⁻¹Амага⁻²)
Temperature dependence of the 4.3 μm band wing absorption coefficient for some frequencies as measured by experiments [2].
[2] R.LeDoucen, C.Cousin, C.Boulet, and A.Henry, Appl.Optics 24, No.6, pp.897-906, 1985
1985
R. Le Doucen, C. Cousin, C. Boulet, and A. Henry , Temperature dependence of the absorption in the region beyond the 4.3-µm band head of CO2 . 1: Pure CO2 case, Applied Optics, 1985 , Volume 24 , Pages 897-906.
Волновое число (см⁻¹) Волновое число (см⁻¹) Волновое число (см⁻¹)
Заданная функция Коэффициент поглощения (см⁻¹Амага⁻²)Поправочный фактор формы линии
1992
L.I.Nesmelova, O.B.Rodimova, and S. D. Tvorogov , On the role of continual and selective absorption in the wing of the 4. 3 μm CO2 band at high pressures and temperatures, SPIE V.1811, SPIE - The international society for optical engineering, 1992 , Pages 291-294.
CO2
T=∅
P=∅
1. R.LeDoucen, et al., (1985). Experiment, 2520 cm⁻¹
Температура (К)
Коэффициент поглощения (см⁻¹Амага⁻²)
Temperature dependence of the 4.3 μm band wing absorption coefficient for some frequencies as measured by experiments [2].
[2] R.LeDoucen, C.Cousin, C.Boulet, and A.Henry, Appl.Optics 24, No.6, pp.897-906, 1985
1985
R. Le Doucen, C. Cousin, C. Boulet, and A. Henry , Temperature dependence of the absorption in the region beyond the 4.3-µm band head of CO2 . 1: Pure CO2 case, Applied Optics, 1985 , Volume 24 , Pages 897-906.
Волновое число (см⁻¹) Волновое число (см⁻¹) Волновое число (см⁻¹)
Заданная функция Коэффициент поглощения (см⁻¹Амага⁻²)Поправочный фактор формы линии
1992
L.I.Nesmelova, O.B.Rodimova, and S. D. Tvorogov , On the role of continual and selective absorption in the wing of the 4. 3 μm CO2 band at high pressures and temperatures, SPIE V.1811, SPIE - The international society for optical engineering, 1992 , Pages 291-294.
CO2
T=∅
P=∅
1. R.LeDoucen, et al., (1985). Experiment, 2580 cm⁻¹
Температура (К)
Коэффициент поглощения (см⁻¹Амага⁻²)
Temperature dependence of the 4.3 μm band wing absorption coefficient for some frequencies as measured by experiments [2-5,7] and as calculated from the spectral line wing theory.
[2] R.LeDoucen, C.Cousin, C.Boulet, and A.Henry, Appl.Optics 24, No.6, pp.897-906, 1985
1985
R. Le Doucen, C. Cousin, C. Boulet, and A. Henry , Temperature dependence of the absorption in the region beyond the 4.3-µm band head of CO2 . 1: Pure CO2 case, Applied Optics, 1985 , Volume 24 , Pages 897-906.
Волновое число (см⁻¹) Волновое число (см⁻¹) Волновое число (см⁻¹)
Заданная функция Коэффициент поглощения (см⁻¹Амага⁻²)Поправочный фактор формы линии
1992
L.I.Nesmelova, O.B.Rodimova, and S. D. Tvorogov , On the role of continual and selective absorption in the wing of the 4. 3 μm CO2 band at high pressures and temperatures, SPIE V.1811, SPIE - The international society for optical engineering, 1992 , Pages 291-294.
CO2
T=291 К
P=1 атм
3. J. M. Hartmann (1989). Experiment, p=1.62 amagat
Волновое число (см⁻¹)
Пропускание (%)
CO2 transmission spectrum, T=291 K, l=4.4 cm. Experiment [14], ρ=1.62 amagat
[14] J. M. Hartmann. Measurements and calculations of CO2 room temperature high pressure spectra in the 4.3 μm region. The Journal of Chemical Physics 90, 2944 (1989); doi: 10.1063/1.455894. http://dx.doi.org/10.1063/1.4558944-2950.
1989
J.-.M. Hartmann , Measurements and calculations of CO2 room-temperature high-pressure spectra in the 4.3 μm region, Journal of Chemical Physics, 1989 , Volume 90 , Issue 6, Pages 2944–2950.
CO2
T=291 К
P=∅
3. Calculated with the model Lorentzian. d=1.62 amagat
Волновое число (см⁻¹)
Пропускание (%)
Transmission spectra at 291°K for the densities 1.62,7 amagat. calculated with the model Lorentzian.
1992
L.I.Nesmelova, O.B.Rodimova, and S. D. Tvorogov , On the role of continual and selective absorption in the wing of the 4. 3 μm CO2 band at high pressures and temperatures, SPIE V.1811, SPIE - The international society for optical engineering, 1992 , Pages 291-294.
CO2
T=291 К
P=1 атм
3. J. M. Hartmann (1989). Experiment, p=17 amagat
Волновое число (см⁻¹)
Пропускание (%)
CO2 transmission spectrum, T=291 K, l=4.4 cm. Experiment [14], ρ=17 amagat; 3 - ρ=77 amagat.
[14] J. M. Hartmann. Measurements and calculations of CO2 room temperature high pressure spectra in the 4.3 μm region. The Journal of Chemical Physics 90, 2944 (1989); doi: 10.1063/1.455894. http://dx.doi.org/10.1063/1.4558944-2950.
1989
J.-.M. Hartmann , Measurements and calculations of CO2 room-temperature high-pressure spectra in the 4.3 μm region, Journal of Chemical Physics, 1989 , Volume 90 , Issue 6, Pages 2944–2950.
CO2
T=291 К
P=∅
3. Experimental transmission spectra. d=17.0 amagat
Волновое число (см⁻¹)
Пропускание (%)
Transmission spectra at 291°K for the densities 17.0 amagat. Experimental.
1992
L.I.Nesmelova, O.B.Rodimova, and S. D. Tvorogov , On the role of continual and selective absorption in the wing of the 4. 3 μm CO2 band at high pressures and temperatures, SPIE V.1811, SPIE - The international society for optical engineering, 1992 , Pages 291-294.
CO2
T=291 К
P=1 атм
3. J. M. Hartmann (1989). Experiment, p=77 amagat
Волновое число (см⁻¹)
Пропускание (%)
CO2 transmission spectrum, T=291 K, l=4.4 cm. Experiment [14], ρ=77 amagat.
[14] J. M. Hartmann. Measurements and calculations of CO2 room temperature high pressure spectra in the 4.3 μm region. The Journal of Chemical Physics 90, 2944 (1989); doi: 10.1063/1.455894. http://dx.doi.org/10.1063/1.4558944-2950.
1989
J.-.M. Hartmann , Measurements and calculations of CO2 room-temperature high-pressure spectra in the 4.3 μm region, Journal of Chemical Physics, 1989 , Volume 90 , Issue 6, Pages 2944–2950.
CO2
T=291 К
P=∅
5. Calculated with the modified Lorentzian model. d=77.1 amagat
Волновое число (см⁻¹)
Пропускание (%)
Transmission spectra at 291°K for the densities 77.1 amagat. Calculated with the modified Lorentzian model.
1992
L.I.Nesmelova, O.B.Rodimova, and S. D. Tvorogov , On the role of continual and selective absorption in the wing of the 4. 3 μm CO2 band at high pressures and temperatures, SPIE V.1811, SPIE - The international society for optical engineering, 1992 , Pages 291-294.
CO2
T=291 К
P=1 атм
3. J. M. Hartmann (1989). Line mixing calculation, p=1.62 amagat
Волновое число (см⁻¹)
Пропускание (%)
CO2 transmission spectrum, T=291 K, l=4.4 cm. line mixing calculation [14], ρ=1.62 amagat.
[14] J. M. Hartmann. Measurements and calculations of CO2 room temperature high pressure spectra in the 4.3 μm region. The Journal of Chemical Physics 90, 2944 (1989); doi: 10.1063/1.455894. http://dx.doi.org/10.1063/1.4558944-2950.
1989
J.-.M. Hartmann , Measurements and calculations of CO2 room-temperature high-pressure spectra in the 4.3 μm region, Journal of Chemical Physics, 1989 , Volume 90 , Issue 6, Pages 2944–2950.
CO2
T=291 К
P=∅
3. Experimental transmission spectra. d=1.62 amagat
Волновое число (см⁻¹)
Пропускание (%)
Transmission spectra at 291°K for the densities 1.62 amagat. Experimental.
1992
L.I.Nesmelova, O.B.Rodimova, and S. D. Tvorogov , On the role of continual and selective absorption in the wing of the 4. 3 μm CO2 band at high pressures and temperatures, SPIE V.1811, SPIE - The international society for optical engineering, 1992 , Pages 291-294.
CO2
T=291 К
P=1 атм
3. J. M. Hartmann (1989). Line mixing calculation, p=17 amagat
Волновое число (см⁻¹)
Пропускание (%)
CO2 transmission spectrum, T=291 K, l=4.4 cm. line mixing calculation [14], ρ=17 amagat.
[14] J. M. Hartmann. Measurements and calculations of CO2 room temperature high pressure spectra in the 4.3 μm region. The Journal of Chemical Physics 90, 2944 (1989); doi: 10.1063/1.455894. http://dx.doi.org/10.1063/1.4558944-2950.
1989
J.-.M. Hartmann , Measurements and calculations of CO2 room-temperature high-pressure spectra in the 4.3 μm region, Journal of Chemical Physics, 1989 , Volume 90 , Issue 6, Pages 2944–2950.
CO2
T=291 К
P=∅
3. Experimental transmission spectra. d=7.27 amagat
Волновое число (см⁻¹)
Пропускание (%)
Transmission spectra at 291°K for the densities 1.62,7.27, 17.0 amagat. Experimental.
1992
L.I.Nesmelova, O.B.Rodimova, and S. D. Tvorogov , On the role of continual and selective absorption in the wing of the 4. 3 μm CO2 band at high pressures and temperatures, SPIE V.1811, SPIE - The international society for optical engineering, 1992 , Pages 291-294.
CO2
T=291 К
P=1 атм
3. J. M. Hartmann (1989). Line mixing calculation, p=77 amagat
Волновое число (см⁻¹)
Пропускание (%)
CO2 transmission spectrum, T=291 K, l=4.4 cm. line mixing calculation [14], ρ=77 amagat.
[14] J. M. Hartmann. Measurements and calculations of CO2 room temperature high pressure spectra in the 4.3 μm region. The Journal of Chemical Physics 90, 2944 (1989); doi: 10.1063/1.455894. http://dx.doi.org/10.1063/1.4558944-2950.
1989
J.-.M. Hartmann , Measurements and calculations of CO2 room-temperature high-pressure spectra in the 4.3 μm region, Journal of Chemical Physics, 1989 , Volume 90 , Issue 6, Pages 2944–2950.
Волновое число (см⁻¹) Волновое число (см⁻¹) Волновое число (см⁻¹)
Заданная функция Коэффициент поглощения (см⁻¹Амага⁻²) Пропускание (%)
1992
Несмелова Л.И., О.Б.Родимова, С.Д.Творогов , Спектральное поведение коэффициента поглощения в полосе 4.3 мкм СО2 в широком диапазоне температур и давлений, Оптика атмосферы и океана, 1992 , Volume 5 , Number 9, Pages 939-946.
CO2
T=673 К
P=0.2675 атм
7. Hartmann J.M., et al., (1989). Calculation
Волновое число (см⁻¹)
Коэффициент поглощения (см⁻¹атм⁻¹)
Эффект горячих полос в крыле полосы 4.3 мкм СО2 . Р=0.2675 атм; Т=673 К. расчет с κ из [6].
[6] Hartmann J.M., Perrin M.Y. Appl Optics 1989. V.28. No.13. P.2550-2553
1989
Jean-Michel Hartmann and Marie-Yvonne Perrin , Measurements of pure CO2 absorption beyond the ν3 bandhead at high temperature, Applied Optics, 1989 , Volume 28 , Pages 2550-2553.
CO2
T=751 К
P=∅
5c. Normalized absorption coefficient at 751°K; Experiment.
Волновое число (см⁻¹)
Коэффициент поглощения (см⁻¹Амага⁻²)
Wavenumber dependence of the pure CO2 normalized absorption coefficient at 751°K; Experiment.
1992
Несмелова Л.И., О.Б.Родимова, С.Д.Творогов , Спектральное поведение коэффициента поглощения в полосе 4.3 мкм СО2 в широком диапазоне температур и давлений, Оптика атмосферы и океана, 1992 , Volume 5 , Number 9, Pages 939-946.
CO2
T=291 К
P=0.2675 атм
7. Hartmann J.M., et al., (1989). Computation
Волновое число (см⁻¹)
Коэффициент поглощения (см⁻¹атм⁻¹)
Эффект горячих полос в крыле полосы 4.3 мкм СО2 . Р=0.2675 атм; Т=291 К. расчет с κ из [6].
[6] Hartmann J.M., Perrin M.Y. Appl Optics 1989. V.28. No.13. P.2550-2553
1989
Jean-Michel Hartmann and Marie-Yvonne Perrin , Measurements of pure CO2 absorption beyond the ν3 bandhead at high temperature, Applied Optics, 1989 , Volume 28 , Pages 2550-2553.
CO2
T=291 К
P=∅
1. Normalized Absorption Coefficient. T=291K
Волновое число (см⁻¹)
Коэффициент поглощения (см⁻¹Амага⁻²)
Table 1 . Experimentally Determined Pure CO2 Normalized Absorption Coefficient (in cm-1 Am-2 ).
1992
Несмелова Л.И., О.Б.Родимова, С.Д.Творогов , Спектральное поведение коэффициента поглощения в полосе 4.3 мкм СО2 в широком диапазоне температур и давлений, Оптика атмосферы и океана, 1992 , Volume 5 , Number 9, Pages 939-946.
CO2
T=291 К
P=0.2675 атм
7. Кузнецова Э.С., и др. (1975). Experiment
Волновое число (см⁻¹)
Коэффициент поглощения (см⁻¹атм⁻¹)
Эффект горячих полос в крыле полосы 4.3 мкм СО2 . Р=0.2675 атм; 1,1' Т=291 К; экспериментальные данные [18] и расчет по теории крыльев линий, неотличимый от них в масштабе рисунка/
[18] Кузнецова Э.С., Осипов В.М., Подкладенко М.В. Опт и спектр 1975. Т.38. Вып.1. С.36-38
1975
Кузнецова Э.С., Осипов В.М., Подкладенко М.В. , Исследование поглощения СО2 за кантом полосы 4.3 мкм при повышенных температурах, Оптика и спектроскопия, 1975 , Volume 38 , Issue 11, Pages 36-39.
CO2
T=300 К
P=0.267 атм
1. Absorpton coefficient. (2400-2480 cm⁻¹, T=300K). Fitting
Волновое число (см⁻¹)
Коэффициент поглощения (см⁻¹атм⁻¹)
Спектральные коэффициенты поглощения, полученные экспериментально при рСО2 l=106.7 атм см, рСО2 =Робщ =0.267 атм. T, K: 300°K
1992
Несмелова Л.И., О.Б.Родимова, С.Д.Творогов , Спектральное поведение коэффициента поглощения в полосе 4.3 мкм СО2 в широком диапазоне температур и давлений, Оптика атмосферы и океана, 1992 , Volume 5 , Number 9, Pages 939-946.
CO2
T=673 К
P=0.2675 атм
7. Кузнецова Э.С., и др. (1975). Экспериментальные данные
Волновое число (см⁻¹)
Коэффициент поглощения (см⁻¹атм⁻¹)
Эффект горячих полос в крыле полосы 4.3 мкм СО2 . Р=0.2675 атм; Т=673 К; Экспериментальные данные [18] и расчет по теории крыльев линий, неотличимый от них в масштабе рисунка
[18] Кузнецова Э.С., Осипов В.М., Подкладенко М.В. Опт и спектр 1975. Т.38. Вып.1. С.36-38
1975
Кузнецова Э.С., Осипов В.М., Подкладенко М.В. , Исследование поглощения СО2 за кантом полосы 4.3 мкм при повышенных температурах, Оптика и спектроскопия, 1975 , Volume 38 , Issue 11, Pages 36-39.
CO2
T=673 К
P=0.605 атм
2. Absorpton coefficient. (2400-2480 cm⁻¹, T=673K). Experiment
Волновое число (см⁻¹)
Коэффициент поглощения (см⁻¹атм⁻¹)
Спектральные коэффициенты поглощения, полученные экспериментально при рСО2 l=320 атм см, рСО2 =Робщ =0.605 атм. T, K: 673°K.
1993
Takao Tsuboi, Naoko Arimitsu and Jean-Michael Hartmann , High-Temperature Absorption by Pure CO2 Far Line Wings in the 4 µm Region, Japanese Journal of Applied Physics, 1993 , Volume 32 , Pages L1778-L1780.
CO2
T=∅
P=∅
3. Burch D.E., et al. (1969). Experimental data (2460 cm-1)
Температура (К)
Коэффициент поглощения (см⁻¹Амага⁻²)
Normalized pure CO2 absorption coefficients vs. temperature. Burch et al. [1] .
[1] Burch D.E., Gryvnak D.A., Patty R.R., Bartky Ch.E. J.Opt.Soc Amer. 1969, 59, No.3, 267-280.
1969
Darrell E. Burch, David A. Gryvnak, Richard R. Patty, and Charlotte E. Bartky , Absorption of Infrared Radiant Energy by CO2 and H2 O. IV. Shapes of Collision-Broadened CO2 Lines, Journal of Optical Society of America, 1969 , Volume 59 , Pages 267-278.
Волновое число (см⁻¹) Волновое число (см⁻¹) Смещение от центра линии (см⁻¹) Угловой момент
Нормализованный коэффициент поглощения (атм⁻¹см⁻¹)STP Пропускание (%) Поправочный фактор для Лоренцевского контура Нормализованная полуширина (см⁻¹)
1993
Takao Tsuboi, Naoko Arimitsu and Jean-Michael Hartmann , High-Temperature Absorption by Pure CO2 Far Line Wings in the 4 µm Region, Japanese Journal of Applied Physics, 1993 , Volume 32 , Pages L1778-L1780.
CO2
T=∅
P=∅
3. Burch D.E., et al. (1969). Experimental data. (2440 cm-1)
Температура (К)
Коэффициент поглощения (см⁻¹Амага⁻²)
Normalized pure CO2 absorption coefficients vs. temperature. Burch et al. [1].
[1] Burch D.E., Gryvnak D.A., Patty R.R., Bartky Ch.E. J.Opt.Soc Amer. 1969, 59, No.3, 267-280.
1969
Darrell E. Burch, David A. Gryvnak, Richard R. Patty, and Charlotte E. Bartky , Absorption of Infrared Radiant Energy by CO2 and H2 O. IV. Shapes of Collision-Broadened CO2 Lines, Journal of Optical Society of America, 1969 , Volume 59 , Pages 267-278.
Волновое число (см⁻¹) Волновое число (см⁻¹) Смещение от центра линии (см⁻¹) Угловой момент
Нормализованный коэффициент поглощения (атм⁻¹см⁻¹)STP Пропускание (%) Поправочный фактор для Лоренцевского контура Нормализованная полуширина (см⁻¹)
1993
Takao Tsuboi, Naoko Arimitsu and Jean-Michael Hartmann , High-Temperature Absorption by Pure CO2 Far Line Wings in the 4 µm Region, Japanese Journal of Applied Physics, 1993 , Volume 32 , Pages L1778-L1780.
CO2
T=∅
P=∅
3. Hartmann J.M. (1989). Experimental data (2460 cm-1)
Температура (К)
Коэффициент поглощения (см⁻¹Амага⁻²)
Normalized pure CO2 absorption coefficients vs. temperature. Hartmann J.M. [3].
[3] J.-.M. Hartmann, Measurements and calculations of CO2 room-temperature high-pressure spectra in the 4.3 μm region, Journal of Chemical Physics, 1989 , Volume 90 , Issue 6, Pages 2944–2950, DOI: 10.1063/1.455894 ..
1989
J.-.M. Hartmann , Measurements and calculations of CO2 room-temperature high-pressure spectra in the 4.3 μm region, Journal of Chemical Physics, 1989 , Volume 90 , Issue 6, Pages 2944–2950.
Волновое число (см⁻¹) Волновое число (см⁻¹) Волновое число (см⁻¹)
Заданная функция Коэффициент поглощения (см⁻¹Амага⁻²)Пропускание (%)
1993
Takao Tsuboi, Naoko Arimitsu and Jean-Michael Hartmann , High-Temperature Absorption by Pure CO2 Far Line Wings in the 4 µm Region, Japanese Journal of Applied Physics, 1993 , Volume 32 , Pages L1778-L1780.
CO2
T=∅
P=∅
3. Hartmann J.M., (1989). Experimental data (2440 cm-1)
Температура (К)
Коэффициент поглощения (см⁻¹Амага⁻²)
Normalized pure CO2 absorption coefficients vs. temperature. Hartmann [3].
[3] J.-.M. Hartmann, Measurements and calculations of CO2 room-temperature high-pressure spectra in the 4.3 μm region, Journal of Chemical Physics, 1989 , Volume 90 , Issue 6, Pages 2944–2950, DOI: 10.1063/1.455894 ..
1989
J.-.M. Hartmann , Measurements and calculations of CO2 room-temperature high-pressure spectra in the 4.3 μm region, Journal of Chemical Physics, 1989 , Volume 90 , Issue 6, Pages 2944–2950.
Волновое число (см⁻¹) Волновое число (см⁻¹) Волновое число (см⁻¹)
Заданная функция Коэффициент поглощения (см⁻¹Амага⁻²)Пропускание (%)
1993
Takao Tsuboi, Naoko Arimitsu and Jean-Michael Hartmann , High-Temperature Absorption by Pure CO2 Far Line Wings in the 4 µm Region, Japanese Journal of Applied Physics, 1993 , Volume 32 , Pages L1778-L1780.
CO2
T=∅
P=∅
3. Hartmann J.M., et al (1989). Experimental data (2440 cm-1)
Температура (К)
Коэффициент поглощения (см⁻¹Амага⁻²)
Normalized pure CO2 absorption coefficients vs. temperature. Hartmann, Perrin [5].
[5] Jean-Michel Hartmann and Marie-Yvonne Perrin, Measurements of pure CO2 absorption beyond the ν3 bandhead at high temperature, Applied Optics, 1989 , Volume 28 , Pages 2550-2553, DOI: 10.1364/AO.28.002550 , http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-28-13-2550 .
1989
Jean-Michel Hartmann and Marie-Yvonne Perrin , Measurements of pure CO2 absorption beyond the ν3 bandhead at high temperature, Applied Optics, 1989 , Volume 28 , Pages 2550-2553.
Волновое число (см⁻¹) Волновое число (см⁻¹)
Коэффициент поглощения (см⁻¹Амага⁻²)Пропускание (%)
1993
Takao Tsuboi, Naoko Arimitsu and Jean-Michael Hartmann , High-Temperature Absorption by Pure CO2 Far Line Wings in the 4 µm Region, Japanese Journal of Applied Physics, 1993 , Volume 32 , Pages L1778-L1780.
CO2
T=∅
P=∅
3. Hartmann J.M., et al. (1989). Experimental data (2460 cm-1)
Температура (К)
Коэффициент поглощения (см⁻¹Амага⁻²)
Normalized pure CO2 absorption coefficients vs. temperature. Hartmann and Perrin [5].
[5] Jean-Michel Hartmann and Marie-Yvonne Perrin, Measurements of pure CO2 absorption beyond the ν3 bandhead at high temperature, Applied Optics, 1989 , Volume 28 , Pages 2550-2553, DOI: 10.1364/AO.28.002550 , http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-28-13-2550 .
1989
Jean-Michel Hartmann and Marie-Yvonne Perrin , Measurements of pure CO2 absorption beyond the ν3 bandhead at high temperature, Applied Optics, 1989 , Volume 28 , Pages 2550-2553.
Волновое число (см⁻¹) Волновое число (см⁻¹)
Коэффициент поглощения (см⁻¹Амага⁻²)Пропускание (%)
1993
Takao Tsuboi, Naoko Arimitsu and Jean-Michael Hartmann , High-Temperature Absorption by Pure CO2 Far Line Wings in the 4 µm Region, Japanese Journal of Applied Physics, 1993 , Volume 32 , Pages L1778-L1780.
CO2
T=∅
P=∅
3. Le Doucen R., et al. (1985). Experimental data (2440 cm-1)
Температура (К)
Коэффициент поглощения (см⁻¹Амага⁻²)
Normalized pure CO2 absorption coefficients vs. temperature. LeDoucen et al. [4].
4] Le Doucen R., Cousin C., Boulet C., Henry A. Appl Optics 1985. V.24. P.897.
1985
R. Le Doucen, C. Cousin, C. Boulet, and A. Henry , Temperature dependence of the absorption in the region beyond the 4.3-µm band head of CO2 . 1: Pure CO2 case, Applied Optics, 1985 , Volume 24 , Pages 897-906.
Волновое число (см⁻¹) Волновое число (см⁻¹) Волновое число (см⁻¹)
Заданная функция Коэффициент поглощения (см⁻¹Амага⁻²)Поправочный фактор формы линии
1993
Takao Tsuboi, Naoko Arimitsu and Jean-Michael Hartmann , High-Temperature Absorption by Pure CO2 Far Line Wings in the 4 µm Region, Japanese Journal of Applied Physics, 1993 , Volume 32 , Pages L1778-L1780.
CO2
T=∅
P=∅
3. Le Doucen R., et al. (1985). Experimental data (2460 cm-1)
Температура (К)
Коэффициент поглощения (см⁻¹Амага⁻²)
Normalized pure CO2 absorption coefficients vs. temperature. Le Doucen et al. [4].
[4] Le Doucen R., Cousin C., Boulet C., Henry A. Appl Optics 1985. V.24. P.897.
1985
R. Le Doucen, C. Cousin, C. Boulet, and A. Henry , Temperature dependence of the absorption in the region beyond the 4.3-µm band head of CO2 . 1: Pure CO2 case, Applied Optics, 1985 , Volume 24 , Pages 897-906.
Волновое число (см⁻¹) Волновое число (см⁻¹) Волновое число (см⁻¹)
Заданная функция Коэффициент поглощения (см⁻¹Амага⁻²)Поправочный фактор формы линии
1993
Takao Tsuboi, Naoko Arimitsu and Jean-Michael Hartmann , High-Temperature Absorption by Pure CO2 Far Line Wings in the 4 µm Region, Japanese Journal of Applied Physics, 1993 , Volume 32 , Pages L1778-L1780.
CO2
T=∅
P=∅
3. Winters B.H., et al. (1964). Experimental data (2440 cm-1)
Температура (К)
Коэффициент поглощения (см⁻¹Амага⁻²)
Normalized pure CO2 absorption coefficients vs. temperature. Winters et al. [2].
[2] Winters B.H., S. Silverman, W.S. Benedict JQSRT V. 4, Iss. 4, 1964, Pages 527-537.
1964
B.H. Winters, S. Silverman, W.S. Benedict , Line shape in the wing beyond the band head of the 4·3 μ band of CO2 , Journal of Quantitative Spectroscopy and Radiation Transfer, 1964 , Volume 4 , Issue 4, Pages 527-537.
Волновое число (см⁻¹) Волновое число (см⁻¹)
Заданная функция Коэффициент поглощения (см⁻¹атм⁻²)
1993
Takao Tsuboi, Naoko Arimitsu and Jean-Michael Hartmann , High-Temperature Absorption by Pure CO2 Far Line Wings in the 4 µm Region, Japanese Journal of Applied Physics, 1993 , Volume 32 , Pages L1778-L1780.
CO2
T=∅
P=∅
3. Winters B.H., et al. (1964). Experimental data (2460 cm-1)
Температура (К)
Коэффициент поглощения (см⁻¹Амага⁻²)
Normalized pure CO2 absorption coefficients vs. temperature. Winters et al. [2].
[2] Winters B.H., S. Silverman, W.S. Benedict JQSRT V. 4, Iss. 4, 1964, Pages 527-537
1964
B.H. Winters, S. Silverman, W.S. Benedict , Line shape in the wing beyond the band head of the 4·3 μ band of CO2 , Journal of Quantitative Spectroscopy and Radiation Transfer, 1964 , Volume 4 , Issue 4, Pages 527-537.
Волновое число (см⁻¹) Волновое число (см⁻¹)
Заданная функция Коэффициент поглощения (см⁻¹атм⁻²)
1995
Tvorogov S.D. , Problem of spectral line periphery in atmospheric optics, Atmospheric and Oceanic Optics, 1995 , Volume 8 , Number 01-02, Pages 7-13.
CO2
T=920 К
P=1 атм
2. Hartmann J.M., et al., (1991). Experiment. CO₂. (2410-2480 cm⁻¹)
Волновое число (см⁻¹)
Коэффициент поглощения (см⁻¹Амага⁻²)
Measured absorption coefficient of CO2 in 2410-2480 cm-1 .
[40] Hartmann J.M., Boulet C. LINE MIXING AND FINITE DURATION OF COLLISION EFFECTS IN PURE CO2 INFRARED-SPECTRA - FITTING AND SCALING ANALYSIS.// Journal of Chemical Physics. 1991;94(10):6406-19.
1991
Jean-Michel Hartmann, Christian Boulet , Line mixing and finite duration of collision effects in pure CO2 infrared spectra: Fitting and scaling analysis, Journal of Chemical Physics, 1991 , Volume 94 , Pages 6406.
CO2
T=920 К
P=∅
1. Table 1. Absorption coefficient (T=920K)
Волновое число (см⁻¹)
Коэффициент поглощения (см⁻¹Амага⁻²)
Normalized pure CO2, absorption coefficients beyond the ν3 bandhead
1996
M. V. Tonkov, N. N. Filippov, V. V. Bertsev, J. P. Bouanich, Nguyen Van-Thanh, C. Brodbeck, J. M. Hartmann, C. Boulet, F. Thibault, and R. Le Doucen , Measurements and empirical modeling of pure CO2 absorption in the 2.3-νm region at room temperature: far wings, allowed and collision-induced bands, Applied Optics, 1996 , Volume 35 , Pages 4863-4870.
CO2
T=296 К
P=∅
2. Normalized absorption coefficient.Experimental values from Burch, et al. (1969)
Волновое число (см⁻¹)
Нормализованный коэффициент поглощения (см⁻¹Амага⁻²)
Experimental room temperature pure CO2 normalized absorption coefficients: values from Burch et al. [7].
[7] D. E. Burch, D. A. Gryvnak, R. R. Patty, and C. E. Bartky, “Shapes of collision-broadened CO2 lines,” J. Opt. Soc. Am. 59, 267–280 (1969).
1969
Darrell E. Burch, David A. Gryvnak, Richard R. Patty, and Charlotte E. Bartky , Absorption of Infrared Radiant Energy by CO2 and H2 O. IV. Shapes of Collision-Broadened CO2 Lines, Journal of Optical Society of America, 1969 , Volume 59 , Pages 267-278.
Волновое число (см⁻¹) Волновое число (см⁻¹)Смещение от центра линии (см⁻¹) Угловой момент
Нормализованный коэффициент поглощения (атм⁻¹см⁻¹)STP Пропускание (%) Поправочный фактор для Лоренцевского контура Нормализованная полуширина (см⁻¹)
1996
M. V. Tonkov, N. N. Filippov, V. V. Bertsev, J. P. Bouanich, Nguyen Van-Thanh, C. Brodbeck, J. M. Hartmann, C. Boulet, F. Thibault, and R. Le Doucen , Measurements and empirical modeling of pure CO2 absorption in the 2.3-νm region at room temperature: far wings, allowed and collision-induced bands, Applied Optics, 1996 , Volume 35 , Pages 4863-4870.
CO2
T=296 К
P=∅
4. D. E. Burch, et al. (1989). Absorption coefficient. Calculation
Волновое число (см⁻¹)
Коэффициент поглощения (см⁻¹)
Room temperature pure CO2 absorption coefficients for a density of 20 amagats. Ref. 7 (2.3-μm region).
[7] D. E. Burch, D. A. Gryvnak, R. R. Patty, and C. E. Bartky, “Shapes of collision-broadened CO2 lines,” J. Opt. Soc. Am. 59, 267–280 (1969)
1969
Darrell E. Burch, David A. Gryvnak, Richard R. Patty, and Charlotte E. Bartky , Absorption of Infrared Radiant Energy by CO2 and H2 O. IV. Shapes of Collision-Broadened CO2 Lines, Journal of Optical Society of America, 1969 , Volume 59 , Pages 267-278.
CO2
T=∅
P=∅
8. CO₂+CO₂ (3770 - 4100 cm⁻¹). Experiment
Волновое число (см⁻¹)
Нормализованный коэффициент поглощения (атм⁻¹см⁻¹)STP
k 0 for self broadening between 3770 and 4100 cm-1 . The curves represent the contribution due to the lines below 3780 cm-1 ; the contribution of the lines between 3780 and 4100 cm-1 has been subtracted from the observed absorption coefficient. The curves are based on data points at wavenumbers where the absorption by nearby lines is small. Because of possible errors in the corrections made, the uncertainty of the curve is large above 3900 cm-1 .
1996
M. V. Tonkov, N. N. Filippov, V. V. Bertsev, J. P. Bouanich, Nguyen Van-Thanh, C. Brodbeck, J. M. Hartmann, C. Boulet, F. Thibault, and R. Le Doucen , Measurements and empirical modeling of pure CO2 absorption in the 2.3-νm region at room temperature: far wings, allowed and collision-induced bands, Applied Optics, 1996 , Volume 35 , Pages 4863-4870.
CO2
T=296 К
P=∅
4. M. Y. Perrin, et al. (1989). Absorption coefficient. Calculation
Волновое число (см⁻¹)
Коэффициент поглощения (см⁻¹)
Room temperature pure CO2 absorption coefficients for a density of 20 amagats. Computed values accounting for allowed (HITRAN-92) and induced transitions with the χ factor Ref. 13.
[13] M. Y. Perrin and J. M. Hartmann, “Temperature-dependent measurements and modeling of absorption by CO2 –N2 mixtures in the far line-wing of the 4.3 μm CO2 band,” J. Quant. Spectrosc. Radiat. Transfer 42, 311–317 (1989).
1989
M.Y. Perrin and J.M. Hartmann , Temperature-dependent measurements and modeling of absorption by CO2 –N2 mixtures in the far line-wings of the 4.3 μ m CO2 band, Journal of Quantitative Spectroscopy and Radiation Transfer, 1989 , Volume 42 , Issue 4, Pages 311-317.
Волновое число (см⁻¹) Волновое число (см⁻¹)
Коэффициент поглощения (см⁻¹Амага⁻²)Пропускание (%)
1997
Filippov N.N., Bouanich J.P., Boulet C., Tonkov M.V., LeDoucen R., Thibault F. , Collision-induced double transition effects in the 3 ν3 CO2 band wing region, The Journal of Chemical Physics, 1997 , Volume 106 , Issue 6, Pages 2067-72.
CO2
T=293 К
P=13 атм
1. Yu. I. Baranov, et al., (1981). Absorption coefficient of CO₂.Present experiment (6980-7060 cm⁻¹)
Волновое число (см⁻¹)
Коэффициент поглощения (см⁻¹Амага⁻²)
Normalized binary absorption coefficients in the 3 ν3 band wing of CO2 . Experimental results: from Ref. 5.
[5] Yu. I. Baranov, M. O. Bulanin, and M. V. Tonkov, Optk. Spektrosk. 50, 613 (1981)
Баранов Ю.И., Буланин М.О., Тонков М.В. Исследование крыльев линий колебательно-вращательной полосы Зv3 СО2 , Оптика и спектроск ., 1981 , т.50 , с.613 -615.
1981
Баранов Ю.И., Буланин М.О., Тонков М.В. , Исследование крыльев линий колебательно-вращательной полосы 3ν3 СО2 , Оптика и спектроскопия, 1981 , Volume 50 , Number 3, Pages 613-615.
CO2
T=∅
P=4 атм
1a. За кантом полосы 3v3 CO2
Волновое число (см⁻¹)
Коэффициент поглощения (см⁻¹Амага⁻²)
Бинарные коэффициенты поглощения (см-1 амага-2 ) за кантом полосы 3ν3 СО2 . Ar+CO2 .
1997
Marcin Gruszka, Aleksandra Borysow , Roto-Translational Collision-Induced Absorption of CO2 for the Atmosphere of Venus at Frequencies from 0 to 250 cm- 1 , at Temperatures from 200 to 800 K, Icarus, 1997 , Volume 129 , Issue 1, Pages 172-177.
CO2
T=233 К
P=∅
4. Dagg, I. (233K)
Волновое число (см⁻¹)
Коэффициент поглощения (см⁻¹Амага⁻²)
Dagg, I. (private communication)
1986
I. R. Dagg, A. Anderson, S. Yan, W. Smith, C. G. Joslin, L. A. A. Read , Collision-induced absorption in a gaseous mixture of nitrogen and argon, Canadian Journal of Physics, 1986 , Volume 64 , Issue 1, Pages 7-15.
1997
Marcin Gruszka, Aleksandra Borysow , Roto-Translational Collision-Induced Absorption of CO2 for the Atmosphere of Venus at Frequencies from 0 to 250 cm- 1 , at Temperatures from 200 to 800 K, Icarus, 1997 , Volume 129 , Issue 1, Pages 172-177.
CO2
T=300 К
P=∅
4. Dagg, I. (300K)
Волновое число (см⁻¹)
Коэффициент поглощения (см⁻¹Амага⁻²)
Dagg, I. (private communication)
1986
Dagg I.R., Anderson A., Yan S., Smith W. , The quadrupole moment of cyanogen: a comparative study of collision-induced absorption in gaseous C2 N2 , CO2 , and mixtures with argon, Canadian Journal of Physics, 1986 , Volume 64 , Pages 1475–81.
1997
Marcin Gruszka, Aleksandra Borysow , Roto-Translational Collision-Induced Absorption of CO2 for the Atmosphere of Venus at Frequencies from 0 to 250 cm- 1 , at Temperatures from 200 to 800 K, Icarus, 1997 , Volume 129 , Issue 1, Pages 172-177.
CO2
T=400 К
P=∅
4. Dagg, I. (400K)
Волновое число (см⁻¹)
Коэффициент поглощения (см⁻¹Амага⁻²)
Dagg, I. (private communication)
1986
Dagg I.R., Anderson A., Yan S., Smith W. , The quadrupole moment of cyanogen: a comparative study of collision-induced absorption in gaseous C2 N2 , CO2 , and mixtures with argon, Canadian Journal of Physics, 1986 , Volume 64 , Pages 1475–81.
1997
Marcin Gruszka, Aleksandra Borysow , Roto-Translational Collision-Induced Absorption of CO2 for the Atmosphere of Venus at Frequencies from 0 to 250 cm- 1 , at Temperatures from 200 to 800 K, Icarus, 1997 , Volume 129 , Issue 1, Pages 172-177.
CO2
T=233 К
P=∅
4. Ho, W., et al. (1971) (233K)
Волновое число (см⁻¹)
Коэффициент поглощения (см⁻¹Амага⁻²)
Ho, W., G. Birnbaum, and A. Rosenberg 1971. Far-infrared collision-induced absorption in CO2 . I. Temperature dependence. J. Chem. Phys. 55, 1028–1038.
1971
Ho, W., Birnbaum, G., Rosenberg, A. , Far-infrared collision-induced absorption in CO2 . I. Temperature dependence, Journal of Chemical Physics, 1971 , Volume 55 , Issue 3, Pages 1028.
CO2
T=233 К
P=∅
1. Experiment (233K, 0-250 cm⁻¹)
Волновое число (см⁻¹)
Коэффициент поглощения (см⁻¹Амага⁻²)
Far-infrared spectrum of gaseous CO2 at 233°K.
1997
Marcin Gruszka, Aleksandra Borysow , Roto-Translational Collision-Induced Absorption of CO2 for the Atmosphere of Venus at Frequencies from 0 to 250 cm- 1 , at Temperatures from 200 to 800 K, Icarus, 1997 , Volume 129 , Issue 1, Pages 172-177.
CO2
T=300 К
P=∅
4. Ho, W., et al. (1971) (300K)
Волновое число (см⁻¹)
Коэффициент поглощения (см⁻¹Амага⁻²)
Ho, W., G. Birnbaum, and A. Rosenberg 1971. Far-infrared collision-induced absorption in CO2 . I. Temperature dependence. J. Chem. Phys. 55, 1028–1038.
1971
Ho, W., Birnbaum, G., Rosenberg, A. , Far-infrared collision-induced absorption in CO2 . I. Temperature dependence, Journal of Chemical Physics, 1971 , Volume 55 , Issue 3, Pages 1028.
CO2
T=296 К
P=∅
1. Experiment (296K, 0-250 cm⁻¹)
Волновое число (см⁻¹)
Коэффициент поглощения (см⁻¹Амага⁻²)
Far-infrared spectrum of gaseous CO2 at 296°K.
1998
Ma Q., Tipping R.H. , The distribution of density matrices over potential-energy surfaces : application to the calculation of the far-wing line shapes for CO2 , Journal of Chemical Physics, 1998 , Volume 108 , Number 9, Pages 3386 - 3399.
CO2
T=296 К
P=∅
10. R. Le Doucen, et al., (1985). Absorption coefficient. CO₂. Experiment (2400–2580 cm⁻¹, T=296K)
Волновое число (см⁻¹)
Коэффициент поглощения (см⁻¹Амага⁻²)
The experimental absorption coefficient (in units of cm-1 amagat-2 ) at T=296 K in the 2400– 2580 cm-1 spectral region of CO2 –CO2 .
[16] R. Le Doucen, C. Cousin, C. Boulet, and A. Henry, Appl. Opt. 24, 897 (1985); 24, 3899 (1985).
1985
R. Le Doucen, C. Cousin, C. Boulet, and A. Henry , Temperature dependence of the absorption in the region beyond the 4.3-µm band head of CO2 . 1: Pure CO2 case, Applied Optics, 1985 , Volume 24 , Pages 897-906.
CO2
T=296 К
P=∅
1. Normalized Absorption Coefficient.T=296K
Волновое число (см⁻¹)
Коэффициент поглощения (см⁻¹Амага⁻²)
Table 1 . Observed Normalized Absorptlon CoeffIcIent A0 (σ,T) In cm-1 amagat-2 at Selected Temperatures
1998
Ma Q., Tipping R.H. , The distribution of density matrices over potential-energy surfaces : application to the calculation of the far-wing line shapes for CO2 , Journal of Chemical Physics, 1998 , Volume 108 , Number 9, Pages 3386 - 3399.
CO2
T=218 К
P=∅
11. R. Le Doucen, et al., (1985). Absorption coefficient. CO₂. Experiment (2400–2580 cm⁻¹, T=218K)
Волновое число (см⁻¹)
Коэффициент поглощения (см⁻¹Амага⁻²)
The calculated absorption coefficient (in units of cm-1 amagat-2 ) at T=218 K in the 2400– 2580 cm-1 spectral region of CO2 –CO2 .
[16] R. Le Doucen, C. Cousin, C. Boulet, and A. Henry, Appl. Opt. 24, 897 (1985); 24, 3899 (1985).
1985
R. Le Doucen, C. Cousin, C. Boulet, and A. Henry , Temperature dependence of the absorption in the region beyond the 4.3-µm band head of CO2 . 1: Pure CO2 case, Applied Optics, 1985 , Volume 24 , Pages 897-906.
CO2
T=218 К
P=∅
1. Normalized Absorption Coefficient. T=218K
Волновое число (см⁻¹)
Коэффициент поглощения (см⁻¹Амага⁻²)
Table 1 . Observed Normalized Absorptlon CoeffIcIent A0 (σ,T) In cm-1 amagat-2 at Selected Temperatures
1999
Qiancheng Ma, Richard H. Tipping, Christian Boulet, and Jean-Pierre Bouanich , Theoretical Far-Wing Line Shape and Absorption for High-Temperature CO2 , Applied Optics, 1999 , Volume 38 , Pages 599-604.
CO2
T=296 К
P=∅
3a. R. Le Doucen, et al., (1985). CO₂+CO₂. Absorption coefficient. (2400–2580 cm⁻¹, T=296 K)
Волновое число (см⁻¹)
Коэффициент поглощения (см⁻¹Амага⁻²)
Absorption coefficient α(ω) in the 2400–2580 cm-1 spectral region of CO2. The experimental data from Ref. 15. T = 296 K.
[15] R. Le Doucen, C. Cousin, C. Boulet, and A. Henry, “Temperature dependence of the absorption in the region beyond the 4.3-μm band head of CO2 . I: Pure CO2 case,” Appl. Opt. 24, 897–906 (1985).
1985
R. Le Doucen, C. Cousin, C. Boulet, and A. Henry , Temperature dependence of the absorption in the region beyond the 4.3-µm band head of CO2 . 1: Pure CO2 case, Applied Optics, 1985 , Volume 24 , Pages 897-906.
CO2
T=296 К
P=∅
1. Normalized Absorption Coefficient.T=296K
Волновое число (см⁻¹)
Коэффициент поглощения (см⁻¹Амага⁻²)
Table 1 . Observed Normalized Absorptlon CoeffIcIent A0 (σ,T) In cm-1 amagat-2 at Selected Temperatures
1999
Qiancheng Ma, Richard H. Tipping, Christian Boulet, and Jean-Pierre Bouanich , Theoretical Far-Wing Line Shape and Absorption for High-Temperature CO2 , Applied Optics, 1999 , Volume 38 , Pages 599-604.
CO2
T=218 К
P=∅
3b. R. Le Doucen, (1985). CO₂+CO₂ absorption coefficient. (2400–2580 cm⁻¹, T=296 K)
Волновое число (см⁻¹)
Коэффициент поглощения (см⁻¹Амага⁻²)
Absorption coefficient α(ω) in the 2400–2580 cm-1 spectral region of CO2 –CO2 . The experimental data from Ref. 15 are indicated by pluses. T = 218 K.
[15] R. Le Doucen, C. Cousin, C. Boulet, and A. Henry, “Temperature dependence of the absorption in the region beyond the 4.3-μm band head of CO2 . I: Pure CO2 case,” Appl. Opt. 24, 897–906 (1985).
1985
R. Le Doucen, C. Cousin, C. Boulet, and A. Henry , Temperature dependence of the absorption in the region beyond the 4.3-µm band head of CO2 . 1: Pure CO2 case, Applied Optics, 1985 , Volume 24 , Pages 897-906.
CO2
T=296 К
P=∅
1. Normalized Absorption Coefficient.T=296K
Волновое число (см⁻¹)
Коэффициент поглощения (см⁻¹Амага⁻²)
Table 1 . Observed Normalized Absorptlon CoeffIcIent A0 (σ,T) In cm-1 amagat-2 at Selected Temperatures
1999
Qiancheng Ma, Richard H. Tipping, Christian Boulet, and Jean-Pierre Bouanich , Theoretical Far-Wing Line Shape and Absorption for High-Temperature CO2 , Applied Optics, 1999 , Volume 38 , Pages 599-604.
CO2
T=291 К
P=∅
4a. J.-M. Hartmann, et al., (1989). Experiment [16] (2400–2580 cm⁻¹, T=291 K)
Волновое число (см⁻¹)
Коэффициент поглощения (см⁻¹Амага⁻²)
Calculated absorption coefficient α(ω) in the 2400–2580 cm-1 spectral region of CO2 +CO2 . The experimental data from Ref. 16 are indicated by triangles. T = 291 K.
[16] J.-M. Hartmann and M.-Y. Perrin, “Measurements of pure CO2 absorption beyond the ν3 band head at high temperature,” Appl. Opt. 28, 2550–2553 (1989).
1989
Jean-Michel Hartmann and Marie-Yvonne Perrin , Measurements of pure CO2 absorption beyond the ν3 bandhead at high temperature, Applied Optics, 1989 , Volume 28 , Pages 2550-2553.
CO2
T=291 К
P=∅
1. Normalized Absorption Coefficient. T=291K
Волновое число (см⁻¹)
Коэффициент поглощения (см⁻¹Амага⁻²)
Table 1 . Experimentally Determined Pure CO2 Normalized Absorption Coefficient (in cm-1 Am-2 ).
1999
Qiancheng Ma, Richard H. Tipping, Christian Boulet, and Jean-Pierre Bouanich , Theoretical Far-Wing Line Shape and Absorption for High-Temperature CO2 , Applied Optics, 1999 , Volume 38 , Pages 599-604.
CO2
T=414 К
P=∅
4b. J.-M. Hartmann, et al., (1989). Experiment [16] (2400–2580 cm⁻¹, T=414 K)
Волновое число (см⁻¹)
Коэффициент поглощения (см⁻¹Амага⁻²)
Calculated absorption coefficient α(ω) in the 2400–2580 cm-1 spectral region of CO2 +CO2 . The experimental data from Ref. 16 are indicated by triangles. T = 414 K.
[16] J.-M. Hartmann and M.-Y. Perrin, “Measurements of pure CO2 absorption beyond the ν3 band head at high temperature,” Appl. Opt. 28, 2550–2553 (1989).
1989
Jean-Michel Hartmann and Marie-Yvonne Perrin , Measurements of pure CO2 absorption beyond the ν3 bandhead at high temperature, Applied Optics, 1989 , Volume 28 , Pages 2550-2553.
CO2
T=414 К
P=∅
1. Normalized Absorption Coefficient. T=414K
Волновое число (см⁻¹)
Коэффициент поглощения (см⁻¹Амага⁻²)
Table 1 . Experimentally Determined Pure CO2 Normalized Absorption Coefficient (in cm-1 Am-2 ).
1999
Qiancheng Ma, Richard H. Tipping, Christian Boulet, and Jean-Pierre Bouanich , Theoretical Far-Wing Line Shape and Absorption for High-Temperature CO2 , Applied Optics, 1999 , Volume 38 , Pages 599-604.
CO2
T=534 К
P=∅
4c. J.-M. Hartmann, et al., (1989). Experiment (2400–2580 cm⁻¹, T=534 K)
Волновое число (см⁻¹)
Коэффициент поглощения (см⁻¹Амага⁻²)
Calculated absorption coefficient α(ω) in the 2400–2580 cm-1 spectral region of CO2 +CO2 is represented by the solid curve; the experimental data from Ref. 16 are indicated by triangles. T = 534 K. The absorption calculated assuming a Lorentzian line shape is given by the dashed curve.
[16] J.-M. Hartmann and M.-Y. Perrin, “Measurements of pure CO2 absorption beyond the ν3 band head at high temperature,” Appl. Opt. 28, 2550–2553 (1989).
1989
Jean-Michel Hartmann and Marie-Yvonne Perrin , Measurements of pure CO2 absorption beyond the ν3 bandhead at high temperature, Applied Optics, 1989 , Volume 28 , Pages 2550-2553.
CO2
T=534 К
P=∅
1. Normalized Absorption Coefficient. T=534K
Волновое число (см⁻¹)
Коэффициент поглощения (см⁻¹Амага⁻²)
Table 1 . Experimentally Determined Pure CO2 Normalized Absorption Coefficient (in cm-1 Am-2 ).
1999
Qiancheng Ma, Richard H. Tipping, Christian Boulet, and Jean-Pierre Bouanich , Theoretical Far-Wing Line Shape and Absorption for High-Temperature CO2 , Applied Optics, 1999 , Volume 38 , Pages 599-604.
CO2
T=627 К
P=∅
4d. J.-M. Hartmann, et al., (1989). Experiment (2400–2580 cm⁻¹, T=627 K)
Волновое число (см⁻¹)
Коэффициент поглощения (см⁻¹Амага⁻²)
Absorption coefficient α(ω) in the 2400–2580 cm-1 spectral region of CO2 +CO2 . The experimental data from Ref. 16 are indicated by triangles. T = 627 K.
[16] J.-M. Hartmann and M.-Y. Perrin, Measurements of pure CO2 absorption beyond the ν3 band head at high temperature, Appl. Opt. 28, 2550–2553 (1989).
1989
Jean-Michel Hartmann and Marie-Yvonne Perrin , Measurements of pure CO2 absorption beyond the ν3 bandhead at high temperature, Applied Optics, 1989 , Volume 28 , Pages 2550-2553.
CO2
T=627 К
P=∅
1. Normalized Absorption Coefficient. T=627K
Волновое число (см⁻¹)
Коэффициент поглощения (см⁻¹Амага⁻²)
Table 1 . Experimentally Determined Pure CO2 Normalized Absorption Coefficient (in cm-1 Am-2 ).
1999
Qiancheng Ma, Richard H. Tipping, Christian Boulet, and Jean-Pierre Bouanich , Theoretical Far-Wing Line Shape and Absorption for High-Temperature CO2 , Applied Optics, 1999 , Volume 38 , Pages 599-604.
CO2
T=751 К
P=∅
4e. J.-M. Hartmann, et al., (1989). Experiment (2400–2580 cm⁻¹, T=751 K)
Волновое число (см⁻¹)
Коэффициент поглощения (см⁻¹Амага⁻²)
Calculated absorption coefficient α(ω) in the 2400–2580 cm-1 spectral region of CO2 +CO2 . The experimental data from Ref. 16 are indicated by triangles. T = 751 K.
[16] J.-M. Hartmann and M.-Y. Perrin, “Measurements of pure CO2 absorption beyond the ν3 band head at high temperature,” Appl. Opt. 28, 2550–2553 (1989).
1989
Jean-Michel Hartmann and Marie-Yvonne Perrin , Measurements of pure CO2 absorption beyond the ν3 bandhead at high temperature, Applied Optics, 1989 , Volume 28 , Pages 2550-2553.
CO2
T=751 К
P=∅
1. Normalized Absorption Coefficient. T=751K
Волновое число (см⁻¹)
Коэффициент поглощения (см⁻¹Амага⁻²)
Table 1 . Experimentally Determined Pure CO2 Normalized Absorption Coefficient (in cm-1 Am-2 ).
2001
A.A Vigasin, F Huisken, A.I Pavlyuchko, L Ramonat, E.G Tarakanova , Identification of the (CO2 )2 Dimer Vibrations in the ν1 , 2ν2 Region: Anharmonic Variational Calculations, Journal of Molecular Spectroscopy, 2001 , Volume 209 , Issue 1, Pages 81–87.
CO2
T=∅
P=∅
3. A. A. Vigasin, et al. (1996, 1997). Typical CARS
Сдвиг Рамана (см⁻¹)
Сигнал CARS (произвольные единицы)
Typical CARS spectra taken at high resolution in the regions of νlow and νlow (14, 15, 23).
14. A. A. Vigasin, A. A. Ilyukhin, L. Ramonat, V. V. Smirnov, O. M. Stelmakh, and F. Huisken, Khim. Fiz. 15, 88–95 (1996) [in Russian].
15. F. Huisken, L. Ramonat, J. Santos, V. V. Smirnov, O. M. Stelmakh, and A. A. Vigasin, J. Mol. Struct. 47, 410–411 (1997).
23. L. Ramonat, Ph.D. Thesis, University of Gottingen, 1997.
1997
F. Huisken, L. Ramonat, J. Santos, V.V. Smirnov, O.M. Stelmakh, and A.A. Vigasin , High resolution CARS spectroscopy of small carbon dioxide clusters: investigation of the CO2 dimer in the n 1 /2n 2 Fermi dyad, Journal of Molecular Structure, 1997 , Volume 410–411 , Pages 47-50.
2001
A.A Vigasin, F Huisken, A.I Pavlyuchko, L Ramonat, E.G Tarakanova , Identification of the (CO2 )2 Dimer Vibrations in the ν1 , 2ν2 Region: Anharmonic Variational Calculations, Journal of Molecular Spectroscopy, 2001 , Volume 209 , Issue 1, Pages 81–87.
CO2
T=∅
P=∅
3a. A. A. Vigasin, et al. (1996, 1997)
Сдвиг Рамана (см⁻¹)
Сигнал CARS (произвольные единицы)
Typical CARS spectra taken at high resolution in the regions of ν_low (14, 15, 23).
14. A. A. Vigasin, A. A. Ilyukhin, L. Ramonat, V. V. Smirnov, O. M. Stelmakh, and F. Huisken, Khim. Fiz. 15, 88–95 (1996) [in Russian].
15. F. Huisken, L. Ramonat, J. Santos, V. V. Smirnov, O. M. Stelmakh, and A. A. Vigasin, J. Mol. Struct. 47, 410–411 (1997).
23. L. Ramonat, Ph.D. Thesis, University of Gottingen, 1997.
1997
F. Huisken, L. Ramonat, J. Santos, V.V. Smirnov, O.M. Stelmakh, and A.A. Vigasin , High resolution CARS spectroscopy of small carbon dioxide clusters: investigation of the CO2 dimer in the n 1 /2n 2 Fermi dyad, Journal of Molecular Structure, 1997 , Volume 410–411 , Pages 47-50.
2001
Golovko V. F. , Calculation of carbon dioxide absorption spectra in wide spectral regions, Atmospheric and Oceanic Optics, 2001 , Volume 14 , Issue 9, Pages 807-812.
CO2
T=∅
P=∅
6. D.E. Burch, et al. (1969). Experiment
Волновое число (см⁻¹)
Коэффициент поглощения (см⁻¹Амага⁻²)
Восстановление СО2 -СО2 поглощения в области 6995-7110 см-1 за кантом полосы 1.4 мкм для двух давлений – 2 и 14.6 атм.
[2] Burch D.E., Gryvnak D.A., Patty R.R., Bartky Ch.E. Absorption of infrared radiant energy by CO2 and H2O. IV. Shapes of collision -broadened CO2 lines. J.Opt.Soc Amer. 1969, 59, No.3, 267-280
1969
Darrell E. Burch, David A. Gryvnak, Richard R. Patty, and Charlotte E. Bartky , Absorption of Infrared Radiant Energy by CO2 and H2 O. IV. Shapes of Collision-Broadened CO2 Lines, Journal of Optical Society of America, 1969 , Volume 59 , Pages 267-278.
CO2
T=273 К
P=2 атм
6. Sample having the following total pressures =< 2 atm
Волновое число (см⁻¹)
Нормализованный коэффициент поглощения (атм⁻¹см⁻¹)STP
K0 s for CO2 self broadening vs v between 6900 and 7100 cm-1 . The sample having the following total pressures < 2 atm.
2003
Baranov, G.T. Fraser, W.J. Lafferty, A.A.Vigasin
, Collision-induced Absorption in the CO2 Fermi Triad for Temperatures from 211K to 296K , Weakly Interacting Molecular Pairs: Unconventional Absorbers of Radiation in the Atmosphere , Editor(s) CLAUDE CAMY-PEYRET and ANDREI A.VIGASIN , Kluwer Academic Publishers, 2003 , Pages 149-158.
CO2
T=∅
P=∅
4. Adiks, T.G. (1982). (Fermi doublet, 10⁰0)
Температура (К)
Интегральная интенсивность полосы ИСП (см⁻²Амага⁻²)
Temperature variations of the integrated intensity in the Fermi doublet and triplet regions.
Adiks, T.G. (1982) Experimental Study of the CO2 IR Absorption Spectra as Applied to the Windows of Transparency of Venusian Atmosphere. Ph. D. Thesis, Institute of Atmospheric Physics, USSR Academy of Sciences, Moscow
1982
Adiks, T.G. , PhDThesis. Experimental Study of the CO2 IR Absorption Spectra as Applied to the Windows of Transparency of Venusian Atmosphere, Institute of Atmospheric Physics USSR Academy of Sciences, 1982 ,
Температура (К)
Интегральная интенсивность полосы ИСП (см⁻²Амага⁻²)
2003
Baranov, G.T. Fraser, W.J. Lafferty, A.A.Vigasin
, Collision-induced Absorption in the CO2 Fermi Triad for Temperatures from 211K to 296K , Weakly Interacting Molecular Pairs: Unconventional Absorbers of Radiation in the Atmosphere , Editor(s) CLAUDE CAMY-PEYRET and ANDREI A.VIGASIN , Kluwer Academic Publishers, 2003 , Pages 149-158.
CO2
T=∅
P=∅
4. Adiks, T.G. (1982). (Fermi doublet, 20⁰0, 2671 cm⁻¹)
Температура (К)
Интегральная интенсивность полосы ИСП (см⁻²Амага⁻²)
Temperature variations of the integrated intensity in the Fermi doublet and triplet regions.
Adiks, T.G. (1982) Experimental Study of the CO2 IR Absorption Spectra as Applied to the Windows of Transparency of Venusian Atmosphere. Ph. D. Thesis, Institute of Atmospheric Physics, USSR Academy of Sciences, Moscow
1982
Adiks, T.G. , PhDThesis. Experimental Study of the CO2 IR Absorption Spectra as Applied to the Windows of Transparency of Venusian Atmosphere, Institute of Atmospheric Physics USSR Academy of Sciences, 1982 ,
Температура (К)
Интегральная интенсивность полосы ИСП (см⁻²Амага⁻²)
2003
Baranov, G.T. Fraser, W.J. Lafferty, A.A.Vigasin
, Collision-induced Absorption in the CO2 Fermi Triad for Temperatures from 211K to 296K , Weakly Interacting Molecular Pairs: Unconventional Absorbers of Radiation in the Atmosphere , Editor(s) CLAUDE CAMY-PEYRET and ANDREI A.VIGASIN , Kluwer Academic Publishers, 2003 , Pages 149-158.
CO2
T=∅
P=∅
4. Baranov Yu.I., et al. (1999) (Fermi doublet, 20⁰0, 2547 cm⁻¹)
Температура (К)
Интегральная интенсивность полосы ИСП (см⁻²Амага⁻²)
Temperature variations of the integrated intensity in the Fermi doublet and triplet regions.
Baranov, Y. I. and Vigasin, A.A. (1999) Collision-induced absorption by CO2 in the region of ν1 , 2ν2 , J. Molec. Spectrosc., 193, 319–325.
1999
Y.I. Baranov, A.A. Vigasin , Collision-Induced Absorption by CO2 in the Region of ν1 , 2ν2 , Journal of Molecular Spectroscopy, 1999 , Volume 193 , Issue 2, Pages 319-325.
Волновое число (см⁻¹)
Поглощательная способность по базе e (единицы поглощения)
2003
Baranov, G.T. Fraser, W.J. Lafferty, A.A.Vigasin
, Collision-induced Absorption in the CO2 Fermi Triad for Temperatures from 211K to 296K , Weakly Interacting Molecular Pairs: Unconventional Absorbers of Radiation in the Atmosphere , Editor(s) CLAUDE CAMY-PEYRET and ANDREI A.VIGASIN , Kluwer Academic Publishers, 2003 , Pages 149-158.
CO2
T=∅
P=∅
4. Baranov Yu.I., et al. (1999). (Fermi doublet, 20⁰0, 2671 cm⁻¹)
Температура (К)
Интегральная интенсивность полосы ИСП (см⁻²Амага⁻²)
Temperature variations of the integrated intensity in the Fermi doublet and triplet regions.
Baranov, Y. I. and Vigasin, A.A. Collision-induced absorption by CO2 in the region of ν1 , 2ν2 , J. Molec. Spectrosc., 193, 319–325.(1999)
1999
Y.I. Baranov, A.A. Vigasin , Collision-Induced Absorption by CO2 in the Region of ν1 , 2ν2 , Journal of Molecular Spectroscopy, 1999 , Volume 193 , Issue 2, Pages 319-325.
Волновое число (см⁻¹)
Поглощательная способность по базе e (единицы поглощения)
2003
Baranov, G.T. Fraser, W.J. Lafferty, A.A.Vigasin
, Collision-induced Absorption in the CO2 Fermi Triad for Temperatures from 211K to 296K , Weakly Interacting Molecular Pairs: Unconventional Absorbers of Radiation in the Atmosphere , Editor(s) CLAUDE CAMY-PEYRET and ANDREI A.VIGASIN , Kluwer Academic Publishers, 2003 , Pages 149-158.
CO2
T=∅
P=∅
4. Baranov Yu.I., et al. (1999). (Fermi doublet, 10⁰0)
Температура (К)
Интегральная интенсивность полосы ИСП (см⁻²Амага⁻²)
Temperature variations of the integrated intensity in the Fermi doublet and triplet regions.
Baranov, Yu. I. and Vigasin, A.A. (1999) Collision-induced absorption by CO2 in the region of ν1 , 2ν2 , J. Molec. Spectrosc., 193, 319–325.
1999
Y.I. Baranov, A.A. Vigasin , Collision-Induced Absorption by CO2 in the Region of ν1 , 2ν2 , Journal of Molecular Spectroscopy, 1999 , Volume 193 , Issue 2, Pages 319-325.
Волновое число (см⁻¹)
Поглощательная способность по базе e (единицы поглощения)
2003
Baranov, G.T. Fraser, W.J. Lafferty, A.A.Vigasin
, Collision-induced Absorption in the CO2 Fermi Triad for Temperatures from 211K to 296K , Weakly Interacting Molecular Pairs: Unconventional Absorbers of Radiation in the Atmosphere , Editor(s) CLAUDE CAMY-PEYRET and ANDREI A.VIGASIN , Kluwer Academic Publishers, 2003 , Pages 149-158.
CO2
T=∅
P=∅
4. Baranov Yu.I., et al. (1999). (Fermi doublet, 20⁰0, 2797 cm⁻¹)
Температура (К)
Интегральная интенсивность полосы ИСП (см⁻²Амага⁻²)
Temperature variations of the integrated intensity in the Fermi doublet and triplet regions.
Baranov, Y. I. and Vigasin, A.A. (1999) Collision-induced absorption by CO2 in the region of ν1 , 2ν2 , J. Molec. Spectrosc., 193, 319–325.
1999
Y.I. Baranov, A.A. Vigasin , Collision-Induced Absorption by CO2 in the Region of ν1 , 2ν2 , Journal of Molecular Spectroscopy, 1999 , Volume 193 , Issue 2, Pages 319-325.
Волновое число (см⁻¹)
Поглощательная способность по базе e (единицы поглощения)
2003
Baranov, G.T. Fraser, W.J. Lafferty, A.A.Vigasin
, Collision-induced Absorption in the CO2 Fermi Triad for Temperatures from 211K to 296K , Weakly Interacting Molecular Pairs: Unconventional Absorbers of Radiation in the Atmosphere , Editor(s) CLAUDE CAMY-PEYRET and ANDREI A.VIGASIN , Kluwer Academic Publishers, 2003 , Pages 149-158.
CO2
T=∅
P=∅
4. Mannik, L. et al. (1972). (Fermi doublet, 10⁰0)
Температура (К)
Интегральная интенсивность полосы ИСП (см⁻²Амага⁻²)
Temperature variations of the integrated intensity in the Fermi doublet and triplet regions.
Mannyk, L. and Stryland, J. C. The ν1 band of carbon dioxide in pressure-induced absorption. II. Density and temperature dependence of the intensity; Critical phenomena, Can. J. Phys., 50, 1355–1362. (1972)
1972
L. Mannik, J. C. Stryland , The ν1 Band of Carbon Dioxide in Pressure-Induced Absorption. II. Density and Temperature Dependence of the Intensity; Critical Phenomena, Canadian Journal of Physics, 1972 , Volume 50 , Issue 12, Pages 1355-1362.
Волновое число (см⁻¹) Волновое число (см⁻¹)
Заданная функция Коэффициент поглощения (см⁻¹Амага⁻²)
2003
S.A. Tashkun, V. I. Perevalov, J-L. Teffo, A. D. Bykov and N. N. Lavrentieva , CDSD-1000, the high-temperature carbon dioxide spectroscopic databank, Journal of Quantitative Spectroscopy and Radiation Transfer, 2003 , Volume 82 , Issue 1, Pages 165-196.
CO2
T=1550 К
P=1 атм
10. M.F. Modest, et al. (2002). Experiment
Волновое число (см⁻¹)
Пропускание (%)
Observed [13] transmissivity of CO2 in the 2:7 μm region at 1550 K.
[13] Michael F Modest, Sudarshan P Bharadwaj, Medium resolution transmission measurements of CO2 at high temperature, Journal of Quantitative Spectroscopy and Radiative Transfer, Volume 73, Issues 2–5, 15 April–1 June 2002, Pages 329-338, https://doi.org/10.1016/S0022-4073(01)00219-9
2002
Michael F Modest, Sudarshan P Bharadwaj , Medium resolution transmission measurements of CO2 at high temperature, Journal of Quantitative Spectroscopy and Radiative Transfer, 2002 , Volume 73 , Issue 2–5, Pages 329-338.
2003
S.A. Tashkun, V. I. Perevalov, J-L. Teffo, A. D. Bykov and N. N. Lavrentieva , CDSD-1000, the high-temperature carbon dioxide spectroscopic databank, Journal of Quantitative Spectroscopy and Radiation Transfer, 2003 , Volume 82 , Issue 1, Pages 165-196.
CO2
T=1550 К
P=1 атм
13. M.F. Modest, et al. (2002). Experiment
Волновое число (см⁻¹)
Пропускание (%)
Observed [13] transmissivity of CO2 in the 2:0 μm region at 1550 K.
[13] Michael F Modest, Sudarshan P Bharadwaj, Medium resolution transmission measurements of CO2 at high temperature, Journal of Quantitative Spectroscopy and Radiative Transfer, Volume 73, Issues 2–5, 15 April–1 June 2002, Pages 329-338, https://doi.org/10.1016/S0022-4073(01)00219-9
2002
Michael F Modest, Sudarshan P Bharadwaj , Medium resolution transmission measurements of CO2 at high temperature, Journal of Quantitative Spectroscopy and Radiative Transfer, 2002 , Volume 73 , Issue 2–5, Pages 329-338.
2003
S.A. Tashkun, V. I. Perevalov, J-L. Teffo, A. D. Bykov and N. N. Lavrentieva , CDSD-1000, the high-temperature carbon dioxide spectroscopic databank, Journal of Quantitative Spectroscopy and Radiation Transfer, 2003 , Volume 82 , Issue 1, Pages 165-196.
CO2
T=800 К
P=1 атм
4. Scutaru D, et al. (1993). Experiment
Волновое число (см⁻¹)
Пропускание (%)
Observed [11] CO2 transmission spectra near 2271.7 cm−1 .
[11] Scutaru D, Rosenmann L, Taine J, Wattson RB, Rothman LS. Measurements and calculations of CO2 absorption at high temperature in the 4.3 and 2:7 μm regions. JQSRT 1993;50:179–91.
1993
D. Scutaru, L. Rosenmann, J. Taine, R.B. Wattson and L.S. Rothman , Measurements and calculations of CO2 absorption at high temperature in the 4.3 and 2.7, Journal of Quantitative Spectroscopy and Radiation Transfer, 1993 , Volume 50 , Issue 2, Pages 179-191.
2003
S.A. Tashkun, V. I. Perevalov, J-L. Teffo, A. D. Bykov and N. N. Lavrentieva , CDSD-1000, the high-temperature carbon dioxide spectroscopic databank, Journal of Quantitative Spectroscopy and Radiation Transfer, 2003 , Volume 82 , Issue 1, Pages 165-196.
CO2
T=800 К
P=1 атм
6. Parker R.A., et al. (1992). Experiment
Волновое число (см⁻¹)
Пропускание (%)
Observed CO2 transmission spectra near 2271.7 cm−1 .
1992
R.A. Parker, M.P. Esplin, R.B. Wattson, M.L. Hoke, L.S. Rothman and W.A.M. Blumberg , High temperature absorption measurements and modeling of CO2 for the 12 micron window region, Journal of Quantitative Spectroscopy and Radiation Transfer, 1992 , Volume 48 , Issue 5, Pages 591-597.
CO2
T=800 К
P=1 атм
3. Experimental data
Волновое число (см⁻¹)
Коэффициент пропускания (произвольные единицы)
760 torr 5.0 cm-1 resolution experimental data are compared to line-by-line (LBL) model calculations using the HITRAN data set
2003
S.A. Tashkun, V. I. Perevalov, J-L. Teffo, A. D. Bykov and N. N. Lavrentieva , CDSD-1000, the high-temperature carbon dioxide spectroscopic databank, Journal of Quantitative Spectroscopy and Radiation Transfer, 2003 , Volume 82 , Issue 1, Pages 165-196.
CO2
T=1550 К
P=1 атм
8. Modest M.F., et al. (2002). Experiment
Волновое число (см⁻¹)
Пропускание (%)
Observed [13] transmissivity of CO2 in the 4.3 μm region at 1550 K.
[13] Michael F Modest, Sudarshan P Bharadwaj, Medium resolution transmission measurements of CO2 at high temperature, Journal of Quantitative Spectroscopy and Radiative Transfer, Volume 73, Issues 2–5, 15 April–1 June 2002, Pages 329-338, https://doi.org/10.1016/S0022-4073(01)00219-9
2002
Michael F Modest, Sudarshan P Bharadwaj , Medium resolution transmission measurements of CO2 at high temperature, Journal of Quantitative Spectroscopy and Radiative Transfer, 2002 , Volume 73 , Issue 2–5, Pages 329-338.
2004
Yuri I. Baranov, W.J. Lafferty, G.T. Fraser
, Infrared spectrum of the continuum and dimer absorption in the vicinity of the O2 vibrational fundamental in O2 /CO2 mixtures , Journal of Molecular Spectroscopy, 2004 , Volume 228 , Issue 2, Pages 432-440.
CO2
T=∅
P=∅
5. D.E.Burch et al. (1971)
Температура (К)
Коэффициент ИСП (см⁻¹/Амага²)
The combined intensities of the two Fermi dyad bands of CO2 as a function of temperature.
[14]. D.E. Burch, D.A. Gryvnak, J. Opt. Soc. Am. 61 (1971) 499–503.
1971
D.E. Burch and D.A. Gryvnak , Absorption of Infrared Radiant Energy by CO2 and H2 O, V. Absorption by CO2 between 1100 and 1835 cm-1 (9.1-5.5 µm), Journal of Optical Society of America, 1971 , Volume 61 , Pages 499-503.
Волновое число (см⁻¹)
Пропускание (%)
2004
Yuri I. Baranov, W.J. Lafferty, G.T. Fraser
, Infrared spectrum of the continuum and dimer absorption in the vicinity of the O2 vibrational fundamental in O2 /CO2 mixtures , Journal of Molecular Spectroscopy, 2004 , Volume 228 , Issue 2, Pages 432-440.
CO2
T=∅
P=∅
5. L.Mannik, et al. (1971)
Температура (К)
Коэффициент ИСП (см⁻¹/Амага²)
The combined intensities of the two Fermi dyad bands of CO2 as a function of temperature. [11]. L.Mannik, J.C. Stryland, H.L. Welsh, Can. J. Phys. 49 (1971)
1971
L. Mannik, J. C. Stryland, H. L. Welsh , An Infrared Spectrum of CO2 Dimers in the "Locked" Configuration, Canadian Journal of Physics, 1971 , Volume 49 , Issue 23, Pages 3056-3057.
Волновое число (см⁻¹)
Поглощательная способность по базе e (единицы поглощения)
2004
Yuri I. Baranov, W.J. Lafferty, G.T. Fraser
, Infrared spectrum of the continuum and dimer absorption in the vicinity of the O2 vibrational fundamental in O2 /CO2 mixtures , Journal of Molecular Spectroscopy, 2004 , Volume 228 , Issue 2, Pages 432-440.
CO2
T=∅
P=∅
5. T.G.Adiks (1984)
Температура (К)
Коэффициент ИСП (см⁻¹/Амага²)
The combined intensities of the two Fermi dyad bands of CO2 as a function of temperature.
[25]. T.G. Adiks, dissertation, Moscow (1984)
1982
Adiks, T.G. , PhDThesis. Experimental Study of the CO2 IR Absorption Spectra as Applied to the Windows of Transparency of Venusian Atmosphere, Institute of Atmospheric Physics USSR Academy of Sciences, 1982 ,
Температура (К)
Интегральная интенсивность полосы ИСП (см⁻²Амага⁻²)
2004
Yuri I. Baranov, W.J. Lafferty, G.T. Fraser
, Infrared spectrum of the continuum and dimer absorption in the vicinity of the O2 vibrational fundamental in O2 /CO2 mixtures , Journal of Molecular Spectroscopy, 2004 , Volume 228 , Issue 2, Pages 432-440.
CO2
T=∅
P=∅
5. Yu.I. Baranov et al. (1999)
Температура (К)
Коэффициент ИСП (см⁻¹/Амага²)
The combined intensities of the two Fermi dyad bands of CO2 as a function of temperature.
[15]. Y.I. Baranov, A.A. Vigasin, J. Mol. Spectrosc. 193 (1999) 319–325.
1999
Y.I. Baranov, A.A. Vigasin , Collision-Induced Absorption by CO2 in the Region of ν1 , 2ν2 , Journal of Molecular Spectroscopy, 1999 , Volume 193 , Issue 2, Pages 319-325.
Волновое число (см⁻¹)
Поглощательная способность по базе e (единицы поглощения)
2007
Bharadwaj S.P., Modest M.F. , Medium resolution transmission measurements of CO2 at high temperature – an update, Journal of Quantitative Spectroscopy and Radiative Transfer, 2007 , Volume 103 , Pages 146-155.
CO2
T=1550 К
P=∅
10a. Bharadwaj S.P., et al. (2006). Measured values (old)
Волновое число (см⁻¹)
Пропускание (%)
Old measurement.
Bharadwaj SP, Modest MF, Riazzi RJ. Medium resolution transmission measurements of water vapor at high temperature. ASME J. Heat Transfer 2006;121:374–81.
2006
Sudarshan P. Bharadwaj, Michael F. Modest, Robert J. Riazzi , Medium resolution transmission measurements of water vapor at high temperature, ASME Journal of Heat and Mass Transfer, 2006 , Volume 121 , Pages 374–81.
2007
Bharadwaj S.P., Modest M.F. , Medium resolution transmission measurements of CO2 at high temperature – an update, Journal of Quantitative Spectroscopy and Radiative Transfer, 2007 , Volume 103 , Pages 146-155.
CO2
T=1550 К
P=∅
10b. Bharadwaj S.P., et al. (2006). Measured values (old)
Волновое число (см⁻¹)
Пропускание (%)
Old measurement.
Bharadwaj SP, Modest MF, Riazzi RJ. Medium resolution transmission measurements of water vapor at high temperature. ASME J. Heat Transfer 2006;121:374–81.
2007
Bharadwaj S.P., Modest M.F. , Medium resolution transmission measurements of CO2 at high temperature – an update, Journal of Quantitative Spectroscopy and Radiative Transfer, 2007 , Volume 103 , Pages 146-155.
CO2
T=1550 К
P=∅
4a. Bharadwaj S.P., et al. (2006). Measured values
Волновое число (см⁻¹)
Пропускание (%)
Old measurement.
Bharadwaj SP, Modest MF, Riazzi RJ. Medium resolution transmission measurements of water vapor at high temperature. ASME J. Heat Transfer 2006;121:374–81.
2007
Bharadwaj S.P., Modest M.F. , Medium resolution transmission measurements of CO2 at high temperature – an update, Journal of Quantitative Spectroscopy and Radiative Transfer, 2007 , Volume 103 , Pages 146-155.
CO2
T=1550 К
P=∅
4b. Bharadwaj S.P., et al. (2006). Measured values
Волновое число (см⁻¹)
Пропускание (%)
Old measurement.
Bharadwaj SP, Modest MF, Riazzi RJ. Medium resolution transmission measurements of water vapor at high temperature. ASME J. Heat Transfer 2006;121:374–81.
2008
Tomoaki Tanaka, Masashi Fukabori, Takafumi Sugita, Tatsuya Yokota, Ryoichi Kumazawa, Takeshi Watanabe, Hideaki Nakajima , Line shape of the far-wing beyond the band head of the CO2 v3 band, Journal of Molecular Spectroscopy, 2008 , Volume 252 , Issue 2, Pages 185-189.
CO2
T=296 К
P=1 атм
2. B.H. Winters, et al. (1964).
Волновое число (см⁻¹)
Пропускание (%)
[5] B.H. Winters, S. Silverman, W.S. Benedict, J. Quant. Spectrosc. Radiat. Transf. 4 (1964) 527–537.
1964
B.H. Winters, S. Silverman, W.S. Benedict , Line shape in the wing beyond the band head of the 4·3 μ band of CO2 , Journal of Quantitative Spectroscopy and Radiation Transfer, 1964 , Volume 4 , Issue 4, Pages 527-537.
Волновое число (см⁻¹) Волновое число (см⁻¹)
Заданная функция Коэффициент поглощения (см⁻¹атм⁻²)
2008
Tomoaki Tanaka, Masashi Fukabori, Takafumi Sugita, Tatsuya Yokota, Ryoichi Kumazawa, Takeshi Watanabe, Hideaki Nakajima , Line shape of the far-wing beyond the band head of the CO2 v3 band, Journal of Molecular Spectroscopy, 2008 , Volume 252 , Issue 2, Pages 185-189.
CO2
T=296 К
P=1 атм
2. C.Cousin, et al. (1985, 1986)
Волновое число (см⁻¹)
Пропускание (%)
[10] C. Cousin, R. Le Doucen, C. Boulet, A. Henry, Appl. Opt. 24 (1985) 3899–3907.
[11] C. Cousin, R. Le Doucen, J.P. Houdeau, C. Boulet, A. Henry, Appl. Opt. 25 (1986) 2434–2439.
2008
Tomoaki Tanaka, Masashi Fukabori, Takafumi Sugita, Tatsuya Yokota, Ryoichi Kumazawa, Takeshi Watanabe, Hideaki Nakajima , Line shape of the far-wing beyond the band head of the CO2 v3 band, Journal of Molecular Spectroscopy, 2008 , Volume 252 , Issue 2, Pages 185-189.
CO2
T=296 К
P=1 атм
2. J. Susskind, et al. (1978)
Волновое число (см⁻¹)
Пропускание (%)
[8] J. Susskind, J.E. Searl, J. Quant. Spectrosc. Radiat. Transf. 19 (1978) 195–215.
2008
Tomoaki Tanaka, Masashi Fukabori, Takafumi Sugita, Tatsuya Yokota, Ryoichi Kumazawa, Takeshi Watanabe, Hideaki Nakajima , Line shape of the far-wing beyond the band head of the CO2 v3 band, Journal of Molecular Spectroscopy, 2008 , Volume 252 , Issue 2, Pages 185-189.
CO2
T=296 К
P=1 атм
2. V.G.Kunde et al. (1974). 15 mm band
Волновое число (см⁻¹)
Пропускание (%)
[7] V.G. Kunde, W.C. Maguire, J. Quant. Spectrosc. Radiat. Transf. 14 (1974) 803–817.
2009
Halevy I., Pierrehumbert R.T., Schrag D.P. , Radiative transfer in CO2 rich paleoatmospheres, Journal of Geophysical Reseach D:Atmospheres, 2009 , Volume 114 , Pages 18112.
CO2
T=∅
P=∅
1b. Le Doucen, at al. (1985). Effect of the chi factor on absorption by a single line
Смещение от центра линии (см⁻¹)
Нормализованная интенсивность
The effect of the χ factor on absorption by a single line. Absorption due to a single ‘‘virtual line,’’ with a strength of unity at the line center and a half width of 0.3 cm-1 , multiplied by the χ factors shown in Figure 1a.
1985
R. Le Doucen, C. Cousin, C. Boulet, and A. Henry , Temperature dependence of the absorption in the region beyond the 4.3-µm band head of CO2 . 1: Pure CO2 case, Applied Optics, 1985 , Volume 24 , Pages 897-906.
Волновое число (см⁻¹) Волновое число (см⁻¹) Волновое число (см⁻¹)
Заданная функция Коэффициент поглощения (см⁻¹Амага⁻²) Поправочный фактор формы линии
2009
Halevy I., Pierrehumbert R.T., Schrag D.P. , Radiative transfer in CO2 rich paleoatmospheres, Journal of Geophysical Reseach D:Atmospheres, 2009 , Volume 114 , Pages 18112.
CO2
T=∅
P=∅
1b. Meadows, V. S., at al. (1996). The effect of the chi factor on absorption by a single line
Смещение от центра линии (см⁻¹)
Нормализованная интенсивность
The effect of the χ factor on absorption by a single line. Absorption due to a single ‘‘virtual line,’’ with a strength of unity at the line center and a half width of 0.3 cm-1 , multiplied by the χ factors shown in Figure 1a.
1996
V. S. Meadows, D. Crisp , Ground-based near-infrared observations of the Venus nightside: The thermal structure and water abundance near the surface , Journal of Geophysical Research, 1996 , Volume 101E , Number 2, Pages 4595-4622.
Волновое число (см⁻¹)
χ-функция
2009
Halevy I., Pierrehumbert R.T., Schrag D.P. , Radiative transfer in CO2 rich paleoatmospheres, Journal of Geophysical Reseach D:Atmospheres, 2009 , Volume 114 , Pages 18112.
CO2
T=∅
P=∅
1b. Perrin, M.Y., at al. (1989). The effect of the chi factor on absorption by a single line
Смещение от центра линии (см⁻¹)
Нормализованная интенсивность
The effect of the χ factor on absorption by a single line. Absorption due to a single ‘‘virtual line,’’ with a strength of unity at the line center and a half width of 0.3 cm-1 , multiplied by the χ factors shown in Figure 1a.
1989
M.Y. Perrin and J.M. Hartmann , Temperature-dependent measurements and modeling of absorption by CO2 –N2 mixtures in the far line-wings of the 4.3 μ m CO2 band, Journal of Quantitative Spectroscopy and Radiation Transfer, 1989 , Volume 42 , Issue 4, Pages 311-317.
Волновое число (см⁻¹) Волновое число (см⁻¹)
Коэффициент поглощения (см⁻¹Амага⁻²) Пропускание (%)
2009
Halevy I., Pierrehumbert R.T., Schrag D.P. , Radiative transfer in CO2 rich paleoatmospheres, Journal of Geophysical Reseach D:Atmospheres, 2009 , Volume 114 , Pages 18112.
CO2
T=∅
P=∅
1b. Tonkov, M. V., et al. (1996). The effect of the chi factor on absorption by a single line
Смещение от центра линии (см⁻¹)
Нормализованная интенсивность
The effect of the χ factor on absorption by a single line. Absorption due to a single ‘‘virtual line,’’ with a strength of unity at the line center and a half width of 0.3 cm-1 , multiplied by the χ factors shown in Figure 1a.
1996
M. V. Tonkov, N. N. Filippov, V. V. Bertsev, J. P. Bouanich, Nguyen Van-Thanh, C. Brodbeck, J. M. Hartmann, C. Boulet, F. Thibault, and R. Le Doucen , Measurements and empirical modeling of pure CO2 absorption in the 2.3-νm region at room temperature: far wings, allowed and collision-induced bands, Applied Optics, 1996 , Volume 35 , Pages 4863-4870.
Волновое число (см⁻¹) Волновое число (см⁻¹) Волновое число (см⁻¹) Волновое число (см⁻¹)
Заданная функция Коэффициент поглощения (см⁻¹) Нормализованный коэффициент поглощения Нормализованный коэффициент поглощения (см⁻¹Амага⁻²)
2010
J.-M. Hartmann, C. Boulet, H. Tran, and M. T. Nguyen , Molecular dynamics simulations for CO2 absorption spectra. I. Line broadening and the far wing of the v3 infrared band, Journal of Chemical Physics, 2010 , Volume 133 , Issue 14,
CO2
T=296 К
P=∅
6. J.M.Hartmann et al. (1989), R.Le Doucen, et al. (1985). Measured values
Волновое число (см⁻¹)
Коэффициент поглощения (см⁻¹)
Absorption coefficients in the v3 band of pure CO2 at 296 K and 5 Am. Measured values from Ref. 31 in close agreement with those of Ref. 32 and our new measurements.
[31] J. M. Hartmann and M. Y. Perrin, Appl. Opt. 28, 2550 (1989)
[32] R. Le Doucen, C. Cousin, C. Boulet, and A. Henry, Appl. Opt. 24, 897 (1985)
1985
R. Le Doucen, C. Cousin, C. Boulet, and A. Henry , Temperature dependence of the absorption in the region beyond the 4.3-µm band head of CO2 . 1: Pure CO2 case, Applied Optics, 1985 , Volume 24 , Pages 897-906.
CO2
T=296 К
P=∅
1. Normalized Absorption Coefficient. T=296K
Волновое число (см⁻¹)
Коэффициент поглощения (см⁻¹Амага⁻²)
Table 1 . Observed Normalized Absorptlon CoeffIcIent A0 (σ,T) In cm-1 amagat-2 at Selected Temperatures
2010
J.-M. Hartmann, C. Boulet, H. Tran, and M. T. Nguyen , Molecular dynamics simulations for CO2 absorption spectra. I. Line broadening and the far wing of the v3 infrared band, Journal of Chemical Physics, 2010 , Volume 133 , Issue 14,
CO2
T=220 К
P=∅
7. Present measured values
Волновое число (см⁻¹)
Коэффициент поглощения (см⁻¹Амага⁻²)
Density normalized absorption coefficient in the ν3 band of pure CO2 at 220 K.The present measurements.
1985
R. Le Doucen, C. Cousin, C. Boulet, and A. Henry , Temperature dependence of the absorption in the region beyond the 4.3-µm band head of CO2 . 1: Pure CO2 case, Applied Optics, 1985 , Volume 24 , Pages 897-906.
CO2
T=218 К
P=∅
1. Normalized Absorption Coefficient. T=218K
Волновое число (см⁻¹)
Коэффициент поглощения (см⁻¹Амага⁻²)
Table 1 . Observed Normalized Absorptlon CoeffIcIent A0 (σ,T) In cm-1 amagat-2 at Selected Temperatures
2010
J.-M. Hartmann, C. Boulet, H. Tran, and M. T. Nguyen , Molecular dynamics simulations for CO2 absorption spectra. I. Line broadening and the far wing of the v3 infrared band, Journal of Chemical Physics, 2010 , Volume 133 , Issue 14,
CO2
T=296 К
P=∅
7. R. Le Doucen, et al, (1985). Measured values
Волновое число (см⁻¹)
Коэффициент поглощения (см⁻¹Амага⁻²)
Density normalized absorption coefficient in the ν3 band of pure CO2 at 220 K. Measured values from Ref. 32.
32] R. Le Doucen, C. Cousin, C. Boulet, and A. Henry, Appl. Opt. 24, 897 (1985)
1985
R. Le Doucen, C. Cousin, C. Boulet, and A. Henry , Temperature dependence of the absorption in the region beyond the 4.3-µm band head of CO2 . 1: Pure CO2 case, Applied Optics, 1985 , Volume 24 , Pages 897-906.
CO2
T=296 К
P=∅
1. Normalized Absorption Coefficient.T=296K
Волновое число (см⁻¹)
Коэффициент поглощения (см⁻¹Амага⁻²)
Table 1 . Observed Normalized Absorptlon CoeffIcIent A0 (σ,T) In cm-1 amagat-2 at Selected Temperatures
2010
Wordsworth R, Forget F, Eymet V. , Infrared collision induced and far line absorption in dense CO2 atmospheres, Icarus, 2010 , Volume 210 , Issue 2, Pages 992–7.
CO2
T=273 К
P=0.986923 атм
1a. Baranov, Y.I., et al. (2004). Water dimer absorption. T=273K
Волновое число (см⁻¹)
Коэффициент поглощения (м⁻¹)
Total longwave absorption in a pure CO2 gas at 1 bar and 273 K.
2004
Yuri I. Baranov, W.J. Lafferty, G.T. Fraser
, Infrared spectrum of the continuum and dimer absorption in the vicinity of the O2 vibrational fundamental in O2 /CO2 mixtures , Journal of Molecular Spectroscopy, 2004 , Volume 228 , Issue 2, Pages 432-440.
Волновое число (см⁻¹)Температура (К)
Коэффициент поглощения (см⁻¹Амага⁻²)Коэффициент ИСП (см⁻¹/Амага²)
2010
Wordsworth R, Forget F, Eymet V. , Infrared collision induced and far line absorption in dense CO2 atmospheres, Icarus, 2010 , Volume 210 , Issue 2, Pages 992–7.
CO2
T=273 К
P=0.986923 атм
1a. Gruszka et al. (1998). Induced dipole absorption. T=273K
Волновое число (см⁻¹)
Коэффициент поглощения (м⁻¹)
Total longwave absorption in a pure CO2 gas at 1 bar and 273 K.
1998
Marcin Gruszka, Aleksandra Borysow , Computer simulation of the far infrared collision induced absorption spectra of gaseous CO2 , Molecular Physics, 1998 , Volume 93 , Issue 6, Pages 1007-1016.
2010
Wordsworth R, Forget F, Eymet V. , Infrared collision induced and far line absorption in dense CO2 atmospheres, Icarus, 2010 , Volume 210 , Issue 2, Pages 992–7.
CO2
T=200 К
P=0.986923 атм
1b. Gruszka, M., et al, (1998) and Baranov Yu.I. et al. (2004). CIA absorption. T=200K
Волновое число (см⁻¹)
Коэффициент поглощения (м⁻¹)
Comparison of the CIA absorption. GBB results from Fig.1a. T=200 K
2004
Yuri I. Baranov, W.J. Lafferty, G.T. Fraser
, Infrared spectrum of the continuum and dimer absorption in the vicinity of the O2 vibrational fundamental in O2 /CO2 mixtures , Journal of Molecular Spectroscopy, 2004 , Volume 228 , Issue 2, Pages 432-440.
Волновое число (см⁻¹)Температура (К)
Коэффициент поглощения (см⁻¹Амага⁻²)Коэффициент ИСП (см⁻¹/Амага²)
2010
Wordsworth R, Forget F, Eymet V. , Infrared collision induced and far line absorption in dense CO2 atmospheres, Icarus, 2010 , Volume 210 , Issue 2, Pages 992–7.
CO2
T=200 К
P=0.986923 атм
1b. Kasting et al. (1984). Comparison of the CIA absorption. Parameterisation
Волновое число (см⁻¹)
Коэффициент поглощения (м⁻¹)
Parameterisation of Kasting et al. (1984) T=200 K
Kasting, J.F., Pollack, J.B., Crisp, D., 1984. Effects of high CO2 levels on surface temperature and atmospheric oxidation state of the early Earth. J. Atmos. Chem. 1, 403–428.
1984
Kasting, J.F., Pollack, J.B. & Crisp, D. , Effects of high CO2 levels on surface temperature and atmospheric oxidation state of the early Earth, Journal of Atmospheric Chemistry, 1984 , Volume 1 , Pages 403–428.
2010
Wordsworth R, Forget F, Eymet V. , Infrared collision induced and far line absorption in dense CO2 atmospheres, Icarus, 2010 , Volume 210 , Issue 2, Pages 992–7.
CO2
T=250 К
P=0.986923 атм
1c. Gruszka, M., et al, (1998) and Baranov Yu.I. et al. (2004). CIA absorption. T=250K
Волновое число (см⁻¹)
Коэффициент поглощения (м⁻¹)
Comparison of the CIA absorption shown in Fig.1a T=250 K
2004
Yuri I. Baranov, W.J. Lafferty, G.T. Fraser
, Infrared spectrum of the continuum and dimer absorption in the vicinity of the O2 vibrational fundamental in O2 /CO2 mixtures , Journal of Molecular Spectroscopy, 2004 , Volume 228 , Issue 2, Pages 432-440.
Волновое число (см⁻¹)Температура (К)
Коэффициент поглощения (см⁻¹Амага⁻²)Коэффициент ИСП (см⁻¹/Амага²)
2010
Wordsworth R, Forget F, Eymet V. , Infrared collision induced and far line absorption in dense CO2 atmospheres, Icarus, 2010 , Volume 210 , Issue 2, Pages 992–7.
CO2
T=250 К
P=0.986923 атм
1c. Kasting et al. (1984). Comparison of the CIA absorption. Parameterisation
Волновое число (см⁻¹)
Коэффициент поглощения (м⁻¹)
Parameterisation of Kasting et al. (1984) T=250 K
Kasting, J.F., Pollack, J.B., Crisp, D., 1984. Effects of high CO2 levels on surface temperature and atmospheric oxidation state of the early Earth. J. Atmos. Chem. 1, 403–428.
1984
Kasting, J.F., Pollack, J.B. & Crisp, D. , Effects of high CO2 levels on surface temperature and atmospheric oxidation state of the early Earth, Journal of Atmospheric Chemistry, 1984 , Volume 1 , Pages 403–428.
2010
Wordsworth R, Forget F, Eymet V. , Infrared collision induced and far line absorption in dense CO2 atmospheres, Icarus, 2010 , Volume 210 , Issue 2, Pages 992–7.
CO2
T=300 К
P=0.986923 атм
1d. Gruszka, M., et al, (1998) and Baranov Yu.I. et al. (2004). CIA absorption. T=300K
Волновое число (см⁻¹)
Коэффициент поглощения (м⁻¹)
Comparison of the CIA absorption shown in Fig.1a T=300 K
2004
Yuri I. Baranov, W.J. Lafferty, G.T. Fraser
, Infrared spectrum of the continuum and dimer absorption in the vicinity of the O2 vibrational fundamental in O2 /CO2 mixtures , Journal of Molecular Spectroscopy, 2004 , Volume 228 , Issue 2, Pages 432-440.
Волновое число (см⁻¹)Температура (К)
Коэффициент поглощения (см⁻¹Амага⁻²)Коэффициент ИСП (см⁻¹/Амага²)
2010
Wordsworth R, Forget F, Eymet V. , Infrared collision induced and far line absorption in dense CO2 atmospheres, Icarus, 2010 , Volume 210 , Issue 2, Pages 992–7.
CO2
T=300 К
P=0.986923 атм
1d. Kasting et al. (1984) Comparison of the CIA absorption. Parameterisation
Волновое число (см⁻¹)
Коэффициент поглощения (м⁻¹)
Comparison of the CIA absorption. Parameterisation of Kasting et al. (1984) T=300 K
1984
Kasting, J.F., Pollack, J.B. & Crisp, D. , Effects of high CO2 levels on surface temperature and atmospheric oxidation state of the early Earth, Journal of Atmospheric Chemistry, 1984 , Volume 1 , Pages 403–428.
2011
Bezard B., Fedorova A., Bertaux J.-L., Rodin A., Korablev O. , The 1.10- and 1.18-mu m nightside windows of Venus observed by SPICAV-IR aboard Venus Express, Icarus, 2011 , Volume 216(1) , Pages 173-83.
CO2
T=∅
P=∅
13. Burch et al., (1969). The kappa factor for modeling CO2 lineshape
Смещение от центра линии (см⁻¹)
χ-функция
The χ factor we used for modeling CO2 lineshape (solid line) is compared with measured by Burch et al. (1969) at 431 K around 1.4 μm (square symbols)
Burch et al. (1969) - Burch, D.E., Gryvnak, D.A., Patty, R.R., Bartky, C.E., 1969. Absorption of infrared radiant energy by CO2 and H2 O. IV. Shapes of collision-broadened CO2 lines. J. Opt. Soc. Am. 59, 267–278.
1969
Darrell E. Burch, David A. Gryvnak, Richard R. Patty, and Charlotte E. Bartky , Absorption of Infrared Radiant Energy by CO2 and H2 O. IV. Shapes of Collision-Broadened CO2 Lines, Journal of Optical Society of America, 1969 , Volume 59 , Pages 267-278.
CO2
T=∅
P=∅
11. Pure CO₂. (T=431K, 7000 cm⁻¹) Case 2
Смещение от центра линии (см⁻¹)
Поправочный фактор для Лоренцевского контура
Сorrection factor of the Lorentz line shape x for self-broadened CO2 lines in the 7000 cm-1 region. Curve corresponds to 431°K and is applicable if the half-widths vary inversely with the square-root of temperature.
2011
Bezard B., Fedorova A., Bertaux J.-L., Rodin A., Korablev O. , The 1.10- and 1.18-mu m nightside windows of Venus observed by SPICAV-IR aboard Venus Express, Icarus, 2011 , Volume 216(1) , Pages 173-83.
CO2
T=∅
P=∅
13. Meadows, V.S., et al., (1996). The kappa factor for modeling CO2 lineshape
Смещение от центра линии (см⁻¹)
χ-функция
The χ factor we used for modeling CO2 lineshape (solid line) is compared with that used by Meadows and Crisp (1996) to model their ground-based observations of the 1.18-μm window (at 650 K, dash-dotted line).
Meadows, V.S., Crisp, D., 1996. Ground-based near-infrared observations of the Venus nightside: The thermal structure and water abundance near the surface. J. Geophys. Res. 101, 4595–4622.
2011
Bezard B., Fedorova A., Bertaux J.-L., Rodin A., Korablev O. , The 1.10- and 1.18-mu m nightside windows of Venus observed by SPICAV-IR aboard Venus Express, Icarus, 2011 , Volume 216(1) , Pages 173-83.
CO2
T=∅
P=∅
13. The Lorentz case corresponds to kappa = 1
Смещение от центра линии (см⁻¹)
χ-функция
The χ factor we used for modeling CO2 lineshape. The Lorentz case (dotted line) corresponds to χ= 1.
2011
Bezard B., Fedorova A., Bertaux J.-L., Rodin A., Korablev O. , The 1.10- and 1.18-mu m nightside windows of Venus observed by SPICAV-IR aboard Venus Express, Icarus, 2011 , Volume 216(1) , Pages 173-83.
CO2
T=∅
P=∅
13. Tonkov M.V., et al., (1996). The kappa factor for modeling CO2 lineshape
Смещение от центра линии (см⁻¹)
χ-функция
The χ factor we used for modeling CO2 lineshape (solid line) is compared with Tonkov et al.’s (1996) χ(kappa) profile near 2.3 μm for room temperature (dashed line).
Tonkov, M.V. et al., 1996. Measurements and empirical modeling of pure CO2 absorption in the 2.3-μm region at room temperature: Far wings, allowed and collision-induced bands. Appl. Opt. 35, 4863–4870.
1996
M. V. Tonkov, N. N. Filippov, V. V. Bertsev, J. P. Bouanich, Nguyen Van-Thanh, C. Brodbeck, J. M. Hartmann, C. Boulet, F. Thibault, and R. Le Doucen , Measurements and empirical modeling of pure CO2 absorption in the 2.3-νm region at room temperature: far wings, allowed and collision-induced bands, Applied Optics, 1996 , Volume 35 , Pages 4863-4870.
Волновое число (см⁻¹) Волновое число (см⁻¹) Волновое число (см⁻¹) Волновое число (см⁻¹)
Заданная функция Коэффициент поглощения (см⁻¹) Нормализованный коэффициент поглощения Нормализованный коэффициент поглощения (см⁻¹Амага⁻²)
2011
H. Tran, C. Boulet, S. Stefani, M. Snels, G. Piccioni , Measurements and modelling of high pressure pure CO2 spectra from 750 to 8500 cm-1 . I—central and wing regions of the allowed vibrational bands, Journal of Quantitative Spectroscopy and Radiative Transfer, 2011 , Volume 112 , Issue 6, Pages 925-936.
CO2
T=295 К
P=1 атм
10a. Le Doucen R., et al. (1985). Experiment
Волновое число (см⁻¹)
Нормализованный коэффициент поглощения (см⁻¹Амага⁻²)
Pure CO2 normalized absorption coefficients at the ν3 band wing regions for T=295 K. Measured data at room temperature of previous studies are also reported for comparison: values of [7].
[7] Le Doucen R, Cousin C, Boulet C, Henry A. Temperature dependence of the absorption beyond the 4.3 mm band head of CO2 . 1: Pure CO2 case. Appl Opt 1985;24:897–905.
1985
R. Le Doucen, C. Cousin, C. Boulet, and A. Henry , Temperature dependence of the absorption in the region beyond the 4.3-µm band head of CO2 . 1: Pure CO2 case, Applied Optics, 1985 , Volume 24 , Pages 897-906.
Волновое число (см⁻¹) Волновое число (см⁻¹) Волновое число (см⁻¹)
Заданная функция Коэффициент поглощения (см⁻¹Амага⁻²) Поправочный фактор формы линии
2011
H. Tran, C. Boulet, S. Stefani, M. Snels, G. Piccioni , Measurements and modelling of high pressure pure CO2 spectra from 750 to 8500 cm-1 . I—central and wing regions of the allowed vibrational bands, Journal of Quantitative Spectroscopy and Radiative Transfer, 2011 , Volume 112 , Issue 6, Pages 925-936.
CO2
T=295 К
P=1 атм
10a. Perrin M.Y., et al. (1989). Experiment
Волновое число (см⁻¹)
Нормализованный коэффициент поглощения (см⁻¹Амага⁻²)
Pure CO2 normalized absorption coefficients at the ν3 band wing regions for T=295 K . Measured data at room temperature of previous studies are also reported for comparison: values from [10].
[10] Perrin MY, Hartmann JM. Temperature dependence measurements and modelling of absorption by CO2 –N2 mixtures in the far line-wings of the 4.3 mm CO2 band. JQSRT 1989;42:311–7.
2011
H. Tran, C. Boulet, S. Stefani, M. Snels, G. Piccioni , Measurements and modelling of high pressure pure CO2 spectra from 750 to 8500 cm-1 . I—central and wing regions of the allowed vibrational bands, Journal of Quantitative Spectroscopy and Radiative Transfer, 2011 , Volume 112 , Issue 6, Pages 925-936.
CO2
T=218 К
P=1 атм
11a. Le Doucen R., et al. (1985). Experiment. T=218 K
Волновое число (см⁻¹)
Нормализованный коэффициент поглощения (см⁻¹Амага⁻²)
Pure CO2 normalized absorption coefficients at high-frequency wingside of the ν3 band for T=218K. Calculated values and correspond to measured data of [7] at 218K .
[7] Le Doucen R, Cousin C, Boulet C, Henry A. Temperature dependence of the absorption beyond the 4.3 mm band head of CO2. 1: Pure CO2 case. Appl Opt 1985;24:897–905.
2011
H. Tran, C. Boulet, S. Stefani, M. Snels, G. Piccioni , Measurements and modelling of high pressure pure CO2 spectra from 750 to 8500 cm-1 . I—central and wing regions of the allowed vibrational bands, Journal of Quantitative Spectroscopy and Radiative Transfer, 2011 , Volume 112 , Issue 6, Pages 925-936.
CO2
T=218 К
P=1 атм
11b. Perrin M.Y., et al. (1989).Experiment. T=751 K
Волновое число (см⁻¹)
Нормализованный коэффициент поглощения (см⁻¹Амага⁻²)
Pure CO2 normalized absorption coefficients at high-frequency wingside of the ν3 band for T=218K. Measured values.
1989
M.Y. Perrin and J.M. Hartmann , Temperature-dependent measurements and modeling of absorption by CO2 –N2 mixtures in the far line-wings of the 4.3 μ m CO2 band, Journal of Quantitative Spectroscopy and Radiation Transfer, 1989 , Volume 42 , Issue 4, Pages 311-317.
Волновое число (см⁻¹) Волновое число (см⁻¹)
Коэффициент поглощения (см⁻¹Амага⁻²) Пропускание (%)
2011
H. Tran, C. Boulet, S. Stefani, M. Snels, G. Piccioni , Measurements and modelling of high pressure pure CO2 spectra from 750 to 8500 cm-1 . I—central and wing regions of the allowed vibrational bands, Journal of Quantitative Spectroscopy and Radiative Transfer, 2011 , Volume 112 , Issue 6, Pages 925-936.
CO2
T=260 К
P=1 атм
12c. Tonkov M.V., et al. (1996). Experiment, the v1+v3 band. T=295K
Волновое число (см⁻¹)
Нормализованный коэффициент поглощения (см⁻¹Амага⁻²)
Pure CO2 normalized absorption coefficients at the high-frequency wingside of the ν1 +ν3 band for T=295K.
Data of Ref. [15]
1996
M. V. Tonkov, N. N. Filippov, V. V. Bertsev, J. P. Bouanich, Nguyen Van-Thanh, C. Brodbeck, J. M. Hartmann, C. Boulet, F. Thibault, and R. Le Doucen , Measurements and empirical modeling of pure CO2 absorption in the 2.3-νm region at room temperature: far wings, allowed and collision-induced bands, Applied Optics, 1996 , Volume 35 , Pages 4863-4870.
CO2
T=296 К
P=∅
2. Normalized absorption coefficient.Experimental values from Burch, et al. (1969)
Волновое число (см⁻¹)
Нормализованный коэффициент поглощения (см⁻¹Амага⁻²)
Experimental room temperature pure CO2 normalized absorption coefficients: values from Burch et al. [7].
[7] D. E. Burch, D. A. Gryvnak, R. R. Patty, and C. E. Bartky, “Shapes of collision-broadened CO2 lines,” J. Opt. Soc. Am. 59, 267–280 (1969).
2011
H. Tran, C. Boulet, S. Stefani, M. Snels, G. Piccioni , Measurements and modelling of high pressure pure CO2 spectra from 750 to 8500 cm-1 . I—central and wing regions of the allowed vibrational bands, Journal of Quantitative Spectroscopy and Radiative Transfer, 2011 , Volume 112 , Issue 6, Pages 925-936.
CO2
T=294 К
P=1 атм
3a. Le Doucen R, Cousin C, et al. (1985). Experiment. T=294K, 2400-2600 cm-1
Волновое число (см⁻¹)
Коэффициент поглощения (см⁻¹Амага⁻²)
Normalized absorption coefficients measured at room temperature for 2400-2600 cm-1 . Data from Ref. [7].
[7] Le Doucen R, Cousin C, Boulet C, Henry A.Temperature dependence of the absorption beyond the 4.3 mm band head of CO2 . 1:Pure CO2 case. Appl Opt1985;24:897–905.
1985
R. Le Doucen, C. Cousin, C. Boulet, and A. Henry , Temperature dependence of the absorption in the region beyond the 4.3-µm band head of CO2 . 1: Pure CO2 case, Applied Optics, 1985 , Volume 24 , Pages 897-906.
CO2
T=296 К
P=∅
5a. Normalized absorption coefficient. CO₂. T=296K
Волновое число (см⁻¹)
Коэффициент поглощения (см⁻¹Амага⁻²)
Wave number dependence of the normalized absorption coefficient A0 (σ,T), in cm-1 amagat-2 , for temperature: 296°K.
2011
H. Tran, C. Boulet, S. Stefani, M. Snels, G. Piccioni , Measurements and modelling of high pressure pure CO2 spectra from 750 to 8500 cm-1 . I—central and wing regions of the allowed vibrational bands, Journal of Quantitative Spectroscopy and Radiative Transfer, 2011 , Volume 112 , Issue 6, Pages 925-936.
CO2
T=294 К
P=1 атм
3a. Perrin M.Y., Hartmann J.M. (1989). Experiment. T=294K, 2400-2600 cm-1
Волновое число (см⁻¹)
Коэффициент поглощения (см⁻¹Амага⁻²)
Normalized absorption coefficients measured at room temperature for 2400-2600 cm-1 . Data from Ref. [10].
[10] Perrin MY, Hartmann JM. Temperature dependence measurements and modeling of absorption by CO2 –N2 mixtures in the far line- wings of the 4.3 mm CO2 band. JQSRT 1989; 42:311–7.
1989
M.Y. Perrin and J.M. Hartmann , Temperature-dependent measurements and modeling of absorption by CO2 –N2 mixtures in the far line-wings of the 4.3 μ m CO2 band, Journal of Quantitative Spectroscopy and Radiation Transfer, 1989 , Volume 42 , Issue 4, Pages 311-317.
Волновое число (см⁻¹) Волновое число (см⁻¹)
Коэффициент поглощения (см⁻¹Амага⁻²)Пропускание (%)
2011
H. Tran, C. Boulet, S. Stefani, M. Snels, G. Piccioni , Measurements and modelling of high pressure pure CO2 spectra from 750 to 8500 cm-1 . I—central and wing regions of the allowed vibrational bands, Journal of Quantitative Spectroscopy and Radiative Transfer, 2011 , Volume 112 , Issue 6, Pages 925-936.
CO2
T=294 К
P=1 атм
3b. Burch D.E., Gryvnak D.A., et al. (1969). Experiment. T=294K, 3750-4000 cm-1
Волновое число (см⁻¹)
Коэффициент поглощения (см⁻¹Амага⁻²)
Normalized absorption coefficients measured at room temperature for 3750-4000 cm-1 . Data from Ref. [6].
[6] Burch DE, Gryvnak DA, Patty RR, Bartky CE. Absorption of infrared radiant energy by CO2 and H2 O. IV. Shapes of collision-broadened CO2 lines. JOptSocAm1969;59:267–80.
1969
Darrell E. Burch, David A. Gryvnak, Richard R. Patty, and Charlotte E. Bartky , Absorption of Infrared Radiant Energy by CO2 and H2 O. IV. Shapes of Collision-Broadened CO2 Lines, Journal of Optical Society of America, 1969 , Volume 59 , Pages 267-278.
CO2
T=∅
P=∅
8. CO₂+CO₂ (3770 - 4100 cm⁻¹). Approximation
Волновое число (см⁻¹)
Нормализованный коэффициент поглощения (атм⁻¹см⁻¹)STP
k 0 for self broadening between 3770 and 4100 cm-1 . The curves represent the contribution due to the lines below 3780 cm-1 ; the contribution of the lines between 3780 and 4100 cm-1 has been subtracted from the observed absorption coefficient. The curves are based on data points at wavenumbers where the absorption by nearby lines is small. Because of possible errors in the corrections made, the uncertainty of the curve is large above 3900 cm-1 .
2011
H. Tran, C. Boulet, S. Stefani, M. Snels, G. Piccioni , Measurements and modelling of high pressure pure CO2 spectra from 750 to 8500 cm-1 . I—central and wing regions of the allowed vibrational bands, Journal of Quantitative Spectroscopy and Radiative Transfer, 2011 , Volume 112 , Issue 6, Pages 925-936.
CO2
T=294 К
P=1 атм
3b. Tonkov M.V., Filippov N.N., et al. (1996). Experiment. T=294K, 3750-4000 cm-1
Волновое число (см⁻¹)
Коэффициент поглощения (см⁻¹Амага⁻²)
Normalized absorption coefficients measured at room temperature for 3750-4000 cm-1 . Data from Ref. [15].
[15] Tonkov M.V., Filippov N.N., Bertsev V.V., Bouanich J.P., Nguyen Van Thanh, Brodbeck C., et al. Measurements and empirical modeling of pure CO2 absorption in the2.3 mm region at room temperature: far wings, allowed and collision-induced bands. Appl Opt 1996; 35: 4863–70.
1996
M. V. Tonkov, N. N. Filippov, V. V. Bertsev, J. P. Bouanich, Nguyen Van-Thanh, C. Brodbeck, J. M. Hartmann, C. Boulet, F. Thibault, and R. Le Doucen , Measurements and empirical modeling of pure CO2 absorption in the 2.3-νm region at room temperature: far wings, allowed and collision-induced bands, Applied Optics, 1996 , Volume 35 , Pages 4863-4870.
CO2
T=296 К
P=∅
6. Absorption coefficient. CO₂. Calculation with HITRAN-92
Волновое число (см⁻¹)
Коэффициент поглощения (см⁻¹)
Room temperature pure CO2 absorption coefficients for a density of 13.75 amagats: Computed contributions of local allowed transitions, HITRAN-92 database.
2011
H. Tran, C. Boulet, S. Stefani, M. Snels, G. Piccioni , Measurements and modelling of high pressure pure CO2 spectra from 750 to 8500 cm-1 . I—central and wing regions of the allowed vibrational bands, Journal of Quantitative Spectroscopy and Radiative Transfer, 2011 , Volume 112 , Issue 6, Pages 925-936.
CO2
T=258 К
P=1 атм
9a. LeDoucen R,, et al. (1985). Experiment. T=260K
Волновое число (см⁻¹)
Нормализованный коэффициент поглощения (см⁻¹Амага⁻²)
Normalized absorption in the high-frequency wing of the ν3 band region of pure CO2 . Values in open circle are data measured at 258K by [7].
[7] LeDoucen R, Cousin C, Boulet C, Henry A. Temperature dependence of the absorption beyond the 4.3 μm band head of CO2 . 1:Pure CO2 case. Appl Opt 1985; 24:897–905.
1985
R. Le Doucen, C. Cousin, C. Boulet, and A. Henry , Temperature dependence of the absorption in the region beyond the 4.3-µm band head of CO2 . 1: Pure CO2 case, Applied Optics, 1985 , Volume 24 , Pages 897-906.
Волновое число (см⁻¹) Волновое число (см⁻¹) Волновое число (см⁻¹)
Заданная функция Коэффициент поглощения (см⁻¹Амага⁻²) Поправочный фактор формы линии
2011
J.-M. Hartmann, C. Boulet, D. Jacquemart , Molecular dynamics simulations for CO2 spectra. II. The far infrared collision-induced absorption band, Journal of Chemical Physics, 2011 , Volume 134 , Issue 9,
CO2
T=296 К
P=1 атм
2. G.Birnbaum, et al. (1971)
Волновое число (см⁻¹)
Коэффициент поглощения (см⁻¹Амага⁻²)
Experimental density normalized pure CO2 CIA at 296°K: this line is from Fig. 6 of Ref. 33.
[33]. G. Birnbaum, W. Ho, and A. Rosenberg, J. Chem. Phys. 55, 1039 (1971).
1971
Birnbaum, G., Ho, W., Rosenberg, A. , Far-infrared collision-induced absorption in CO2 . II. Pressure dependence in the gas phase and absorption in the liquid, Journal of Chemical Physics, 1971 , Volume 55 , Issue 3, Pages 1039.
2011
J.-M. Hartmann, C. Boulet, D. Jacquemart , Molecular dynamics simulations for CO2 spectra. II. The far infrared collision-induced absorption band, Journal of Chemical Physics, 2011 , Volume 134 , Issue 9,
CO2
T=296 К
P=∅
2. J.E.Harries, et al. (1970)
Волновое число (см⁻¹)
Коэффициент поглощения (см⁻¹Амага⁻²)
Experimental density normalized pure CO2 CIA at 296°K: This line is from Fig. 2 of Ref. [34].
[34]. J.E.Harries, J. Phys. B 3, 704 (1970).
1970
J.E. Harries , The temperature variation of the far infrared absorption in compressed CO2 , Journal of Physics B: Atomic, Molecular and Optical Physics, 1970 , Volume 3 , Pages 704.
2012
Massimiliano Bartolomei, Fernando Pirani, Antonio Lagan, and Andrea Lombardi , A Full Dimensional Grid Empowered Simulation of the CO2 + CO2 Processes, Journal of Computational Chemistry, 2012 , Volume 33 , Issue 22, Pages 1806–1819.
CO2
T=∅
P=∅
2. J. H. Dymond, et al., (1980). Second virial coefficients for the CO2–CO2 system: experimental data
Температура (К)
Второй вириальный коэффициент (см³ мол⁻¹)
Second virial coefficients for the CO2 –CO2 system: experimental data are from Ref. [44]/
[44] J. H. Dymond, E. B. Smith, The Virial Coefficient of Pure Gases and Mixtures: a Critical Compilation; Clarendon Press: Oxford, 1980.
2012
Massimiliano Bartolomei, Fernando Pirani, Antonio Lagan, and Andrea Lombardi , A Full Dimensional Grid Empowered Simulation of the CO2 + CO2 Processes, Journal of Computational Chemistry, 2012 , Volume 33 , Issue 22, Pages 1806–1819.
CO2
T=∅
P=∅
2. J.C. Holste, et al., (1987). Second virial coefficients for the CO2–CO2 system: experimental data
Температура (К)
Второй вириальный коэффициент (см³ мол⁻¹)
Second virial coefficients for the CO2 –CO2 system: experimental data (circles, red and blue squares) are from Ref. [45].
[45] J. C. Holste, K. R. Hall, P. T. Eubank, G. Esper, M. Q. Watson, W. Warowny D. M. Bailey, J. G. Young, M. T. Bellomy, J. Chem. Thermodyn. 1987, 19, 1233.
2012
Massimiliano Bartolomei, Fernando Pirani, Antonio Lagan, and Andrea Lombardi , A Full Dimensional Grid Empowered Simulation of the CO2 + CO2 Processes, Journal of Computational Chemistry, 2012 , Volume 33 , Issue 22, Pages 1806–1819.
CO2
T=∅
P=∅
2. W. Duscheck, et al. (1990). Second virial coefficients for the CO2–CO2 system: experimental data
Температура (К)
Второй вириальный коэффициент (см³ мол⁻¹)
Second virial coefficients for the CO2 –CO2 system: experimental data are from Ref. [46].
[46] W. Duschek, R. Kleinrahm, W. Wagner, J. Chem. Thermodyn. 1990, 22, 827.
1990
W. Duschek, R. Kleinrahm, W. Wagner , Measurement and correlation of the (pressure, density, temperature) relation of carbon dioxide I. The homogeneous gas and liquid regions in the temperature range from 217 K to 340 K at pressures up to 9 MPa, The Journal of Chemical Thermodynamics, 1990 , Volume 22 , Pages 827-840.
2013
Климешина Т.Е., Петрова Т.М., Родимова О.Б., Солодов А.А., Солодов А.М. , Поглощение СО2 за кантами полос в области 8000 см–1 , Оптика атмосферы и океана, 2013 , Volume 26 , Number 11, Pages 925–931.
CO2
T=273 К
P=1 атм
4. Burch D.E., et al. (1969). Коэффициент поглощения в крыле полосы 1.4 мкм СО2. Эксперимент
Волновое число (см⁻¹)
Нормализованный коэффициент поглощения (атм⁻¹см⁻¹)STP
Коэффициент поглощения в крыле полосы 1.4 мкм СО2 . Эксперимент Burch et al. [9]. STP P=1 atm, T=273 K
[9] Burch D.E., Gryvnak D.A., Patty R.R., Bartky Ch.E. Absorption of infrared radiant energy by CO2 and H2 O. IV. Shapes of collision-broadened CO2 lines // J. Opt. Soc. Amer. 1969. V. 59, N 3. P. 267–280.
1969
Darrell E. Burch, David A. Gryvnak, Richard R. Patty, and Charlotte E. Bartky , Absorption of Infrared Radiant Energy by CO2 and H2 O. IV. Shapes of Collision-Broadened CO2 Lines, Journal of Optical Society of America, 1969 , Volume 59 , Pages 267-278.
CO2
T=273 К
P=2 атм
6. Sample having the following total pressures =< 2 atm
Волновое число (см⁻¹)
Нормализованный коэффициент поглощения (атм⁻¹см⁻¹)STP
K0 s for CO2 self broadening vs v between 6900 and 7100 cm-1 . The sample having the following total pressures < 2 atm.
2013
Климешина Т.Е., Родимова О.Б. , Изменение контура линии в крыле от полосы к полосе в случае Н2 О и СО2 , Оптика атмосферы и океана, 2013 , Volume 26 , Number 1, Pages 18-23.
CO2
T=296 К
P=∅
1. Burch D.E., et al. (1969) CO2, 1.4 mkm band. T=296 K
Смещение от центра линии (см⁻¹)
χ-функция
Спектральная зависимость отклонения от лорентцевского контура для 1.4 μm полосs СО2 , требуемого для описания экспериментального континуального поглощения [2] совокупностью линий (самоуширение, Т=296 К).
Spectral dependence of the deviation from the Lorentz contour for CO2 1.4 μm band required to describe experimental continuum absorption [2] by a set of lines (self-broadening, T = 296 K).
[2] Burch D.E., Gryvnak D.A., Patty R.R., Bartky Ch.E. Absorption of infrared radiant energy by CO2 and H2 O. IV. Shapes of collision-broadened CO2 lines // J. Opt. Soc. Amer. 1969. V. 59, N 3. P. 267–280.
1969
Darrell E. Burch, David A. Gryvnak, Richard R. Patty, and Charlotte E. Bartky , Absorption of Infrared Radiant Energy by CO2 and H2 O. IV. Shapes of Collision-Broadened CO2 Lines, Journal of Optical Society of America, 1969 , Volume 59 , Pages 267-278.
CO2
T=296 К
P=∅
11. Pure CO₂. (T=296K, 7000 cm⁻¹)
Смещение от центра линии (см⁻¹)
Поправочный фактор для Лоренцевского контура
Сorrection factor of the Lorentz line shape x for self-broadened CO2 lines in the 7000 cm-1 region. The curve corresponds to measurements made at room temperature, 296°K.
2015
T. E. Klimeshina, T. M. Petrova, O. B. Rodimova, A. A. Solodov, A. M. Solodov , CO2 absorption in band wings in near IR, Atmospheric and Oceanic Optics, 2015 , Volume 28 , Issue 5, Pages 387–393.
CO2
T=290 К
P=0.990871 атм
4. M. Y. Perrin and J. M. Hartmann, (1989). Experiment, T=290 K, P=1004 mbar
Волновое число (см⁻¹)
Коэффициент поглощения (см⁻¹)
Spectral dependence of the CO2 absorption coefficient in the 7000 cm−1 region reduced to T = 290 K under pressures of 1004 mbar. The resolution is 0.03–0.5 cm−1 .
[8] M. Y. Perrin and J. M. Hartmann, Temperature_dependent measurements and modeling of absorption by CO2 –N2 mixtures in the far line_wings of the 4.3 μm CO2 band, J. Quant. Spectrosc. Radiat. Transfer 42 (4), 311–317 (1989).
1989
M.Y. Perrin and J.M. Hartmann , Temperature-dependent measurements and modeling of absorption by CO2 –N2 mixtures in the far line-wings of the 4.3 μ m CO2 band, Journal of Quantitative Spectroscopy and Radiation Transfer, 1989 , Volume 42 , Issue 4, Pages 311-317.
Волновое число (см⁻¹) Волновое число (см⁻¹)
Коэффициент поглощения (см⁻¹Амага⁻²)Пропускание (%)
2015
T. E. Klimeshina, T. M. Petrova, O. B. Rodimova, A. A. Solodov, A. M. Solodov , CO2 absorption in band wings in near IR, Atmospheric and Oceanic Optics, 2015 , Volume 28 , Issue 5, Pages 387–393.
CO2
T=920 К
P=∅
7b. J.M. Hartmann, et al. (1991). Absorption coefficient, T=920 K, experiment
Волновое число (см⁻¹)
Коэффициент поглощения (см⁻¹Амага⁻²)
Absorption coefficient beyond the 4.3μm band edge: T = 193 K, experimental data [35].
J.M. Hartmann and C. Boulet, “Line mixing and finite duration of collision effects in pure CO2 infrared spectra: Fitting and scaling analysis, J. Chem. Phys. 94 (10), 6406–6419 (1991).
1991
Jean-Michel Hartmann, Christian Boulet , Line mixing and finite duration of collision effects in pure CO2 infrared spectra: Fitting and scaling analysis, Journal of Chemical Physics, 1991 , Volume 94 , Pages 6406.
CO2
T=920 К
P=∅
1. Table 1. Absorption coefficient (T=920K)
Волновое число (см⁻¹)
Коэффициент поглощения (см⁻¹Амага⁻²)
Normalized pure CO2, absorption coefficients beyond the ν3 bandhead
2016
Yu.I. Baranov , On the significant enhancement of the continuum-collision induced absorption in H2 O+CO2 mixtures, Journal of Quantitative Spectroscopy and Radiative Transfer, 2016 , Volume 175 , Pages 100-106.
CO2
T=∅
P=∅
6. Le Doucen R., et al. (1985). Pure CO2
Волновое число (см⁻¹)
Коэффициент поглощения (см⁻¹Амага⁻²)
Binary absorption coefficients beyond the ν3 CO2 band “head”.
Le Doucen R., Cousin C., Boulet C., Henry A. Temperature dependence of the absorption in the region beyond the 4.3 μm band head of CO2 . 1: pure CO2 case. Appl Opt 1985;24:897–906.
1985
R. Le Doucen, C. Cousin, C. Boulet, and A. Henry , Temperature dependence of the absorption in the region beyond the 4.3-µm band head of CO2 . 1: Pure CO2 case, Applied Optics, 1985 , Volume 24 , Pages 897-906.
CO2
T=258 К
P=∅
1. Normalized Absorption Coefficient. T=258K
Волновое число (см⁻¹)
Коэффициент поглощения (см⁻¹Амага⁻²)
Table 1 . Observed Normalized Absorptlon CoeffIcIent A0 (σ,T) In cm-1 amagat-2 at Selected Temperatures
2018
Jean-Michel Hartmann, Christian Boulet, Duc Dung Tran, Ha Tran, Yury Baranov , Effect of humidity on the absorption continua of CO2 and N2 near 4 μm: Calculations, comparisons with measurements, and consequences for atmospheric spectra, The Journal of Chemical Physics, 2018 , Volume 148 , Issue 5,
CO2
T=296 К
P=∅
1. H. Tran, C., et al. (2011 ). Binary absorption coefficient, pure CO2, T=296 K
Волновое число (см⁻¹)
Коэффициент поглощения (см⁻¹Амага⁻²)
Binary absorption coefficient beyond the ν3 band head for pure CO2 at 296 K from Ref. 37.
2011
H. Tran, C. Boulet, S. Stefani, M. Snels, G. Piccioni , Measurements and modelling of high pressure pure CO2 spectra from 750 to 8500 cm-1 . I—central and wing regions of the allowed vibrational bands, Journal of Quantitative Spectroscopy and Radiative Transfer, 2011 , Volume 112 , Issue 6, Pages 925-936.
CO2
T=294 К
P=1 атм
3a. Experiment present work T=294K, 2400-2600 cm-1
Волновое число (см⁻¹)
Коэффициент поглощения (см⁻¹Амага⁻²)
Normalized absorption coefficients measured at room temperature for 2400-2600 cm-1 . Results obtained by the present work.
2018
Jean-Michel Hartmann, Christian Boulet, Duc Dung Tran, Ha Tran, Yury Baranov , Effect of humidity on the absorption continua of CO2 and N2 near 4 μm: Calculations, comparisons with measurements, and consequences for atmospheric spectra, The Journal of Chemical Physics, 2018 , Volume 148 , Issue 5,
CO2
T=296 К
P=∅
1. J.-M. Hartmann, et al. (2011). Binary absorption coefficient, pure CO2, T=296 K
Волновое число (см⁻¹)
Коэффициент поглощения (см⁻¹Амага⁻²)
Measured (symbols) and computed (lines) binary absorption coefficients beyond the ν3 band head for pure CO2 at 296 K (from Ref. 22) .
2011
J.-M. Hartmann, C. Boulet , Molecular dynamics simulations for CO2 spectra. III. Permanent and collision-induced tensors contributions to light absorption and scattering, Journal of Chemical Physics, 2011 , Volume 134 , Issue 18,
1939
Adel, A. , Atmospheric absorption of infrared solar radiation at the Lowell Observatory I, The Astrophysical Journal, 1939 , Volume 89 , Pages 1.
H2 O
T=300 К
P=1 атм
2. Elsasser W.M. (1938)
Волновое число (см⁻¹)
Оптическая глубина
αν versus ν, αν is the absorption coefficient, ν is the wavenumber,
Elsasser W.M., Note on atmospheric absorption caused by the rotational water band, Physical Review, 1938, Volume 53, no. 9, Pages 768. URL: http://link.aps.org/doi/10.1103/PhysRev.53.768 DOI:10.1103/PhysRev.53.768.
1938
Elsasser W.M. , Note on atmospheric absorption caused by the rotational water band, Physical Review, 1938 , Volume 53 , Number 9, Pages 768.
H2 O
T=300 К
P=1 атм
1. Optical thickness of water vapour (300K)
Волновое число (см⁻¹)
Оптическая глубина
Values of k at 200 and 300 Kelvin
1952
Anthony, Romuald , Atmospheric absorption of solar infrared radiation, Physical Review, 1952 , Volume 85 , Number 4, Pages 674.
H2 O
T=300 К
P=1 атм
2. Adel A. (1939) (700-1200 cm⁻¹)
Волновое число (см⁻¹)
Оптическая глубина
Comparison of computed values with experimental values of absorption coefficient αν , as a function of ν cm-1 .
1939
Adel, A. , Atmospheric absorption of infrared solar radiation at the Lowell Observatory I, The Astrophysical Journal, 1939 , Volume 89 , Pages 1.
H2 O
T=300 К
P=1 атм
2. Experimental data
Волновое число (см⁻¹)
Оптическая глубина
αν versus ν, αν is the absorption coefficient, ν is the wavenumber.
1952
Anthony, Romuald , Atmospheric absorption of solar infrared radiation, Physical Review, 1952 , Volume 85 , Number 4, Pages 674.
H2 O
T=300 К
P=1 атм
2. Elsasser W.M. (1952) (300K, 500-1000 cm⁻¹)
Волновое число (см⁻¹)
Оптическая глубина
Comparison of computed values with experimental values of absorption coefficient αν , as a function of ν cm-1 .
Elsasser W.M., Note on atmospheric absorption caused by the rotational water band, Physical Review, 1938, Volume 53, no. 9, Pages 768. URL: http://link.aps.org/doi/10.1103/PhysRev.53.768 DOI:10.1103/PhysRev.53.768
1938
Elsasser W.M. , Note on atmospheric absorption caused by the rotational water band, Physical Review, 1938 , Volume 53 , Number 9, Pages 768.
H2 O
T=300 К
P=1 атм
1. Optical thickness of water vapour (300K)
Волновое число (см⁻¹)
Оптическая глубина
Values of k at 200 and 300 Kelvin
1963
B.A. Thompson, P. Harteck, and R.R. Reeves, Jr. , Ultraviolet absorption coefficients of CO2 , CO, H2 O, N2 O, NH3 , NO, SO2 , and CH4 between 1850 and 4000 Å, Journal of Geophysical Research, 1963 , Volume 68 , Pages 6431-6436.
H2 O
T=300 К
P=1 атм
4. Watanabe, et al. (1953). Absorption coefficient of H2O
Длина волны (А)
Коэффициент поглощения (см⁻¹)
Absorption coefficient of H2 O as a function of wavelength.
Watanabe, K, M. Zelikoff, and E. C. Y. Inn Absorption coefficients of several atmospheric gases, AFCRC Tech. Rept. 53-23, 1953.
1953
K. Watanabe and M. Zelikoff , Absorption coefficients of water vapor in the vacuum ultraviolet, Journal of Optical Society of America, 1953 , Volume 43 , Issue 9, Pages 753-754.
H2 O
T=298 К
P=0.011 атм
1. Absorption coefficients of water vapor (1250-1850 A)
Длина волны (А)
Коэффициент поглощения (см⁻¹)
Absorption coefficients of water vapor in the spectral region 1250-1850A
1964
Жевакин С.А., Наумов А.П. , Поглощение сантиметровых и миллиметровых радиоволн атмосферными парами воды , Радиотехника и электроника, 1964 , Number 8, Pages 1327-1337.
H2 O
T=293 К
P=1 атм
3. Becker, G.E., et al. (1946)
Длина волны (см)
Коэффициент поглощения (дБ/км)
[9] Becker, G.E., and Autler, S.H., Water Vapor Absorption of Electromagnetic Radiation in the Centimeter Wave-Length Range. Physical Review, 1946, v. 70, p. 300-307. URL: http://link.aps.org/doi/10.1103/PhysRev.70.300 DOI: 10.1103/PhysRev.70.300.
1946
Becker, G. E., and Autler, S.H. , Water Vapor Absorption of Electromagnetic Radiation in the Centimeter Wave-Length Range, Physical Review, 1946 , Volume 70 , Issue 5, Pages 300-307.
Волновое число (см⁻¹)
Ослабление (дБ/км на г/м³)
1964
Жевакин С.А., Наумов А.П. , Поглощение сантиметровых и миллиметровых радиоволн атмосферными парами воды , Радиотехника и электроника, 1964 , Number 8, Pages 1327-1337.
H2 O
T=293 К
P=1 атм
3. D.J.H.Wort (1962)
Длина волны (см)
Коэффициент поглощения (дБ/км)
[42] D.J.H.Wort, Solar temperature at 2-mm wavelength, Nature, 1962, v.195, no. 4848, p.1288.
1962
D.J.H.Wort , Solar temperature at 2-mm wavelength, Nature, 1962 , Volume 195 , Number 4848, Pages 1288.
1966
Ryadov, V. Y., Furashov, N.I., , Measurement of the atmospheric absorption of radio waves in the range 0.76–1.15 mm, Izvestia VUZ Radiofisika, 1966 , Volume 9 , Number 5, Pages 504-507.
H2 O
T=293 К
P=∅
4. S.A. Zhevakin et al. (1963)
Волновое число (см⁻¹)
Коэффициент поглощения (дБ/км)
The absorption coefficient of atmospheric water vapor reduced to a standard humidity of p = 7.5 g/m3 (p = 760 mm Hg, T = 293°K). The continuous curve shows the results of theoretical calculations [6].
[6]. S.A. Zhevakin and A. P. Naumov, Izv. VUZ. Radiofizika, 6, 674, 1963.
1963
Жевакин С.А., Наумов А.П. , О коэффициенте поглощения электромагнитных волн водяным паром в диапазоне 10 мкм - 2 см, Известия ВУЗов, Радиофизика, 1963 , Volume 6 , Number 4, Pages 674-693.
H2 O
T=293 К
P=760 атм
1. Our calculation
Волновое число (см⁻¹)
Коэффициент поглощения (дБ/км)
Коэффициент поглощения водяным паром, вычисленный с формой линии по кинетическому уравнению.
1968
M. Schürgers and K.H. Welge , Absorptionskoeffizient von H2 O2 und N2 H4 zwischen 1200 und 2000 Å, Zeitschrift für Naturforschung - A, 1968 , Volume 23a , Pages 1508-1510.
H2 O
T=300 К
P=1 атм
8. M. Schurgers et al. (1968)
Длина волны (нм)
Сечение поглощения (см²)
Comparison of water vapor cross section data, 175 to 190 nm;
[37]. M. Schurgers and H. Welge. Z. Naturforsch. 23, 1508 (1968).
1968
M. Schürgers and K.H. Welge , Absorptionskoeffizient von H2 O2 und N2 H4 zwischen 1200 und 2000 Å, Zeitschrift für Naturforschung - A, 1968 , Volume 23a , Pages 1508-1510.
H2 O
T=300 К
P=1 атм
8. M. Schurgers et al. (1968)
Длина волны (нм)
Сечение поглощения (см²)
Comparison of water vapor cross section data, 175 to 190 nm;
[37]. M. Schurgers and H. Welge. Z. Naturforsch. 23, 1508 (1968).
1969
Москаленко Н.И. , Функции спектрального пропускания в полосах паров Н2О, О3, N2Oи N2 компонент в атмосфере, Известия РАН. Серия Физика атмосферы и океана, 1969 , Volume 5 , Number 11, Pages 1179-1190.
H2 O
T=∅
P=1 атм
4. (Experiment. o=2.5 oc.cm)
Длина волны (мкм)
Коэффициент пропускания (произвольные единицы)
Сравнение расчетных спектров абсолютного пропускания с экспериментом [10] в области 7.5 – 14 мкм. ω = 2.5 ос.см, Рэ = 1 атм.
[10]. Москаленко Н. И. Экспериментальные исследования спектральной прозрачности паров Н2 О, СО2 , СН4 , N2 О, СО в условиях искусственной атмосферы. Изв. АН СССР, Физика атмосферы и океана, 5, № 9, 1969.
1969
Москаленко Н.И. , Экспериментальные исследования спектральной прозрачности паров Н2 О, СО2 , СН4 , N2 O, CO в условиях искусственной атмосферы, Известия РАН. Серия Физика атмосферы и океана, 1969 , Volume 5 , Number 9, Pages 962-966.
H2 O
T=∅
P=∅
1b. (o=2.5 oc.cm)
Длина волны (мкм)
Коэффициент пропускания (произвольные единицы)
Экспериментальные спектры пропускания паров Н2 О в области 7.5—14 мкм. Рэ = 1 атм, ω= 2.5 ос.см; Δ - 6 см-1
1969
Москаленко Н.И. , Функции спектрального пропускания в полосах паров Н2О, О3, N2Oи N2 компонент в атмосфере, Известия РАН. Серия Физика атмосферы и океана, 1969 , Volume 5 , Number 11, Pages 1179-1190.
H2 O
T=∅
P=1 атм
4. Experiment. o=10 oc.cm. Moskalenko N.I. (1969)
Длина волны (мкм)
Коэффициент пропускания (произвольные единицы)
Сравнение расчетных спектров абсолютного пропускания с экспериментом [10] в области 7.5 – 14 мкм; ω =10 ос.см, Рэ = 1 атм.
[10]. Москаленко Н. И. Экспериментальные исследования спектральной прозрачности паров Н2 О, СО2 , СН4 , N2 О, СО В условиях искусственной атмосферы. Изв. АН СССР, Физика атмосферы и океана, 5, № 9, 1969.
1969
Москаленко Н.И. , Экспериментальные исследования спектральной прозрачности паров Н2 О, СО2 , СН4 , N2 O, CO в условиях искусственной атмосферы, Известия РАН. Серия Физика атмосферы и океана, 1969 , Volume 5 , Number 9, Pages 962-966.
H2 O
T=∅
P=1 атм
1b. (o=10 oc.cm)
Длина волны (мкм)
Коэффициент пропускания (произвольные единицы)
Экспериментальные спектры пропускания паров Н2 О в области 7,5—14 мкм. Рэ = 1 атм, ω = 10 ос.см; Δ - 6 см-1 .
1972
Дианов-Клоков В.И., Юрганов Л.Н. , О зависимости диффузионного ослабления в окне прозрачности 8-13 мкм от влажности, Известия РАН. Серия Физика атмосферы и океана, 1972 , Volume 8 , Number 3, Pages 327-332.
H2 O
T=∅
P=∅
1. Yurganov L.P., et al. (1972)
Волновое число (см⁻¹)
Коэффициент поглощения (г⁻¹см²)
Спектральная зависимость коэффициента поглощения kν (г-1 см2 ).
[3]. Юрганов Л.П., Дианов-Клоков В.И. О зависимости диффузного ослабления в окне прозрачности 8—13 мкм от влажности. Изв. АН СССР. Физика атмосферы и океана, 8, №3, 1972.
1972
Дианов-Клоков В.И., Юрганов Л.Н. , О зависимости диффузионного ослабления в окне прозрачности 8-13 мкм от влажности, Известия РАН. Серия Физика атмосферы и океана, 1972 , Volume 8 , Number 3, Pages 327-332.
H2 O
T=∅
P=∅
1. Yurganov L.P., et al. (1972)
Волновое число (см⁻¹)
Коэффициент поглощения (г⁻¹см²)
Спектральная зависимость коэффициента поглощения kν (г-1 см2 ).
[3]. Юрганов Л.П., Дианов-Клоков В.И. О зависимости диффузного ослабления в окне прозрачности 8—13 мкм от влажности. Изв. АН СССР. Физика атмосферы и океана, 8, №3, 1972.
1972
Рядов В.Я., Фурашов Н.И.1 , Исследование спектра поглощения радиоволн атмосферным водяным паром в диапазоне 1.15 - 1.5 мм, Известия ВУЗов, Радиофизика, 1972 , Volume 15 , Number 10, Pages 1469-1474.
H2 O
T=293 К
P=0.986842 атм
2. Cohn, M., et al. (1963) (293K, 7.5 cm⁻¹)
Волновое число (см⁻¹)
Коэффициент поглощения (дБ/км)
[7]. M. Cohn ; F.L. Wentworth ; J.C. Wiltse High-sensitivity 100- to 300-Gc radiometers, Proceedings of the IEEE, Year: 1963 , Volume: 51 , Issue: 9, Pages: 1227 - 1232.
1963
M. Cohn ; F.L. Wentworth ; J.C. Wiltse , High-sensitivity 100- to 300-Gc radiometers, Proceedings of the IEEE, 1963 , Volume 51 , Issue 9, Pages 1227 - 1232.
1972
Рядов В.Я., Фурашов Н.И.1 , Исследование спектра поглощения радиоволн атмосферным водяным паром в диапазоне 1.15 - 1.5 мм, Известия ВУЗов, Радиофизика, 1972 , Volume 15 , Number 10, Pages 1469-1474.
H2 O
T=293 К
P=0.986842 атм
2. Ryadov, V. Y., et al. (1966) (293K, 8.6-8.9 cm⁻¹)
Волновое число (см⁻¹)
Коэффициент поглощения (дБ/км)
[10]. Ryadov, V. Y., and Furashov, N.I., Measurement of the atmospheric absorptionof radio waves in the range 0.76 - 1.15 mm, Izvestia VUZ Radiofisika, 1966, v. 9, No.5. p. 504-507 (Rus p.859-866) DOI: 10.1007/BF01041701.
1966
Ryadov, V. Y., Furashov, N.I., , Measurement of the atmospheric absorption of radio waves in the range 0.76–1.15 mm, Izvestia VUZ Radiofisika, 1966 , Volume 9 , Number 5, Pages 504-507.
H2 O
T=293 К
P=∅
4. Measurements by the varying humidity
Волновое число (см⁻¹)
Коэффициент поглощения (дБ/км)
The absorption coefficient of atmospheric water vapor reduced to a standard humidity of p = 7.5 g/m3 (p = 760 mm Hg, T = 293°K). The circles denote results of measurements by the varying humidity.
1974
Tomasi C., Guzzi R., Vittori O. , A search for the e-effect in the atmospheric water vapor continuum, Journal of the Atmospheric Sciences, 1974 , Volume 31 , Number 1, Pages 255-260.
H2 O
T=∅
P=∅
2. Kondratyev, K.Ya., (1965)
Длина волны (мкм)
Коэффициент поглощения (мм⁻¹)
Slopes c(λ) [mm STP]-1 as a function of wavelength for two extreme classes of atmosphere (A and E). The data from Kondrat’yev et al. (1965) is shown.
Kondrat'yev, K.Ya., Badinov I.Ya., Ashchulov S.V. and Andreev S.D., 1965; Some results of surface measurements of the infrared absorption and thermal radiation spectra of atmosphere. Izv. Atmos. Oceanic Phys. 1, 215-222.
1965
Кондратьев К.Я., Бадинов И.Я., Ащеулов С.В., Андреев С.Д. , Некоторые результаты наземных исследований инфракрасного спектра поглощения и теплового излучения атмосферы, Известия РАН. Серия Физика атмосферы и океана, 1965 , Volume 1 , Number 4, Pages 363-376.
1976
Kelly P.L., McClatchy, Long R.L., Snelson A. , Molecular absorption of infrared radiation in natural atmosphere, Optical and Quantum Electronics, 1976 , Volume 8 , Pages 117-144.
H2 O
T=294 К
P=0.0187632 атм
3. Burch D.E. et al. (1971) (294K, 14.26Torr, 800-1100 cm⁻¹)
Волновое число (см⁻¹)
Коэффициент поглощения (Км⁻¹)
Comparison of broadband and laser data for the water vapour continuum absorption coefficient versus wavenumber in the 10 μm region. The water vapour pressure is denoted by p.
[42]. D.E. Burch, D. A. Gryvnak and J. O. Pembrook, Investigation of the Absorption of Infrared Radiation by Atmospheric Gases: Water, Nitrogen, Nitrous Oxide, Aeronutronic Report U-4784, AFCRL-71-0124 (1971).
1971
Burch D.E., Gryvnak D.A., Pembrook J.D. , Investigation of the absorption of infrared radiation by atmospheric gases: water, nitrogen, nitrous oxide, Aeronutronic, Rep. U4897, Contract F19628-69-C-0263, Philco-Ford Corp., Unknown, 1971 ,
1/Т (К⁻¹) Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹) Коэффициент поглощения (см²мол⁻¹атм⁻¹)
1976
Kelly P.L., McClatchy, Long R.L., Snelson A. , Molecular absorption of infrared radiation in natural atmosphere, Optical and Quantum Electronics, 1976 , Volume 8 , Pages 117-144.
H2 O
T=300 К
P=0.0259605 атм
3. Burch D.E., et al. (1971) (300K; 19.73 Torr, 800-1100 cm⁻¹)
Волновое число (см⁻¹)
Коэффициент поглощения (Км⁻¹)
1971
Burch D.E., Gryvnak D.A., Pembrook J.D. , Investigation of the absorption of infrared radiation by atmospheric gases: water, nitrogen, nitrous oxide, Aeronutronic, Rep. U4897, Contract F19628-69-C-0263, Philco-Ford Corp., Unknown, 1971 ,
1/Т (К⁻¹) Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹) Коэффициент поглощения (см²мол⁻¹атм⁻¹)
1976
Robert E. Roberts, John E. A. Selby, and Lucien M. Biberman , Infrared continuum absorption by atmospheric water vapor in the 8–12-µm window, Applied Optics, 1976 , Volume 15 , Issue 9, Pages 2085-2090.
H2 O
T=296 К
P=1 атм
1. D. E. Burch (1971) (296K, 1070-1240 cm⁻¹)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Water vapor continuum absorption coefficient C (v) at T =296°K as a function of frequency v and wavelength in the 8-12-µm region; original Burch data.
[7]. D. E. Burch, Investigation of the Absorption of Infrared Radiation by Atmospheric Gases, Semiannual Technical Report, Aeronutronic Division, Philco Ford Corporation, Aeronutronic Report U-4784 (31 January 1971).
1971
Burch D.E., Gryvnak D.A., Pembrook J.D. , Investigation of the absorption of infrared radiation by atmospheric gases: water, nitrogen, nitrous oxide, Aeronutronic, Rep. U4897, Contract F19628-69-C-0263, Philco-Ford Corp., Unknown, 1971 ,
1/Т (К⁻¹) Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹) Коэффициент поглощения (см²мол⁻¹атм⁻¹)
1976
Robert E. Roberts, John E. A. Selby, and Lucien M. Biberman , Infrared continuum absorption by atmospheric water vapor in the 8–12-µm window, Applied Optics, 1976 , Volume 15 , Issue 9, Pages 2085-2090.
H2 O
T=296 К
P=∅
2. Recent data of Burch D.E. (1974, 1975) (296K, 300-1200 cm⁻¹)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Water vapor continuum absorption coefficient Co (v) at T=296°K as a function of frequency v and wavelength λ in the 8-30 μm region; most recent data of Burch 21,24 (●)
[21]. The most recent unpublished data from Burch's laboratory on the H2 O continuum in the 8-12-µm region have been made available to us by D. Gryvnak, private communication (November 1975).
[24]. D. E. Burch, D. A. Gryvnak, and F. J. Gates, "Continuum Absorption by H2 O Between 330 and 825 cm-1 ," Final Report for Period 16 October 1973-30 September 1974, Aeronutronic Division, Philco Ford Corporation, AFCRL-TR-74-0377 (September 1974).
1974
Burch D.E., Gryvnak D.A., Gates F.J. , Continuum absorption by H2 O between 330 and 825 cm-1 , Final Report for Period 16 October 1973-30 September 1974, Aeronutronic Division, Philco Ford Corporation, AFCRL-TR-74-0377, Unknown, 1974 ,
H2 O
T=296 К
P=∅
1. Tabular original continuum coefficient e C⁰s (296K, 300-850 cm⁻¹)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
H2 O continuum coefficient for self-broadening (molec-1 cm2 atm-1 )
1976
Творогов С.Д., Несмелова Л.И. , Радиационные процессы в крыльях полос атмосферных газов., Известия РАН. Серия Физика атмосферы и океана, 1976 , Volume 12 , Number 6, Pages 627 – 633.
H2 O
T=300 К
P=∅
2. K. J. Bignell (1970)
Волновое число (см⁻¹)
Коэффициент поглощения (г⁻¹см²атм⁻¹)
Коэффициент поглощения Н2 О при самоуширении. Экспериментальные данные:
[8]. K. J. Bignell, The water-vapour infra-red continuum, Quarterly Journal of the Royal Meteorological Society, Volume 96 Issue 409, Pages 390 - 403 1970, DOI: 10.1002/qj.49709640904
1970
K. J. Bignell , The water-vapour infra-red continuum, Quarterly Journal of Royal Meteorological Society, 1970 , Volume 96 , Issue 409, Pages 390 - 403.
H2 O
T=300 К
P=0.0148038 атм
4. Present work
Волновое число (см⁻¹)
Коэффициент поглощения (г⁻¹см²)
Approximate surface temperatures and vapour pressures are shown on the diagram (T=-27°C, P=15 mb).
1976
Творогов С.Д., Несмелова Л.И. , Радиационные процессы в крыльях полос атмосферных газов., Известия РАН. Серия Физика атмосферы и океана, 1976 , Volume 12 , Number 6, Pages 627 – 633.
H2 O
T=500 К
P=∅
4. Varanasi P., et al. (1968) (500K, 600-1000 cm⁻¹)
Волновое число (см⁻¹)
Коэффициент поглощения (см⁻¹атм⁻¹)
Коэффициент поглощения Н2 О при самоуширении, Θ=500o K; 1 – экспериментальные результаты [14].
[14]. Varanasi P., Chou S., Penner S.S., Absorption coefficients for water vapor in the 600-1000 cm-1 region, JQSRT 8, 1537-1541 (1968)
1968
Varanasi P., Chou S., Penner S.S. , Absorption coefficients for water vapor in the 600-1000 cm-1 region, Journal of Quantitative Spectroscopy and Radiative Transfer, 1968 , Volume 8 , Pages 1537-1541.
H2 O
T=500 К
P=2 атм
2. Water absorption coefficient (500K, 600-1000 cm⁻¹)
Волновое число (см⁻¹)
Коэффициент поглощения (см⁻¹атм⁻¹)
Experimental results showing Pω (in cm-1 atm-1 ) at a pressure of 2 atm and at temperatures of 500°K.
1976
Творогов С.Д., Несмелова Л.И. , Радиационные процессы в крыльях полос атмосферных газов., Известия РАН. Серия Физика атмосферы и океана, 1976 , Volume 12 , Number 6, Pages 627 – 633.
H2 O
T=∅
P=∅
5. Ludwig C.B., et al. (1965)
Волновое число (см⁻¹)
Константа равновесия (0-1)
Излучательная способность водяного пара: экспериментальные результаты [15].
[15]. Ludwig C.B., Ferriso C.С., Malkmus W., Boynton T.P., High-temperature spectra of the pure-rotational band of H2 O, Journal of Quantitative Spectroscopy and Radiative Transfer, 1965. V.5. No.5, 697-714
1965
C.B. Ludwig, C.C. Ferriso, W. Malkmus, F.P. Boynton , High-temperature spectra of the pure rotational band of H2 O, Journal of Quantitative Spectroscopy and Radiative Transfer, 1965 , Volume 5 , Issue 5, Pages 697-714.
H2 O
T=555 К
P=1 атм
16. (Thick gas) calculation (a=0.0281)
Волновое число (см⁻¹)
Константа равновесия (0-1)
The dashed lines represent “thick gas” calculation, with a = 0.281 (upper).
1977
E. Phillips, L.C. Lee, and D.L. Judge , Absolute photoabsorption cross sections for H2 O and D2 O from λ = 180–790 Å , Journal of Quantitative Spectroscopy and Radiative Transfer, 1977 , Volume 18 , Issue 3, Pages 309-313.
H2 O
T=298 К
P=1 атм
1. D.H. Katayama et al. (1973), N. Wainfan, et al. (1955)
Длина волны (А)
Сечение фотоионизации (Мбарн)
The absorption cross section of H2 O. The data of KATAYAMA et al., De Reilhac and Damany, and Wainfan et al. are shown for comparison.
N. Wainfan, W.C. Walker, and G.L. Weissler, Photoionization efficiencies and cross sections in O2 , N2 , CO2 , A, H2 O, H2 , and CH4, Phys. Rev. 99(2), 542-549 (1955) http://link.aps.org/doi/10.1103/PhysRev.99.542, DOI:10.1103/PhysRev.99.542.
[1]. D.H. Katayama, R.E. Huffman, and C.L O'Bryan, Absorption and photoionization cross sections for H2 O and D2 O in the vacuum ultraviolet", J. Chem. Phys. 59(8) , 4309-4319 (1973) http://dx.doi.org/10.1063/1.1680627.
1955
N. Wainfan, W.C. Walker, and G.L. Weissler , Photoionization efficiencies and cross sections in O2 , N2 , CO2 , A, H2 O, H2 , and CH4, Physical Review, 1955 , Volume 99 , Issue 2, Pages 542-549.
H2 O
T=300 К
P=1 атм
11
Длина волны (А)
Сечение фотоионизации (Мбарн)
Photoionization cross sections of H20. Δ Data taken with 1.5-cm ion chambers, and 10A resolution. The first ionization limit at 985 ±5 A is indicated on the wavelength axis by an arrow.
1977
E. Phillips, L.C. Lee, and D.L. Judge , Absolute photoabsorption cross sections for H2 O and D2 O from λ = 180–790 Å , Journal of Quantitative Spectroscopy and Radiative Transfer, 1977 , Volume 18 , Issue 3, Pages 309-313.
H2 O
T=298 К
P=1 атм
1. D.H.Katayama et al. (1973), N. Wainfan, et al. (1955)
Длина волны (А)
Сечение фотоионизации (Мбарн)
The absorption cross section of H2 O. The data of KATAYAMA et al., De Reilhac and Damany, and Wainfan et al. are shown for comparison.
N. Wainfan, W.C. Walker, and G.L. Weissler, Photoionization efficiencies and cross sections in O2 , N2 , CO2 , A, H2 O, H2 , and CH4, Phys. Rev. 99(2), 542-549 (1955) http://link.aps.org/doi/10.1103/PhysRev.99.542
DOI:10.1103/PhysRev.99.542
D.H. Katayama, R.E. Huffman, and C.L O'Bryan, Absorption and photoionization cross sections for H2 O and D2 O in the vacuum ultraviolet, J. Chem. Phys. 59(8) , 4309-4319 (1973) http://dx.doi.org/10.1063/1.1680627
1955
N. Wainfan, W.C. Walker, and G.L. Weissler , Photoionization efficiencies and cross sections in O2 , N2 , CO2 , A, H2 O, H2 , and CH4, Physical Review, 1955 , Volume 99 , Issue 2, Pages 542-549.
H2 O
T=300 К
P=1 атм
11
Длина волны (А)
Сечение фотоионизации (Мбарн)
Photoionization cross sections of H20. Δ Data taken with 1.5-cm ion chambers, and 10A resolution. The first ionization limit at 985 ±5 A is indicated on the wavelength axis by an arrow.
1977
E. Phillips, L.C. Lee, and D.L. Judge , Absolute photoabsorption cross sections for H2 O and D2 O from λ = 180–790 Å , Journal of Quantitative Spectroscopy and Radiative Transfer, 1977 , Volume 18 , Issue 3, Pages 309-313.
H2 O
T=298 К
P=1 атм
1. L. De Reilhac et al. (1970)
Длина волны (А)
Сечение фотоионизации (Мбарн)
L. de Reilhac, N. Damany, Spectres d'absorption de H2 O, NH3 et CH4 dans l'ultraviolet extrême (100–500 Å), Spectrochimica Acta 26A, 801 (1970), https://doi.org/10.1016/0584-8539(70)80276-8
1970
L. de Reilhac and N. Damany , Spectres d'absorption de H2 O, NH3 et CH4 dans l'ultraviolet extrême (100-500 Å), Spectrochimica Acta, 1970 , Volume 26A , Pages 801-810.
Волновое число (см⁻¹) Длина волны (нм)
Коэффициент поглощения (см⁻¹) Сечение поглощения (см⁻²)
1977
Coffey M.T. , Water vapour absorption in the 10-12 micron atmospheric window, Quarterly Journal of Royal Meteorological Society, 1977 , Volume 103 , Issue 438, Pages 685-692.
H2 O
T=∅
P=∅
1. Anthony, R. (1952)
Волновое число (см⁻¹)
Коэффициент поглощения (г⁻¹см²атм⁻¹)
Anthony, R. 1952, Atmospheric absorption of solar infrared radiation, Phys.Rev., 85, 674.
1952
Anthony, Romuald , Atmospheric absorption of solar infrared radiation, Physical Review, 1952 , Volume 85 , Number 4, Pages 674.
Волновое число (см⁻¹)
Оптическая глубина
1977
Coffey M.T. , Water vapour absorption in the 10-12 micron atmospheric window, Quarterly Journal of Royal Meteorological Society, 1977 , Volume 103 , Issue 438, Pages 685-692.
H2 O
T=∅
P=∅
1. Bignell, K. J. (1970)
Волновое число (см⁻¹)
Коэффициент поглощения (г⁻¹см²атм⁻¹)
Bignell, K. J. 1970, The water vapour infrared continuum, Quart. J. R. Met.Soc., 96, 390-403.
1970
K. J. Bignell , The water-vapour infra-red continuum, Quarterly Journal of Royal Meteorological Society, 1970 , Volume 96 , Issue 409, Pages 390 - 403.
Волновое число (см⁻¹) Волновое число (см⁻¹)
Коэффициент поглощения (г⁻¹см²) Коэффициент поглощения (см⁻¹атм⁻¹)
1977
Coffey M.T. , Water vapour absorption in the 10-12 micron atmospheric window, Quarterly Journal of Royal Meteorological Society, 1977 , Volume 103 , Issue 438, Pages 685-692.
H2 O
T=∅
P=∅
1. Burch, D.E. (1970)
Волновое число (см⁻¹)
Коэффициент поглощения (г⁻¹см²атм⁻¹)
Burch, D.E. 1970, Investigation of the absorption of infrared radiation by atmosphere gases, Publication U-4784, Philco-Ford Corporation Aeronutronic Division.
1970
Burch D.E. , Investigation of the absorption of infrared radiation by atmospheric gases, Semi-annual Technical report. Air Force Cambridge Research Lab., Publ. U-4784, Unknown, 1970 ,
1977
L. de Reilhac, N. Damany , Photoabsorption cross-section measurements of some gases, from 10 to 50 nm, Journal of Quantitative Spectroscopy and Radiative Transfer, 1977 , Volume 18 , Issue 1, Pages 121-131.
H2 O
T=300 К
P=1 атм
9. N. Wainfan, et al. (1955)
Энергия возбуждения (эВ)
Сечение фотоионизации (Мбарн)
H2O photoabsorption cross sections. This work and Wainfan. N. WAINFAN, W. C. WALKER and G. L. WEISSLER, Phys. Rev. 99, 542 (1955).
1955
N. Wainfan, W.C. Walker, and G.L. Weissler , Photoionization efficiencies and cross sections in O2 , N2 , CO2 , A, H2 O, H2 , and CH4, Physical Review, 1955 , Volume 99 , Issue 2, Pages 542-549.
Длина волны (А) Длина волны (нм)
Сечение фотоионизации (Мбарн)Сечение поглощения (см⁻²)
1978
G. Paul Montgomery, Jr. , Temperature dependence of infrared absorption by the water vapor continuum near 1200 cm-1 , Applied Optics, 1978 , Volume 17 , Issue 15, Pages 2299-2303.
H2 O
T=∅
P=∅
3. Burch D.E. (1970) (280-400K, 1203 cm⁻¹)
Температура (К)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
[1]. D. E. Burch, Investigation of the Absorption of Infrared Radiation by Atmospheric Gases, Semiannual Technical Report, Aeronutronic Division of Philco-Ford Corporation, Aeronutronic Report U-4784 (31 January 1970).
1970
Burch D.E. , Investigation of the absorption of infrared radiation by atmospheric gases, Semi-annual Technical report. Air Force Cambridge Research Lab., Publ. U-4784, Unknown, 1970 ,
1978
G. Paul Montgomery, Jr. , Temperature dependence of infrared absorption by the water vapor continuum near 1200 cm-1 , Applied Optics, 1978 , Volume 17 , Issue 15, Pages 2299-2303.
H2 O
T=∅
P=∅
3. D.E. Burch, et al. (1974) (296K, 1203 cm⁻¹)
Температура (К)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Birch citated in [5].
[5]. R. E. Roberts, J. E. A. Selby, and L. M. Biberman, Appl. Opt. 15, 2085 (1976).
[24]. D. E. Burch, D. A. Gryvnak, and F. J. Gates, "Continuum Absorption by H2 O Between 330 and 825 cm-1 ," Final Report for Period 16 October 1973-30 September 1974, Aeronutronic Division, Philco Ford Corporation, AFCRL-TR-74-0377 (September 1974).
1974
Burch D.E., Gryvnak D.A., Gates F.J. , Continuum absorption by H2 O between 330 and 825 cm-1 , Final Report for Period 16 October 1973-30 September 1974, Aeronutronic Division, Philco Ford Corporation, AFCRL-TR-74-0377, Unknown, 1974 ,
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
1978
G. Paul Montgomery, Jr. , Temperature dependence of infrared absorption by the water vapor continuum near 1200 cm-1 , Applied Optics, 1978 , Volume 17 , Issue 15, Pages 2299-2303.
H2 O
T=∅
P=∅
3. R.E. Roberts, et al. (1976) (300-500K, 1200 cm⁻¹)
Температура (К)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
[5]. R.E. Roberts, J. E. A. Selby, and L. M. Biberman, Appl. Opt. 15, 2085 (1976).
1976
Robert E. Roberts, John E. A. Selby, and Lucien M. Biberman , Infrared continuum absorption by atmospheric water vapor in the 8–12-µm window, Applied Optics, 1976 , Volume 15 , Issue 9, Pages 2085-2090.
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
1978
Schnell W., Fischer G. , Spectrophone measurements of isotopes of water vapor and nitric oxide and phosgene at selected wavelengths in the CO and CO2 laser region, Optics Letters, 1978 , Volume 2 , Number 3, Pages 67-69.
H2 O
T=296 К
P=0.486842 атм
2. R. T. Menzies, et al. (1976). Pt =760 Torr
Длина волны (мкм)
Коэффициент поглощения (см⁻¹атм⁻¹)
H2 16 O Absorption Coefficients [a(atm-1 cm- 1 )] in the CO and CO2 Laser Regions at a Partial Pressure of 6 Torr, at Total Pressures Pt of 360 and 760 Torr, and at 296°±3°K
[1] R. T. Menzies and M. S. Shumate, "Optoacoustic measurements of water vapor absorption at selected CO laser wavelengths in the 5 mm region," Appl. Opt. 15,2025-2027 (1976).
1976
Menzies R.T., Shumate M.S. , Optoacoustic measurements of water vapor absorption at selected CO laser wavelengths in the 5 μm region, Applied Optics, 1976 , Volume 15 , Number 9, Pages 2025-2027.
Волновое число (см⁻¹)
Коэффициент поглощения (Км⁻¹)
1978
White K.O., Watkins W.R., Bruce C.W., Meredith R.E., Smith F.G , Water vapor continuum absorption in the 3.5 – 4.0 μm region, Applied Optics, 1978 , Volume 17 , Number 17, Pages 2711-2720.
H2 O
T=296 К
P=760 атм
5. Burch extrapolation
Волновое число (см⁻¹)
Коэффициент поглощения (Км⁻¹)
Comparison of measured water continuum at 23C with 14.3-Torr water vapor buffered to 760 Torr.
D. E. Burch, D. A. Gryvnak, and J. D. Pembrook, "Investigation of the Absorption of Infrared Radiation by Atmospheric Gases: Water, Nitrogen, Nitrous Oxide," AFCRL-71-0124 (1971)
1971
Burch D.E., Gryvnak D.A., Pembrook J.D. , Investigation of the absorption of infrared radiation by atmospheric gases: water, nitrogen, nitrous oxide, Aeronutronic, Rep. U4897, Contract F19628-69-C-0263, Philco-Ford Corp., Unknown, 1971 ,
1/Т (К⁻¹) Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹) Коэффициент поглощения (см²мол⁻¹атм⁻¹)
1978
Дианов-Клоков В.И., Иванов В.М. , Об ослаблении радиации 8-13 мкм водяным паром атмосферы при различных метеоусловиях, Известия РАН. Серия Физика атмосферы и океана, 1978 , Volume 14 , Number 8, Pages 847-854.
H2 O
T=∅
P=∅
5. Adel A., et al. (1958)
Длина волны (мкм)
Поглощение (произвольные единицы)
Значение коэффициентов поглощения, полученных разными авторами в диапазоне 8 – 13 мкм.
Adel A. Atmospheric absorption of infrared solar radiation at Lowell observatory. Astrophys. J., 89. no.1, 1939
1939
Adel, A. , Atmospheric absorption of infrared solar radiation at the Lowell Observatory I, The Astrophysical Journal, 1939 , Volume 89 , Pages 1.
Волновое число (см⁻¹)
Оптическая глубина
1978
Дианов-Клоков В.И., Иванов В.М. , Об ослаблении радиации 8-13 мкм водяным паром атмосферы при различных метеоусловиях, Известия РАН. Серия Физика атмосферы и океана, 1978 , Volume 14 , Number 8, Pages 847-854.
H2 O
T=∅
P=∅
5. Adiks T.G. et al. (1975)
Длина волны (мкм)
Поглощение (произвольные единицы)
Значение коэффициентов поглощения, полученных разными авторами в диапазоне 8 – 13 мкм.
7. Адикс Т.Г., Дианов-Клоков В.И., Иванов В.М., Семенов А.И., О континуальном ослаблении в окне 8-13 мкм в условиях высокой прозрачности атмосферы. Изв. АН СССР, ФАО, 11, №7, 1975.
1975
Адикс Т.Г., Дианов-Клоков В.И., Иванов В.М., Семенов А.И. , О континуальном ослаблении в окне 8-13 мкм в условиях высокой прозрачности, Известия РАН. Серия Физика атмосферы и океана, 1975 , Volume 11 , Number 7,
1979
Tomasi C. , Non-selective absorption by atmospheric water vapour at visible and near infrared wavelengths, Quarterly Journal of Royal Meteorological Society, 1979 , Volume 105 , Number 446, Pages 1027–1040.
H2 O
T=∅
P=∅
3. Tomasi, C. and Guzzi, R. (1974)
Длина волны (мкм)
Коэффициент поглощения (г⁻¹см²)
Tomasi, C. and Guzzi, R. High precision atmospheric hygrometry using the solar infrared spectrum, J. Phys. E: Scientific Instruments, 7, 647-649. 1974
1974
Tomasi C., Guzzi R., Vittori O. , A search for the e-effect in the atmospheric water vapor continuum, Journal of the Atmospheric Sciences, 1974 , Volume 31 , Number 1, Pages 255-260.
Длина волны (мкм)
Коэффициент поглощения (мм⁻¹)
1979
Tomasi C. , Non-selective absorption by atmospheric water vapour at visible and near infrared wavelengths, Quarterly Journal of Royal Meteorological Society, 1979 , Volume 105 , Number 446, Pages 1027–1040.
H2 O
T=∅
P=∅
4. Tomasi, C. and Guzzi, R. (1974)
Длина волны (мкм)
Коэффициент поглощения (г⁻¹см²бар⁻¹)
Tomasi, C. and Guzzi, R. High precision atmospheric hygrometry using the solar infrared spectrum, J. Phys. E: Scientific Instruments, 7, 647-649. 1974.
1974
Tomasi C., Guzzi R., Vittori O. , A search for the e-effect in the atmospheric water vapor continuum, Journal of the Atmospheric Sciences, 1974 , Volume 31 , Number 1, Pages 255-260.
Длина волны (мкм)
Коэффициент поглощения (мм⁻¹)
1979
Watkins, Wendell R., White, Kenneth O., Bower, Lanny R., Sojka, Brian Z. , PRESSURE DEPENDENCE OF THE WATER VAPOR CONTINUUM ABSORPTION IN THE 3.5-4.0- μM REGION, Applied Optics, 1979 , Volume 18 , Issue 8, Pages 1149-1160.
H2 O
T=298 К
P=1 атм
3. D. E. Burch, et al. (1975)
Волновое число (см⁻¹)
Коэффициент поглощения (Км⁻¹)
Comparison of measured water vapor continuum at 25°C to Burch extrapolation for 14.3-Torr water vapor with no air-broadening.
D. E. Burch, D. A. Gryvnak, and J. D. Pembrook, "Investigation of the Absorption of Infrared Radiation by Atmospheric Gases: Water, Nitrogen, Nitrous Oxide," AFCRL-71-0124, Hanscom AFB, Mass. (1975).
1975
D. E. Burch, D. A. Gryvnak, and J. D. Pembrook , Infrared absorption by H2 O, NO2 and N2 O4 , Unknown, 1975 ,
1979
Zavody A.M., Emery R.J., Gebbie H.A. , Temperature dependence of atmospheric absorption in the wavelength range 8-14 um, Nature, 1979 , Volume 277 , Pages 462-463.
H2 O
T=∅
P=∅
1a. Coffey, M.T. (1977) Curve L-L. (8-14 mkm)
Длина волны (мкм)
Коэффициент поглощения (эВ на молекулу)
Curve L-L’ is the corresponding laboratory temperature dependence. The values given by P and Q are taken from ref.1, and apply to the temperature range 258° to 299°K.
[1]. Coffey M.T., Water vapour absorption in the 10-12 micron atmospheric window, Quart. J. Roy. Met. Soc. 1977. V.103. Issue 438, P.685-692 DOI: 10.1002/qj.49710343811
1977
Coffey M.T. , Water vapour absorption in the 10-12 micron atmospheric window, Quarterly Journal of Royal Meteorological Society, 1977 , Volume 103 , Issue 438, Pages 685-692.
Волновое число (см⁻¹)
Коэффициент поглощения (г⁻¹см²атм⁻¹)
1980
Burch D.E., Gryvnak D.A. , Continuum absorption by H2 O vapor in the infrared and millimeter regions., Atmospheric water vapor, Editor(s) Deepak A., Wilkerson T.D., Ruhnke L.H., Academic Press, 1980 , Pages 47-76.
H2 O
T=∅
P=∅
10. Burch, D.E. (1968) (13-35 cm⁻¹)
Волновое число (см⁻¹)
Ослабление (дБ/км)
Spectral plots of the near-millimeter attenuation by atmospheric H2 O at sea level. H2 O density = 5.9 gm/m3 . The data points represent experimental data by: Burch [33].
[33] Burch, D. E., J. Opt. Soc. Am. 58, 1383 (1968).
1968
Burch D.E. , Absorption of infrared radiant energy by CO2 and H2 O. III. Absorption by H2 O between 0.5-36 cm-1 (278-2 cm)., Journal of Optical Society of America, 1968 , Volume 58 , Number 10, Pages 1383-1394.
Волновое число (см⁻¹) Волновое число (см⁻¹)
Коэффициент поглощения (г⁻¹см²) Коэффициент пропускания (произвольные единицы)
1980
Burch D.E., Gryvnak D.A. , Continuum absorption by H2 O vapor in the infrared and millimeter regions., Atmospheric water vapor, Editor(s) Deepak A., Wilkerson T.D., Ruhnke L.H., Academic Press, 1980 , Pages 47-76.
H2 O
T=∅
P=∅
10. Dryagin, Yu. A., et al. (1966) (3-7 cm⁻¹)
Волновое число (см⁻¹)
Ослабление (дБ/км)
Spectral plots of the near- millimeter attenuation by atmospheric H2 O at sea level. H2 O density = 5.9 gm/m3 . The data points represent experimental data by: Dryagin et al. [25].
[25] Dryagin, Yu. A., Kislyakov, A. G., Kukin, L. M., Naumov, A. I., and Fedosyev, L. E., Isvestya VUZ Radiosphsica, 9, 627 -644 (1966).
1966
Yu. A. Dryagin, A. G. Kislyakov, L. M. Kukin, A. I. Naumov and L. I. Fedoseev , Measurement of the atmospheric absorption of radio waves in the range 1.36–3.0 mm, Radiophysics & Quantum Electronics, 1966 , Volume 9 , Number 6, Pages 624-627.
Волновое число (см⁻¹)
Коэффициент поглощения (дБ/км)
1980
Burch D.E., Gryvnak D.A. , Continuum absorption by H2 O vapor in the infrared and millimeter regions., Atmospheric water vapor, Editor(s) Deepak A., Wilkerson T.D., Ruhnke L.H., Academic Press, 1980 , Pages 47-76.
H2 O
T=∅
P=∅
10. Frenkel, R. L., et al. (1966) (5-10 cm⁻¹)
Волновое число (см⁻¹)
Ослабление (дБ/км)
Spectral plots of the near- millimeter attenuation by atmospheric H2 O at sea level. H2 O density = 5.9 gm/m3 . The data points represent experimental data by: Frenkel and Woods [38].
[38] Frenkel, R. L., and Woods, D., Proc. IEEE, 54, 498 (1966).
1966
Frenkel, L., and Woods, D. , Microwave absorption by H2 O vapor and its mixtures with other gases between 100 and 300 Gc/s., Proc. IEEE, 1966, v. 54, Institute of Electrical and Electronics Engineers, 1966 , Pages 498-505.
Частота (ГГц)
Коэффициент поглощения (дБ/км)
1980
Burch D.E., Gryvnak D.A. , Continuum absorption by H2 O vapor in the infrared and millimeter regions., Atmospheric water vapor, Editor(s) Deepak A., Wilkerson T.D., Ruhnke L.H., Academic Press, 1980 , Pages 47-76.
H2 O
T=∅
P=∅
10. Ryadov, Ya.V., et al. (1972) (6-14 cm⁻¹)
Волновое число (см⁻¹)
Ослабление (дБ/км)
Spectral plots of the near- millimeter attenuation by atmospheric H2 O at sea level. H2 O density = 5.9 gm/m3 . The data points represent experimental data by: Ryadov and Furashov [42].
[42] Ryadov, Ya. V., and Furashov, R. I., Radio Phys. and Quantum Electronics, 15, 1124 -1128 (1972).
1972
Рядов В.Я., Фурашов Н.И.1 , Исследование спектра поглощения радиоволн атмосферным водяным паром в диапазоне 1.15 - 1.5 мм, Известия ВУЗов, Радиофизика, 1972 , Volume 15 , Number 10, Pages 1469-1474.
Волновое число (см⁻¹)
Коэффициент поглощения (дБ/км)
1980
Burch D.E., Gryvnak D.A. , Continuum absorption by H2 O vapor in the infrared and millimeter regions., Atmospheric water vapor, Editor(s) Deepak A., Wilkerson T.D., Ruhnke L.H., Academic Press, 1980 , Pages 47-76.
H2 O
T=∅
P=∅
10. Straiton, A. W., et al. (1960) (0-5 cm⁻¹)
Волновое число (см⁻¹)
Ослабление (дБ/км)
Spectral plots of the near- millimeter attenuation by atmospheric H2 O at sea level. H2 O density = 5.9 gm/m3 . The data points represent experimental data by: Straiton and Tolbert [39].
[39] Straiton, A. W., and Tolbert, C. W., Proc IRE, 48, 898 (1960).
1960
A.W. Straiton, C.W. Tolbert , Anomalies in the absorption of radio waves by atmospheric gases, Proceedings of IRE, 1960 , Volume 48 , Issue 5, Pages 898-903.
H2 O
T=∅
P=∅
5. Present experiment
Частота (ГГц)
Ослабление (дБ/км)
Attenuation adjusted to standard atmosphere. Units “kmcs” are equivalent to GHz.
1980
Tadao Aoki , An accurate representation of the transmission functions of the H2 O and CO2 infrared bands, Journal of Quantitative Spectroscopy and Radiation Transfer, 1980 , Volume 24 , Issue 3, Pages 191-202.
H2 O
T=∅
P=0.0447368 атм
3. Burch D. E., et al. (1972) (1200-2000 cm⁻¹)
Волновое число (см⁻¹)
Пропускание (%)
Comparison of calculated transmittance spectra for the H2 O 6.3- μm band with measured values Ref.18 (solid lines).
[18]. D. E. Burch, D. Gryvnak, E. B. Singleton, W. L. France, and D. Williams, Infrared Absorption by CO2 , H2 O and Minor Atmosoheric Constituents, Ohio State Universitv. Columbus, July (1972).
1972
D. E. Burch, D. Gryvnak, E. B. Singleton, W. L. France, and D. Williams , Infrared Absorption by CO2 , H2 O and Minor Atmospheric Constituents, OSU International Symposium on Molecular Spectroscopy, Unknown, 1972 ,
1980
Tadao Aoki , An accurate representation of the transmission functions of the H2 O and CO2 infrared bands, Journal of Quantitative Spectroscopy and Radiation Transfer, 1980 , Volume 24 , Issue 3, Pages 191-202.
H2 O
T=∅
P=1.05921 атм
3. Burch D.E., et al. (1972) (1200-2000 cm⁻¹)
Волновое число (см⁻¹)
Коэффициент пропускания (произвольные единицы)
Comparison of calculated transmittance spectra for the H2 O 6.3- μm band with measured values Ref.18 (solid lines).
[18]. D. E. Burch, D. Gryvnak, E. B. Singleton, W. L. France, and D. Williams, Infrared Absorption by CO2 , H2 O and Minor Atmosoheric Constituents, Ohio State Universitv. Columbus, July (1972).
1972
D. E. Burch, D. Gryvnak, E. B. Singleton, W. L. France, and D. Williams , Infrared Absorption by CO2 , H2 O and Minor Atmospheric Constituents, OSU International Symposium on Molecular Spectroscopy, Unknown, 1972 ,
1980
Tadao Aoki , An accurate representation of the transmission functions of the H2 O and CO2 infrared bands, Journal of Quantitative Spectroscopy and Radiation Transfer, 1980 , Volume 24 , Issue 3, Pages 191-202.
H2 O
T=∅
P=1.06579 атм
3. Burch D.E., et al. (1972) (1200-2000 cm⁻¹)
Волновое число (см⁻¹)
Коэффициент пропускания (произвольные единицы)
Burch D.E., et al. Comparison of calculated transmittance spectra for the H2 O 6.3-μm band with measured values Ref.18 (solid lines).
[18]. D. E. Burch, D. Gryvnak, E. B. Singleton, W. L. France, and D. Williams, Infrared Absorption by CO2 , H2 O and Minor Atmosoheric Constituents, Ohio State Universitv. Columbus, July (1972).
1972
D. E. Burch, D. Gryvnak, E. B. Singleton, W. L. France, and D. Williams , Infrared Absorption by CO2 , H2 O and Minor Atmospheric Constituents, OSU International Symposium on Molecular Spectroscopy, Unknown, 1972 ,
1980
Tadao Aoki , An accurate representation of the transmission functions of the H2 O and CO2 infrared bands, Journal of Quantitative Spectroscopy and Radiation Transfer, 1980 , Volume 24 , Issue 3, Pages 191-202.
H2 O
T=∅
P=0.138158 атм
3. Burch D.E., et al. (1972) (1200-2000 cm⁻¹)
Волновое число (см⁻¹)
Коэффициент пропускания (произвольные единицы)
Comparison of calculated transmittance spectra for the H2 O 6.3-μm band with measured values Ref.18 (solid lines).
[18]. D. E. Burch, D. Gryvnak, E. B. Singleton, W. L. France, and D. Williams, Infrared Absorption by CO2 , H2 O and Minor Atmosoheric Constituents, Ohio State Universitv. Columbus, July (1972).
1972
D. E. Burch, D. Gryvnak, E. B. Singleton, W. L. France, and D. Williams , Infrared Absorption by CO2 , H2 O and Minor Atmospheric Constituents, OSU International Symposium on Molecular Spectroscopy, Unknown, 1972 ,
1980
Арефьев В. Н. , Ослабление излучения в окне относительной прозрачности атмосферы 8-13 мкм, Метеорология и гидрология, 1980 , Number 1, Pages 97-111.
H2 O
T=300 К
P=∅
1. Arefiev V.N., et al.(1977) (300K, 10-13 cm⁻¹)
Волновое число (см⁻¹)
Коэффициент поглощения (г⁻¹см²атм⁻¹)
[10]. Арефьев В.Н., Дианов-Клоков В.И., Ослабление излучения 10.6 мкм водяным паром и роль (Н2 О)2 димеров. Оптика и спектроскопия 1977. Т.42. №5, с.849-855
1977
Арефьев В.Н., Дианов-Клоков В.И. , Ослабление излучения 10.6 мкм водяным паром и роль (Н2 О)2 димеров, Оптика и спектроскопия, 1977 , Volume 42 , Number 5, Pages 849-855.
Плотность (г/м³)
Коэффициент пропускания (произвольные единицы)
1980
Арефьев В. Н. , Ослабление излучения в окне относительной прозрачности атмосферы 8-13 мкм, Метеорология и гидрология, 1980 , Number 1, Pages 97-111.
H2 O
T=296 К
P=∅
1. Bignell K. J. (1970) (296K, 800-1200 cm⁻¹)
Волновое число (см⁻¹)
Коэффициент поглощения (г⁻¹см²атм⁻¹)
[60]. K. J. Bignell, The water-vapour infra-red continuum, Quarterly Journal of the Royal Meteorological Society, Volume 96 Issue 409, Pages 390 - 403 1970, 10.1002/qj.49709640904.
1970
K. J. Bignell , The water-vapour infra-red continuum, Quarterly Journal of Royal Meteorological Society, 1970 , Volume 96 , Issue 409, Pages 390 - 403.
Волновое число (см⁻¹) Волновое число (см⁻¹)
Коэффициент поглощения (г⁻¹см²) Коэффициент поглощения (см⁻¹атм⁻¹)
1980
Арефьев В. Н. , Ослабление излучения в окне относительной прозрачности атмосферы 8-13 мкм, Метеорология и гидрология, 1980 , Number 1, Pages 97-111.
H2 O
T=303 К
P=∅
1. Bignell K. J. (1970) (303K, 800-1200 cm⁻¹)
Волновое число (см⁻¹)
Коэффициент поглощения (г⁻¹см²атм⁻¹)
[60]. K. J. Bignell, The water-vapour infra-red continuum Quarterly Journal of the Royal Meteorological Society, Volume 96 Issue 409, Pages 390 - 403 1970, 10.1002/qj.49709640904
1970
K. J. Bignell , The water-vapour infra-red continuum, Quarterly Journal of Royal Meteorological Society, 1970 , Volume 96 , Issue 409, Pages 390 - 403.
Волновое число (см⁻¹) Волновое число (см⁻¹)
Коэффициент поглощения (г⁻¹см²) Коэффициент поглощения (см⁻¹атм⁻¹)
1980
Арефьев В. Н. , Ослабление излучения в окне относительной прозрачности атмосферы 8-13 мкм, Метеорология и гидрология, 1980 , Number 1, Pages 97-111.
H2 O
T=296 К
P=∅
1. Burch D.E. (1970) (296K, 700-1200 cm⁻¹)
Волновое число (см⁻¹)
Коэффициент поглощения (г⁻¹см²атм⁻¹)
Данные [62].
Burch D.E., Investigation of the absorption of infrared radiation by atmospheric gases, Semi-annual Technical report. Air Force Cambridge Research Lab., Publ. U-4784 (1970)
1970
Darrell E. Burch; David A. Gryvnak , Atmospheric Attenuation In The Infrared Windows, Proc. SPIE 0019, Space Optics I, SPIE - The international society for optical engineering, 1970 , Pages 17-22.
H2 O
T=296 К
P=1 атм
10. Present experiment (296K, 600-1300 mkm)
Волновое число (см⁻¹)
Коэффициент поглощения (г⁻¹см²)
Plots of self-broadening H2 O absorption coefficient for the continuumbetween 8 and 14 μm. T=296°K.
1980
Арефьев В. Н. , Ослабление излучения в окне относительной прозрачности атмосферы 8-13 мкм, Метеорология и гидрология, 1980 , Number 1, Pages 97-111.
H2 O
T=296 К
P=∅
1. Burch D.E. (1970). Averaged data (296K, 700-1300 cm⁻¹)
Волновое число (см⁻¹)
Коэффициент поглощения (г⁻¹см²атм⁻¹)
Усредненные данные [62]. Burch D.E., Investigation of the absorption of infrared radiation by atmospheric gases, Semi-annual Technical report. Air Force Cambridge Research Lab., Publ. U-4784 (1970)
1970
Burch D.E. , Investigation of the absorption of infrared radiation by atmospheric gases, Semi-annual Technical report. Air Force Cambridge Research Lab., Publ. U-4784, Unknown, 1970 ,
1980
Арефьев В. Н. , Ослабление излучения в окне относительной прозрачности атмосферы 8-13 мкм, Метеорология и гидрология, 1980 , Number 1, Pages 97-111.
H2 O
T=296 К
P=∅
1. Burch D.E. et al. (1974) (296K, 700-1250 cm⁻¹)
Волновое число (см⁻¹)
Коэффициент поглощения (г⁻¹см²атм⁻¹)
Новые данные Burch D.E., приведенные в
[87]. Robert E. Roberts, John E. A. Selby, and Lucien M. Biberman, Infrared continuum absorption by atmospheric water vapor in the 8–12-µm window, Appl. Opt. 15, Issue 9, 2085-2090 (1976) doi:10.1364/AO.15.002085
1974
Burch D.E., Gryvnak D.A., Gates F.J. , Continuum absorption by H2 O between 330 and 825 cm-1 , Final Report for Period 16 October 1973-30 September 1974, Aeronutronic Division, Philco Ford Corporation, AFCRL-TR-74-0377, Unknown, 1974 ,
H2 O
T=296 К
P=∅
1. Tabular original continuum coefficient e C⁰s (296K, 300-850 cm⁻¹)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
H2 O continuum coefficient for self-broadening (molec-1 cm2 atm-1 )
1980
Арефьев В. Н. , Ослабление излучения в окне относительной прозрачности атмосферы 8-13 мкм, Метеорология и гидрология, 1980 , Number 1, Pages 97-111.
H2 O
T=∅
P=∅
3. Burch D.E. (1970) (800-1200 cm⁻¹)
Длина волны (мкм)
Коэффициент поглощения (г⁻¹см²атм⁻¹)
[62]. Burch D.E., Investigation of the absorption of infrared radiation by atmospheric gases, Semi-annual Technical report. Air Force Cambridge Research Lab., Publ. U-4784 (1970)
1970
Burch D.E. , Investigation of the absorption of infrared radiation by atmospheric gases, Semi-annual Technical report. Air Force Cambridge Research Lab., Publ. U-4784, Unknown, 1970 ,
1980
Телегин Г.В., Фомин В.В. , О вкладе селективного и континуального поглощения в микроокнах спектра водяного пара в области 8-12 мкм, Журнал прикладной спектроскопии, 1980 , Volume 33 , Issue 3, Pages 513-516.
H2 O
T=∅
P=∅
1. Fitting of Burch D.E. (1970) data
Волновое число (см⁻¹)
Коэффициент поглощения (г⁻¹см²атм⁻¹)
Сравнение экспериментов [6] (а, Н2 О-Н2 О) и расчетов. Аппроксимация экспериментов (1).
[6] Burch D.E. Investigation of the absorption of infrared radiation by atmospheric gases. Semi-annual Technical report. Air Force Cambridge Research Lab., Publ. U-4784 (1970)
1970
D. E. Burch , Investigation of the Absorption of Infrared Radiation by Atmospheric Gases, Semiannual Technical Report, Aeronutronic Division of Philco-Ford Corporation, Aeronutronic Report U-4784, 1970 ,
1981
Burch D.E. , Continuum absorption by atmospheric H2 O, SPIE Proc. Atmospheric Transmission, V.277, Editor(s) Robert W. Fan, SPIE - The international society for optical engineering, 1981 , Pages 28-39.
H2 O
T=∅
P=∅
10. Burch, D.E. (1968)
Волновое число (см⁻¹)
Ослабление (дБ/км)
Spectral plots of the near- millimeter attenuation by atmospheric H2 O at sea level. H2 O density = 5.9 gm/m3 . The data points represent experimental data by: Burch [19].
[19] Burch D.E., Absorption of infrared radiant energy by CO2 and H2 O. III. Absorption by H2 O between 0.5-36 cm-1 (278-2 cm)., Journal of Optical Society of America, 1968, Volume 58>, no. 10, Pages 1383-1394, DOI: https://doi.org/10.1364/JOSA.58.001383.
1968
Burch D.E. , Absorption of infrared radiant energy by CO2 and H2 O. III. Absorption by H2 O between 0.5-36 cm-1 (278-2 cm)., Journal of Optical Society of America, 1968 , Volume 58 , Number 10, Pages 1383-1394.
Волновое число (см⁻¹) Волновое число (см⁻¹)
Коэффициент поглощения (г⁻¹см²) Коэффициент пропускания (произвольные единицы)
1981
Burch D.E. , Continuum absorption by atmospheric H2 O, SPIE Proc. Atmospheric Transmission, V.277, Editor(s) Robert W. Fan, SPIE - The international society for optical engineering, 1981 , Pages 28-39.
H2 O
T=∅
P=∅
10. Dryagin, Yu. A., et al. (1966)
Волновое число (см⁻¹)
Ослабление (дБ/км)
Spectral plots of the near- millimeter attenuation by atmospheric H2 O at sea level. H2 O density = 5.9 gm/m3 . The data points represent experimental data by: Dryagin et al [25].
[25] Dryagin, Yu. A., Kislyakov, A. G., Kukin, L. M., Naumov, A. I., and Fedosyev, L. E., Isvestya VUZ Radiosphsica, 9, 627 -644 (1966).
1966
Yu. A. Dryagin, A. G. Kislyakov, L. M. Kukin, A. I. Naumov and L. I. Fedoseev , Measurement of the atmospheric absorption of radio waves in the range 1.36–3.0 mm, Radiophysics & Quantum Electronics, 1966 , Volume 9 , Number 6, Pages 624-627.
Волновое число (см⁻¹)
Коэффициент поглощения (дБ/км)
1981
Burch D.E. , Continuum absorption by atmospheric H2 O, SPIE Proc. Atmospheric Transmission, V.277, Editor(s) Robert W. Fan, SPIE - The international society for optical engineering, 1981 , Pages 28-39.
H2 O
T=∅
P=∅
10. Frenkel, R. L., et al. (1966)
Волновое число (см⁻¹)
Ослабление (дБ/км)
Spectral plots of the near- millimeter attenuation by atmospheric H2 O at sea level. H2 O density = 5.9 gm/m3 . The data points represent experimental data by: Frenkel and Woods [38].
[38]
1966
Frenkel, L., and Woods, D. , Microwave absorption by H2 O vapor and its mixtures with other gases between 100 and 300 Gc/s., Proc. IEEE, 1966, v. 54, Institute of Electrical and Electronics Engineers, 1966 , Pages 498-505.
Частота (ГГц)
Коэффициент поглощения (дБ/км)
1981
Burch D.E. , Continuum absorption by atmospheric H2 O, SPIE Proc. Atmospheric Transmission, V.277, Editor(s) Robert W. Fan, SPIE - The international society for optical engineering, 1981 , Pages 28-39.
H2 O
T=∅
P=∅
10. Straiton, A. W., et al. (1960)
Волновое число (см⁻¹)
Ослабление (дБ/км)
Spectral plots of the near- millimeter attenuation by atmospheric H2 O at sea level. H2 O density = 5.9 gm/m3 . The data points represent experimental data by: Straiton and Tolbert [23].
[23] Straiton, A. W., and Tolbert, C. W., Proc IRE, 48, 898 (1960).
1960
A.W. Straiton, C.W. Tolbert , Anomalies in the absorption of radio waves by atmospheric gases, Proceedings of IRE, 1960 , Volume 48 , Issue 5, Pages 898-903.
H2 O
T=∅
P=∅
5. Present experiment
Частота (ГГц)
Ослабление (дБ/км)
Attenuation adjusted to standard atmosphere. Units “kmcs” are equivalent to GHz.
1981
Burch D.E. , Continuum absorption by atmospheric H2 O, SPIE Proc. Atmospheric Transmission, V.277, Editor(s) Robert W. Fan, SPIE - The international society for optical engineering, 1981 , Pages 28-39.
H2 O
T=∅
P=∅
11. Becker, G.E. et al. (1946)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Spectral plot of the empirical continuum for self broadening.
[21]. Becker, G.E., and Autler, S.H., Phys. Rev. 70, 300 (1946).
1946
Becker, G. E., and Autler, S.H. , Water Vapor Absorption of Electromagnetic Radiation in the Centimeter Wave-Length Range, Physical Review, 1946 , Volume 70 , Issue 5, Pages 300-307.
Волновое число (см⁻¹)
Ослабление (дБ/км на г/м³)
1981
Burch D.E. , Continuum absorption by atmospheric H2 O, SPIE Proc. Atmospheric Transmission, V.277, Editor(s) Robert W. Fan, SPIE - The international society for optical engineering, 1981 , Pages 28-39.
H2 O
T=296 К
P=∅
11. Burch, D.E. (1968) (22.5-28.3 cm⁻¹)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Spectral plot of the empirical continuum for self broadening.
[19]. Burch, D.E., J. Opt. Soc. Am. 58, 1383 (1968).
1968
Burch D.E. , Absorption of infrared radiant energy by CO2 and H2 O. III. Absorption by H2 O between 0.5-36 cm-1 (278-2 cm)., Journal of Optical Society of America, 1968 , Volume 58 , Number 10, Pages 1383-1394.
Волновое число (см⁻¹) Волновое число (см⁻¹)
Коэффициент поглощения (г⁻¹см²)Коэффициент пропускания (произвольные единицы)
1981
Burch D.E. , Continuum absorption by atmospheric H2 O, SPIE Proc. Atmospheric Transmission, V.277, Editor(s) Robert W. Fan, SPIE - The international society for optical engineering, 1981 , Pages 28-39.
H2 O
T=∅
P=∅
11. Dryagin, Yu.A., et al. (1966) (4-7.5 cm⁻¹)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Spectral plot of the empirical continuum for self broadening.
[25]. Dryagin, Yu.A., Kislyakov, A.G., Kukin, L.M., Naumov, A.I., and Fedosyev, L.E., Isvestya VUZ Radiosphsica, 9, 627-644 (1966).
1966
Yu. A. Dryagin, A. G. Kislyakov, L. M. Kukin, A. I. Naumov and L. I. Fedoseev , Measurement of the atmospheric absorption of radio waves in the range 1.36–3.0 mm, Radiophysics & Quantum Electronics, 1966 , Volume 9 , Number 6, Pages 624-627.
H2 O
T=300 К
P=1 атм
1. Calculation
Волновое число (см⁻¹)
Коэффициент поглощения (дБ/км)
Поглощение в атмосферных парах воды в диапазоне 1,3—3,3 мм при нормальных атмосферных условиях (температура Т=300о К, давление р= 760 мм рт. ст и абсолютная влажность ρ = 7,5 г м-3 ). Сплошная линия — теоретическая кривая.
1981
Burch D.E. , Continuum absorption by atmospheric H2 O, SPIE Proc. Atmospheric Transmission, V.277, Editor(s) Robert W. Fan, SPIE - The international society for optical engineering, 1981 , Pages 28-39.
H2 O
T=∅
P=∅
11. Straiton, A.W., et al. (1960) (2cm⁻¹)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Spectral plot of the empirical continuum for self broadening.
[23]. C.W. Tolbert, Anomalies in the absorption of radio waves by atmospheric gases, Proceedings of IRE, 1960, Volume 48, Issue 5, Pages 898-903.
1960
A.W. Straiton, C.W. Tolbert , Anomalies in the absorption of radio waves by atmospheric gases, Proceedings of IRE, 1960 , Volume 48 , Issue 5, Pages 898-903.
Частота (ГГц)
Ослабление (дБ/км)
1982
Burch D.E. , Continuum absorption by atmospheric H2 O, Report AFGL-TR-81-0300, by Ford Aeronutronic to Air Force Geophys. Lab., Hanscom AFB, Unknown, 1982 , Pages 46.
H2 O
T=∅
P=∅
10. Burch, D.E. (1968)
Волновое число (см⁻¹)
Ослабление (дБ/км)
Spectral plots of the near- millimeter attenuation by atmospheric H2 O at sea level. H2 O density = 5.9 gm/m3 . The data points represent experimental data by: Burch [19].
[19] Burch, D. E., J. Opt. Soc. Am. 58, 1383 (1968).
1968
Burch D.E. , Absorption of infrared radiant energy by CO2 and H2 O. III. Absorption by H2 O between 0.5-36 cm-1 (278-2 cm)., Journal of Optical Society of America, 1968 , Volume 58 , Number 10, Pages 1383-1394.
Волновое число (см⁻¹) Волновое число (см⁻¹)
Коэффициент поглощения (г⁻¹см²) Коэффициент пропускания (произвольные единицы)
1982
Burch D.E. , Continuum absorption by atmospheric H2 O, Report AFGL-TR-81-0300, by Ford Aeronutronic to Air Force Geophys. Lab., Hanscom AFB, Unknown, 1982 , Pages 46.
H2 O
T=∅
P=∅
10. Dryagin, Yu. A., et al. (1966)
Волновое число (см⁻¹)
Ослабление (дБ/км)
Spectral plots of the near- millimeter attenuation by atmospheric H2 O at sea level. H2 O density = 5.9 gm/m3 . The data points represent experimental data by: Dryagin et al [25].
[25] Dryagin, Yu. A., Kislyakov, A. G., Kukin, L. M., Naumov, A. I., and Fedosyev, L. E., Isvestya VUZ Radiosphsica, 9, 627 -644 (1966).
1966
Yu. A. Dryagin, A. G. Kislyakov, L. M. Kukin, A. I. Naumov and L. I. Fedoseev , Measurement of the atmospheric absorption of radio waves in the range 1.36–3.0 mm, Radiophysics & Quantum Electronics, 1966 , Volume 9 , Number 6, Pages 624-627.
Волновое число (см⁻¹)
Коэффициент поглощения (дБ/км)
1982
Burch D.E. , Continuum absorption by atmospheric H2 O, Report AFGL-TR-81-0300, by Ford Aeronutronic to Air Force Geophys. Lab., Hanscom AFB, Unknown, 1982 , Pages 46.
H2 O
T=∅
P=∅
10. Frenkel, R. L., et al. (1966)
Волновое число (см⁻¹)
Ослабление (дБ/км)
Spectral plots of the near- millimeter attenuation by atmospheric H2 O at sea level. H2 O density = 5.9 gm/m3 . The data points represent experimental data by: Frenkel and Woods [38].
[38] Frenkel, R. L., and Woods, D., Proc. IEEE, 54, 498 (1966).
1966
Frenkel, L., and Woods, D. , Microwave absorption by H2 O vapor and its mixtures with other gases between 100 and 300 Gc/s., Proc. IEEE, 1966, v. 54, Institute of Electrical and Electronics Engineers, 1966 , Pages 498-505.
Частота (ГГц)
Коэффициент поглощения (дБ/км)
1982
Burch D.E. , Continuum absorption by atmospheric H2 O, Report AFGL-TR-81-0300, by Ford Aeronutronic to Air Force Geophys. Lab., Hanscom AFB, Unknown, 1982 , Pages 46.
H2 O
T=∅
P=∅
10. Ryadov, Ya.V., et al. (1972)
Волновое число (см⁻¹)
Ослабление (дБ/км)
Spectral plots of the near- millimeter attenuation by atmospheric H2 O at sea level. H2 O density = 5.9 gm/m3 . The data points represent experimental data by: Ryadov and Furashov [42].
[42] Ryadov, Ya. V., and Furashov, R. I., Radio Phys. and Quantum Electronics, 15, 1124 -1128 (1972).
1972
V. Ya. Ryadov and N. I. Furashov , Investigation of the absorption of radiowaves in the atmospheric transparency window λ=0.73 mm, Radiophysics & Quantum Electronics, 1972 , Volume 15 , Number 10, Pages 1129-1137.
Волновое число (см⁻¹)
Коэффициент поглощения (дБ/км)
1982
Burch D.E. , Continuum absorption by atmospheric H2 O, Report AFGL-TR-81-0300, by Ford Aeronutronic to Air Force Geophys. Lab., Hanscom AFB, Unknown, 1982 , Pages 46.
H2 O
T=∅
P=∅
10. Straiton, A. W., et al. (1960)
Волновое число (см⁻¹)
Ослабление (дБ/км)
Spectral plots of the near- millimeter attenuation by atmospheric H2 O at sea level. H2 O density = 5.9 gm/m3 . The data points represent experimental data by: Straiton and Tolbert [39].
[39] Straiton, A. W., and Tolbert, C. W., Proc IRE, 48, 898 (1960).
1960
A.W. Straiton, C.W. Tolbert , Anomalies in the absorption of radio waves by atmospheric gases, Proceedings of IRE, 1960 , Volume 48 , Issue 5, Pages 898-903.
H2 O
T=∅
P=∅
5. Present experiment
Частота (ГГц)
Ослабление (дБ/км)
Attenuation adjusted to standard atmosphere. Units “kmcs” are equivalent to GHz.
1982
Thomas M.E. and R.J.Nordstrom , The N2 -broadened water vapor absorption line shape and infrared continuum absorption - I. Theoretical development, Journal of Quantitative Spectroscopy and Radiative Transfer, 1982 , Volume 28 , Number 2, Pages 81-101.
H2 O
T=∅
P=∅
3. D.E.Burch (1970). (700-1300 cm-1)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Experimental results in the 8 to14 μm regions
[12]. D. E. Burch, Aeronutronic Publication No. U-4784, Semi-Annual Technical Report, AFCRL Contract No. F19628-69-C-0263, U.S. Air Force (1970).
1970
Burch D.E. , Investigation of the absorption of infrared radiation by atmospheric gases, Semi-annual Technical report. Air Force Cambridge Research Lab., Publ. U-4784, Unknown, 1970 ,
1983
B.R. Lewis, I.M. Vardavas, and J.H. Carver , The aeronomic dissociation of water vapor by solar H Lyman α radiation, Journal of Geophysical Research, 1983 , Volume 88 , Issue 6, Pages 4935–4940.
H2 O
T=300 К
P=1 атм
2. Watanabe, K., et al. (1953)
Длина волны (А)
Сечение фотоионизации (Мбарн)
Watanabe, K., and M. Zelikoff, Absorption coefficients of water vapour in the vacuum ultraviolet, J. Opt. Soc. Am., 43, 753-755, 1953.
1953
K. Watanabe and M. Zelikoff , Absorption coefficients of water vapor in the vacuum ultraviolet, Journal of Optical Society of America, 1953 , Volume 43 , Issue 9, Pages 753-754.
Длина волны (А) Длина волны (нм)
Коэффициент поглощения (см⁻¹) Сечение поглощения (см⁻²)
1983
Loper G.L., O’Neil M.A., Gelbwachs J.A. , Water-vapor continuum CO2 laser absorption spectra between 27°C and -10°C, Applied Optics, 1983 , Volume 22 , Number 23, Pages 3701-3710.
H2 O
T=∅
P=∅
8. D.E.Burch, et al. (1970, 1974)
Температура (К)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
The temperature dependence of the component of the water continuum absorption coefficient that is quadratic in water partial pressure as experimentally determined by Burch et al. (Refs.5, 26) in the 8-12-μm region.
[5]. D. E. Burch, Investigation of the Absorption of Infrared Radiation by Atmospheric Gases, Semi-Annual Technical Report, contract F19628-69-C-0263, Aeronutronic Report U-4784 (Jan. 1970).
[26]. D. E. Burch, D. A.Gryvnak, and G. H. Piper, "Infrared Absorption by H2 O and N2 O," contract F19628-73-C-0011, Aeronutronic Report U-6026 (July 1973);
D. E. Burch, D. A. Gryvnak, and F.J. Gates, "Continuum Absorption by H2 O Between 300 and 825 cm-1 ," AFCRL-TR-74-0377, Aeronutronic Report U-6095 (Sept.1974).
1973
D. E. Burch, D. A.Gryvnak, and G. H. Piper , Infrared Absorption by H2 O and N2 O, Aeronutronic Report U-6026. contract F19628-73-C-0011, Air Force Cambridge Research Lab., 1973 ,
1983
Loper G.L., O’Neil M.A., Gelbwachs J.A. , Water-vapor continuum CO2 laser absorption spectra between 27°C and -10°C, Applied Optics, 1983 , Volume 22 , Number 23, Pages 3701-3710.
H2 O
T=∅
P=∅
8. D.E.Burch, et al. (1970, 1974)
Температура (К)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
The temperature dependence of the component of the water continuum absorption coefficient that is quadratic in water partial pressure as experimentally determined by Burch et al. (Refs.5, 26) in the 8-12-μm region.
[5]. D. E. Burch, Investigation of the Absorption of Infrared Radiation by Atmospheric Gases, Semi-Annual Technical Report, contract F19628-69-C-0263, Aeronutronic Report U-4784 (Jan. 1970).
[26]. D. E. Burch, D. A.Gryvnak, and G. H. Piper, "Infrared Absorption by H2 O and N2 O," contract F19628-73-C-0011, Aeronutronic Report U-6026 (July 1973);
D. E. Burch, D. A. Gryvnak, and F.J. Gates, "Continuum Absorption by H2 O Between 300 and 825 cm-1," AFCRL-TR-74-0377, Aeronutronic Report U-6095 (Sept.1974).
1974
Burch D.E., Gryvnak D.A., Gates F.J. , Continuum absorption by H2 O between 330 and 825 cm-1 , Final Report for Period 16 October 1973-30 September 1974, Aeronutronic Division, Philco Ford Corporation, AFCRL-TR-74-0377, Unknown, 1974 ,
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
1983
Loper G.L., O’Neil M.A., Gelbwachs J.A. , Water-vapor continuum CO2 laser absorption spectra between 27°C and -10°C, Applied Optics, 1983 , Volume 22 , Number 23, Pages 3701-3710.
H2 O
T=∅
P=∅
8. G.P.Montgomery, Jr. (1978)
Температура (К)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
The temperature dependence of the component of the water continuum absorption coefficient that is quadratic in water partial pressure as experimentally determined by Montgomery (Ref.10) 0 in the 8-μm region.
[10]. G. P. Montgomery, Jr., Appl. Opt. 17, 2299 (1978).
1978
G. Paul Montgomery, Jr. , Temperature dependence of infrared absorption by the water vapor continuum near 1200 cm-1 , Applied Optics, 1978 , Volume 17 , Issue 15, Pages 2299-2303.
H2 O
T=∅
P=∅
3. This work (320-470K, 1200 cm⁻¹)
Температура (К)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
1983
Арефьев В.Н., Погадаев Б.Н., Сизов Н.И. , Исследование поглощения света от СО2 лазера водяным паром в интервале 9-11мкм, Квантовая электроника, 1983 , Volume 10 , Pages 496-502.
H2 O
T=∅
P=∅
3. G.P.Montgomery (1978)
Температура (К)
Пропускание (%)
Температурная зависимость пропускания излучения 1203 см-1 : 1 – экспериментальные данные [8]. Temperature dependence of radiation transmittance (1203 cm-1 ). 1 -experimental data [8].
[8]. G. Paul Montgomery, Jr., Temperature dependence of infrared absorption by the water vapor continuum near 1200 cm-1 , Applied Optics, 1978 , Volume 17 , Issue 15, Pages 2299-2303, DOI: 10.1364/AO.17.002299, http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-17-15-2299 .
1978
G. Paul Montgomery, Jr. , Temperature dependence of infrared absorption by the water vapor continuum near 1200 cm-1 , Applied Optics, 1978 , Volume 17 , Issue 15, Pages 2299-2303.
Температура (К)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
1983
Кузнецов М.Н. , Расчет поглощения в крыльях мономера Н2 О в окне 8-13 мкм, Известия АН СССР. Серия Физика атмосферы и океана, 1983 , Volume 19 , Pages 163-166.
H2 O
T=300 К
P=∅
1. Coffey M.T. (Full Lorentz Lineshape)
Волновое число (см⁻¹)
Коэффициент ослабления (см²атм⁻¹)
[10]. Coffey M.T. Water vapour absorption in the 10-12 micron atmospheric window. Quart. J. Roy. Met. Soc. 1977. V.103. Issue 438, P. 685-692
1977
Coffey M.T. , Water vapour absorption in the 10-12 micron atmospheric window, Quarterly Journal of Royal Meteorological Society, 1977 , Volume 103 , Issue 438, Pages 685-692.
Волновое число (см⁻¹)
Коэффициент поглощения (г⁻¹см²атм⁻¹)
1983
Кузнецов М.Н. , Расчет поглощения в крыльях мономера Н2 О в окне 8-13 мкм, Известия АН СССР. Серия Физика атмосферы и океана, 1983 , Volume 19 , Pages 163-166.
H2 O
T=300 К
P=∅
1. Coffey M.T. (Simple Lorentz Lineshape)
Волновое число (см⁻¹)
Коэффициент ослабления (см²атм⁻¹)
10. Coffey M.T. Water vapour absorption in the 10-12 micron atmospheric window. Quart. J. Roy. Met. Soc. 1977. V.103. Issue 438, P. 685-692
1977
Coffey M.T. , Water vapour absorption in the 10-12 micron atmospheric window, Quarterly Journal of Royal Meteorological Society, 1977 , Volume 103 , Issue 438, Pages 685-692.
Волновое число (см⁻¹)
Коэффициент поглощения (г⁻¹см²атм⁻¹)
1983
Кузнецов М.Н. , Расчет поглощения в крыльях мономера Н2 О в окне 8-13 мкм, Известия АН СССР. Серия Физика атмосферы и океана, 1983 , Volume 19 , Pages 163-166.
H2 O
T=300 К
P=∅
1. Coffey M.T. (van Vleck-Weisskopf Lineshape)
Волновое число (см⁻¹)
Коэффициент ослабления (см²атм⁻¹)
[10]. Coffey M.T. Water vapour absorption in the 10-12 micron atmospheric window. Quart. J. Roy. Met. Soc. 1977. V.103. Issue 438, P. 685-692
1977
Coffey M.T. , Water vapour absorption in the 10-12 micron atmospheric window, Quarterly Journal of Royal Meteorological Society, 1977 , Volume 103 , Issue 438, Pages 685-692.
Волновое число (см⁻¹)
Коэффициент поглощения (г⁻¹см²атм⁻¹)
1984
Burch D.E., Alt R.L. , Continuum absorption by H2 O in the 700 - 1200 cm-1 and 2400 - 2800 cm-1 windows, Report AFGL-TR-84-0128 by Ford Aerospace and Communications Corporation, Aeronutronic Division to AFGL, United States Air Force, Hanscom AFB, Unknown, 1984 , Pages 31.
H2 O
T=296 К
P=∅
1. D.E.Burch, (1976, 1982) (296K, 700-1100cm⁻¹)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
The upper curve represents our previous results [1,2].
[1] D.E. Burch,Continuum absorption by H2 O, AFGL-TR-81-0300, ADA112264 Report, AFGL Contract No. F19628-79-0041 (1982).
[2] D.A. Gryvnak, D.E. Burch, R.L. Alt, and D.K. Zgonc, AFGL-TR-76-0246, ADA039380, Final Report, Conract F19628-76-C-0067 (1976).
1982
Burch D.E. , Continuum absorption by atmospheric H2 O, Report AFGL-TR-81-0300, by Ford Aeronutronic to Air Force Geophys. Lab., Hanscom AFB, Unknown, 1982 , Pages 46.
H2 O
T=296 К
P=∅
1. Approximation of experimental data (296K, 600-1350 cm⁻¹)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Spectral plots of Cs 0 for H2 O at temperature 296°K.
1984
Burch D.E., Alt R.L. , Continuum absorption by H2 O in the 700 - 1200 cm-1 and 2400 - 2800 cm-1 windows, Report AFGL-TR-84-0128 by Ford Aerospace and Communications Corporation, Aeronutronic Division to AFGL, United States Air Force, Hanscom AFB, Unknown, 1984 , Pages 31.
H2 O
T=338 К
P=∅
7. D.E. Burch, et al. (1971). (338K, 2400-2800 cm⁻¹)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Self-broadening coefficients between 2400 and 2800 cm-1 at various temperatures. The solid curves represent the present work; the broken curves are from our 1971 report [4].
[4] D.E. Burch, D. A. Gryvnak and J. O. Pembrook, Investigation of the Absorption of Infrared Radiation by Atmospheric Gases: Water, Nitrogen, Nitrous Oxide, Aeronutronic Report U-4784, AFCRL-71-0124 (1971) Contract No. F19628-69-0263
1971
Burch D.E., Gryvnak D.A., Pembrook J.D. , Investigation of the absorption of infrared radiation by atmospheric gases: water, nitrogen, nitrous oxide, Aeronutronic, Rep. U4897, Contract F19628-69-C-0263, Philco-Ford Corp., Unknown, 1971 ,
H2 O
T=338 К
P=∅
2. Experimental points (338K, 2400-2829cm⁻¹)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Spectral plots of C0 s ,w between 2400 and 2829 cm-1 for H2 O at four temperatures.
1984
Burch D.E., Alt R.L. , Continuum absorption by H2 O in the 700 - 1200 cm-1 and 2400 - 2800 cm-1 windows, Report AFGL-TR-84-0128 by Ford Aerospace and Communications Corporation, Aeronutronic Division to AFGL, United States Air Force, Hanscom AFB, Unknown, 1984 , Pages 31.
H2 O
T=384 К
P=∅
7. D.E. Burch, et al. (1971). (384K, 2400-2800 cm⁻¹)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Self-broadening coefficients between 2400 and 2800 cm-1 at various temperatures. The broken curves are from our 1971 report [4].
[4] D.E. Burch, D. A. Gryvnak and J. O. Pembrook, Investigation of the Absorption of Infrared Radiation by Atmospheric Gases: Water, Nitrogen, Nitrous Oxide, Aeronutronic Report U-4784, AFCRL-71-0124 (1971) Contract No. F19628-69-0263
1971
Burch D.E., Gryvnak D.A., Pembrook J.D. , Investigation of the absorption of infrared radiation by atmospheric gases: water, nitrogen, nitrous oxide, Aeronutronic, Rep. U4897, Contract F19628-69-C-0263, Philco-Ford Corp., Unknown, 1971 ,
H2 O
T=384 К
P=∅
2. Experimental points (384K, 2400-2829cm⁻¹)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Spectral plots of C0 s ,w between 2400 and 2829 cm-1 for H2 O at four temperatures.
1984
Burch D.E., Alt R.L. , Continuum absorption by H2 O in the 700 - 1200 cm-1 and 2400 - 2800 cm-1 windows, Report AFGL-TR-84-0128 by Ford Aerospace and Communications Corporation, Aeronutronic Division to AFGL, United States Air Force, Hanscom AFB, Unknown, 1984 , Pages 31.
H2 O
T=428 К
P=∅
7. D.E. Burch, et al. (1971). (428K, 2400-2800 cm⁻¹)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Self-broadening coefficients between 2400 and 2800 cm-1 at various temperatures. The broken curves are from our 1971 report [4].
[4] D.E. Burch, D. A. Gryvnak and J. O. Pembrook, Investigation of the Absorption of Infrared Radiation by Atmospheric Gases: Water, Nitrogen, Nitrous Oxide, Aeronutronic Report U-4784, AFCRL-71-0124 (1971) Contract No. F19628-69-0263
1971
Burch D.E., Gryvnak D.A., Pembrook J.D. , Investigation of the absorption of infrared radiation by atmospheric gases: water, nitrogen, nitrous oxide, Aeronutronic, Rep. U4897, Contract F19628-69-C-0263, Philco-Ford Corp., Unknown, 1971 ,
H2 O
T=428 К
P=∅
2. Experimental points (428K, 2400-2829cm⁻¹)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Spectral plots of C0 s ,w between 2400 and 2829 cm-1 for H2 O at four temperatures.
1985
Liebe H.J. , An updated model for millimetre wave propagation in moist air, Radio Science, 1985 , Volume 20 , Number 5, Pages 1069-1089.
H2 O
T=278 К
P=0.989884 атм
8. Fedoseev L.I. et al. (1984) (278K, 190-260 GHz)
Частота (ГГц)
Ослабление (дБ/км)
Water vapor attenuation rates α(v) across atmospheric window range W4 at temperature 5°C; pluses, measured data [Fedoseev and Koukin, 1984].
Fedoseev L.I., Koukin L.M. Comparisom of the results of summer and winter measurements of atmospheric water vapor absorption at wavelengths 1.5 – 1.55 mm, Int. J. IR and MM waves 5, 953-963 (1984).
1984
Fedoseev L.I., Koukin L.M. , Comparisom of the results of summer and winter measurements of atmospheric water vapor absorption at wavelengths 1.5 – 1.55 mm, International Journal of Infrared and Millimeter Waves, 1984 , Volume 5 , Pages 953-963.
Волновое число (см⁻¹)
Коэффициент поглощения (дБ/км м³/г)
1985
Liebe H.J. , An updated model for millimetre wave propagation in moist air, Radio Science, 1985 , Volume 20 , Number 5, Pages 1069-1089.
H2 O
T=263 К
P=∅
8a. Fedoseev L.I. et al. (1984) (263K, 180-260 GHz)
Частота (ГГц)
Ослабление (дБ/км)
Water vapor attenuation rates α(v) across atmospheric window range W4 at temperature -10°C; pluses, measured data [Fedoseev and Koukin, 1984].
Fedoseev L.I., Koukin L.M., Comparisom of the results of summer and winter measurements of atmospheric water vapor absorption at wavelengths 1.5 – 1.55 mm, Int. J. IR and MM waves 5, 953-963 (1984).
1984
Fedoseev L.I., Koukin L.M. , Comparisom of the results of summer and winter measurements of atmospheric water vapor absorption at wavelengths 1.5 – 1.55 mm, International Journal of Infrared and Millimeter Waves, 1984 , Volume 5 , Pages 953-963.
Волновое число (см⁻¹)
Коэффициент поглощения (дБ/км м³/г)
1985
Thomas M.E., Nordstrom R.J. , Line shape model for describing infrared-absorption by water vapor, Applied Optics, 1985 , Volume 24 , Issue 21, Pages 3526-3530.
H2 O
T=∅
P=∅
3. D.E.Burch, et al. (1971, 1980) (280-400K, 944.195 cm⁻¹)
Температура (К)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Temperature dependence of Cs at 944.195 cm-1 .
[9]. D. E. Burch, D. A. Gryvnak, and J. D. Pembrook, Investigation of the Absorption of Infrared Radiation by Atmospheric Gases: Water, Nitrogen, Nitrous Oxide, AFCRL-71-00124, contract F19628-69-0263 (1971).
[10]. D. E. Burch and D. A. Gryvnak, Continuum Absorption by H2 O Vapor in the Infrared and Millimeter Regions, in Atmospheric Water Vapor, A. Deepak, T. D. Wilkerson, and L. H. Ruhnke, Eds. (Academic, New York, 1980).
1980
Burch D.E., Gryvnak D.A. , Continuum absorption by H2 O vapor in the infrared and millimeter regions., Atmospheric water vapor, Editor(s) Deepak A., Wilkerson T.D., Ruhnke L.H., Academic Press, 1980 , Pages 47-76.
Волновое число (см⁻¹) Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)Ослабление (дБ/км)
1985
Thomas M.E., Nordstrom R.J. , Line shape model for describing infrared-absorption by water vapor, Applied Optics, 1985 , Volume 24 , Issue 21, Pages 3526-3530.
H2 O
T=∅
P=∅
3. G.L.Loper, et al. (1983) (260-300K, 944.195 cm⁻¹)
Температура (К)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Temperature dependence of Cs at 944.195 cm-1 .
G.L.Loper, M. A. O'Neill, and J. A. Gelbwachs, Water-Vapor Continuum CO2 Laser Absorption Spectra Between 271°C and -100°C, Appl. Opt. 23, 3701 (1983).
1983
Loper G.L., O’Neil M.A., Gelbwachs J.A. , Water-vapor continuum CO2 laser absorption spectra between 27°C and -10°C, Applied Optics, 1983 , Volume 22 , Number 23, Pages 3701-3710.
H2 O
T=∅
P=∅
8. Aerospace
Температура (К)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
1985
Thomas M.E., Nordstrom R.J. , Line shape model for describing infrared-absorption by water vapor, Applied Optics, 1985 , Volume 24 , Issue 21, Pages 3526-3530.
H2 O
T=∅
P=∅
3. J.C.Peterson, et al. (1978,1979) (280-305K, 944.195 cm⁻¹)
Температура (К)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Temperature dependence of Cs at 944.195 cm-1 .
[13]. J. C. Peterson, A Study of Water Vapor Absorption at CO2 Laser Frequencies Using a Differential Spectrophone and White Cell, Ph.D. Dissertation, The Ohio State U. (June 1978).
[17]. J. C. Peterson, M. E. Thomas, R. J. Nordstrom, E. K. Damon, and R. K. Long, Water Vapor-Nitrogen Absorption at CO2 Laser Frequencies, Appl. Opt. 18, 834 (1979).
1979
Peterson J.C., Thomas M.E., Nordstrom R.J., Damon E.K. Long R.K. , Water vapor - nitrogen absorption at CO2 laser frequencies, Applied Optics, 1979 , Volume 18 , Number 6, Pages 834-841.
Волновое число (см⁻¹) Волновое число (см⁻¹)
Заданная функция Коэффициент поглощения (см²мол⁻¹атм⁻¹)
1985
Thomas M.E., Nordstrom R.J. , Line shape model for describing infrared-absorption by water vapor, Applied Optics, 1985 , Volume 24 , Issue 21, Pages 3526-3530.
H2 O
T=∅
P=∅
3. V.N.Arefev et al. (1977) (280-360Kб 944.195 cm⁻¹)
Температура (К)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Temperature dependence of Cs at 944.195 cm-1 .
[14]. V. N. Arefev and V. I. Dianov-Klokov, Attenuation of 10.6-jim Radiation by Water Vapor and the Role of (H2 O)2 Dimers, Opt.Spectrosc. 42, 488 (1977).
1977
Арефьев В.Н., Дианов-Клоков В.И. , Ослабление излучения 10.6 мкм водяным паром и роль (Н2 О)2 димеров, Оптика и спектроскопия, 1977 , Volume 42 , Number 5, Pages 849-855.
Плотность (г/м³)
Коэффициент пропускания (произвольные единицы)
1985
Thomas M.E., Nordstrom R.J. , Line shape model for describing infrared-absorption by water vapor, Applied Optics, 1985 , Volume 24 , Issue 21, Pages 3526-3530.
H2 O
T=∅
P=∅
4. D.E.Burch et al. (1971, 1980) (1203 cm⁻¹)
Температура (К)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Temperature dependence of Cs at 1203.0 cm-1 .
[9]. D. E. Burch, D. A. Gryvnak, and J. D. Pembrook, Investigation of the Absorption of Infrared Radiation by Atmospheric Gases: Water, Nitrogen, Nitrous Oxide, AFCRL-71-00124, contract F19628-69-0263 (1971).
[10]. D. E. Burch and D. A. Gryvnak, Continuum Absorption by H20 Vapor in the Infrared and Millimeter Regions, in Atmospheric Water Vapor, A. Deepak, T. D. Wilkerson, and L. H. Ruhnke, Eds. (Academic, New York, 1980).
1971
Burch D.E., Gryvnak D.A., Pembrook J.D. , Investigation of the absorption of infrared radiation by atmospheric gases: water, nitrogen, nitrous oxide, Aeronutronic, Rep. U4897, Contract F19628-69-C-0263, Philco-Ford Corp., Unknown, 1971 ,
H2 O
T=∅
P=∅
1. 2600 cm⁻¹. Interpolated data
1/Т (К⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Semi-logarithm plots of C0 S,w vs 1/T for wavenumber 2600 cm-1 . Interpolated.
1985
Thomas M.E., Nordstrom R.J. , Line shape model for describing infrared-absorption by water vapor, Applied Optics, 1985 , Volume 24 , Issue 21, Pages 3526-3530.
H2 O
T=∅
P=∅
4. G.L.Loper, et al. (1983)
Температура (К)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Temperature dependence of Cs at 1203.0 cm-1 .
G.L.Loper, M. A. O'Neill, and J. A. Gelbwachs, "Water-Vapor Continuum CO2 Laser Absorption Spectra Between 271°C and -100°C," Appl. Opt. 23, 3701 (1983).
1983
Loper G.L., O’Neil M.A., Gelbwachs J.A. , Water-vapor continuum CO2 laser absorption spectra between 27°C and -10°C, Applied Optics, 1983 , Volume 22 , Number 23, Pages 3701-3710.
H2 O
T=∅
P=∅
8. Collisional broadening model
Температура (К)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
1985
Thomas M.E., Nordstrom R.J. , Line shape model for describing infrared-absorption by water vapor, Applied Optics, 1985 , Volume 24 , Issue 21, Pages 3526-3530.
H2 O
T=∅
P=∅
4. G.P.Montgomery Jr. (1978)
Температура (К)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Temperature dependence of Cs at 1203.0 cm-1 .
[16]. G. Paul Montgomery, Jr., Temperature dependence of infrared absorption by the water vapor continuum near 1200 cm-1 , Applied Optics, 1978 , Volume 17 , Issue 15, Pages 2299-2303, DOI: 10.1364/AO.17.002299, http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-17-15-2299 .
1978
G. Paul Montgomery, Jr. , Temperature dependence of infrared absorption by the water vapor continuum near 1200 cm-1 , Applied Optics, 1978 , Volume 17 , Issue 15, Pages 2299-2303.
H2 O
T=∅
P=∅
3. This work (320-470K, 1200 cm⁻¹)
Температура (К)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
1985
Thomas M.E., Nordstrom R.J. , Line shape model for describing infrared-absorption by water vapor, Applied Optics, 1985 , Volume 24 , Issue 21, Pages 3526-3530.
H2 O
T=∅
P=∅
6. D.E.Burch et al. (1971, 1980) (2500 cm⁻¹)
Температура (К)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Temperature dependence of Cs at 4 μm.
[9]. D. E. Burch, D. A. Gryvnak, and J.D.Pembrook, Investigation of the Absorption of Infrared Radiation by Atmospheric Gases: Water, Nitrogen, Nitrous Oxide, AFCRL-71-00124, contract F19628-69-0263 (1971).
[10]. D. E. Burch and D. A. Gryvnak, Continuum Absorption by H2 O Vapor in the Infrared and Millimeter Regions, in Atmospheric Water Vapor, A. Deepak, T. D. Wilkerson, and L. H. Ruhnke, Eds. (Academic, New York, 1980).
1980
Burch D.E., Gryvnak D.A. , Continuum absorption by H2 O vapor in the infrared and millimeter regions., Atmospheric water vapor, Editor(s) Deepak A., Wilkerson T.D., Ruhnke L.H., Academic Press, 1980 , Pages 47-76.
Волновое число (см⁻¹) Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)Ослабление (дБ/км)
1986
Борисова Н.Ф., Букова Е.С., Василевский К.П., Ладыгин И.Н., Лиуконен РА., Осипов В.М., Павлов Н.И. , Коэффициенты атмосферного поглощения и параметры линий Н2 О в области 1700-2100 см-1 , Известия АН СССР. Серия Физика атмосферы и океана, 1986 , Volume 22 , Number 8, Pages 838-843.
H2 O
T=294 К
P=1 атм
1. Table 1. Rice D.K., et al. (1973), Menzies R.T., et al. (1976)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Таблица 1 . Коэффициенты поглощения k(км-1 ) на горизонтальной атмосферной трассе (Т=294°К, а=14 г/м3 ) для частот генерации СО-лазера.
[6] Rice D.K. Atmospheric attenuation measurements for several highly absorbed CO laser lines. Appl. Optics. 1973,V. 12, № 7, р. 1401 — 1403.
[7] Menzies R.T., Shumate M.S. Optoacoustic measurements of water vapor absorption at selected CO laser wave lengths in the 5 μm region. Appl. Optics 1976. V.15. No.9. P.2025-2027.
1976
Menzies R.T., Shumate M.S. , Optoacoustic measurements of water vapor absorption at selected CO laser wavelengths in the 5 μm region, Applied Optics, 1976 , Volume 15 , Number 9, Pages 2025-2027.
Волновое число (см⁻¹)
Коэффициент поглощения (Км⁻¹)
1987
P. Varanasi and S. Chudamani , Self- and N2 -broadened spectra of water vapor between 7.5 and 14.5 μm, Journal of Quantitative Spectroscopy and Radiative Transfer, 1987 , Volume 38 , Issue 6, Pages 407-412.
H2 O
T=∅
P=∅
4. D.E. Burch et al. (1984) (2500 cm⁻¹)
1000/Т (К⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
The measured temperature dependence of the self-broadening coefficient (molecule-1 cm2 atm-1 ) between 294 and 339°K.
[14]. D.E. Burch and R.L. Alt, AFGL-TR-84-0218, U.S. Air Force (1984) (available from the National Technical Information Service).
1984
Burch D.E., Alt R.L. , Continuum absorption by H2 O in the 700 - 1200 cm-1 and 2400 - 2800 cm-1 windows, Report AFGL-TR-84-0128 by Ford Aerospace and Communications Corporation, Aeronutronic Division to AFGL, United States Air Force, Hanscom AFB, Unknown, 1984 , Pages 31.
H2 O
T=∅
P=∅
8. Wavenumber 2500 cm⁻¹. Temperature dependence. Experiment
1000/Т (К⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Plots of the self-broadening coefficients at 2500 cm-1 versus the reciprocal of temperature. Experiment.
1987
P. Varanasi and S. Chudamani , Self- and N2 -broadened spectra of water vapor between 7.5 and 14.5 μm, Journal of Quantitative Spectroscopy and Radiative Transfer, 1987 , Volume 38 , Issue 6, Pages 407-412.
H2 O
T=∅
P=∅
4. M.E. Thomas et al. (1982)
1000/Т (К⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
The measured temperature dependence of the self-broadening coefficient (molecule-1 cm2 atm-1 ) between 294 and 339°K.
[16]. M.E. Thomas and R.Nordstrom, JQSRT 28, 103 (1982).
1982
Thomas M.E. and R.J.Nordstrom , The N2 -broadened water vapor absorption line shape and infrared continuum absorption - II. Implementation of the line shape, Journal of Quantitative Spectroscopy and Radiative Transfer, 1982 , Volume 28 , Number 2, Pages 103-112.
H2 O
T=∅
P=∅
5. Present calculation
Температура (К)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Present calclation of temperature dependence of Cs at 944.1945 cm-1 .
1987
Rosenkranz P.W. , Pressure broadening of rotational bands, II. Water vapor from 300 to 1100 cm-1, Journal of Chemical Physics, 1987 , Volume 87 , Number 1, Pages 163-170.
H2 O
T=296 К
P=1 атм
6. Burch, D.E., et al. (1979, 1980, 1981, 1984). Self-broadened
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Absorption cross section per H2 O molecule at 296°K, normalized to 1 atm perturber pressure. Measurements, from Burch et al. (Ref. 2): X -self-broadened.
2. E. Burch and D. A. Gryvnak, in Atmospheric Water Vapor, edited by A. Deepak, T. D. Wilkerson, and L. H. Ruhnke (Academic, New York, 1980), p. 47;
D. E. Burch, SPIE Proc. 277, 28 (1981);
D. E. Burch and D.A. Gryvnak, Report #AFGL-TR-79-0054 (1979);
D. E. Burch and R. L. Alt, Report AFGL-TR-84-0128 (1984) (available from National Technical Information Service).
1984
Burch D.E., Alt R.L. , Continuum absorption by H2 O in the 700 - 1200 cm-1 and 2400 - 2800 cm-1 windows, Report AFGL-TR-84-0128 by Ford Aerospace and Communications Corporation, Aeronutronic Division to AFGL, United States Air Force, Hanscom AFB, Unknown, 1984 , Pages 31.
H2 O
T=296 К
P=∅
2. (296K, 700-1100cm⁻¹)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
The curve for 296°K from Figure 1 is repeated for comparison.
1987
Rosenkranz P.W. , Pressure broadening of rotational bands, II. Water vapor from 300 to 1100 cm-1, Journal of Chemical Physics, 1987 , Volume 87 , Number 1, Pages 163-170.
H2 O
T=338 К
P=1 атм
7. Burch, D.E., et al. (1979, 1980, 1981, 1984). Self-broadened (338K, 300-450 cm⁻¹)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Absorption cross section per H2 O molecule at 338°K, normalized to 1 atm perturber pressure. Measurements, from Burch et al. (Ref. 2): x - self-broadened.
2. E. Burch and D. A. Gryvnak, in Atmospheric Water Vapor, edited by A. Deepak, T. D. Wilkerson, and L. H. Ruhnke (Academic, New York, 1980), p. 47;
D. E. Burch, SPIE Proc. 277, 28 (1981);
D. E. Burch and D.A. Gryvnak, Report AFGL-TR-79-0054 (1979);
D. E. Burch and R. L. Alt, Report AFGL-TR-84-0128 (1984) (available from National Technical Information Service).
1979
Burch D.E., Gryvnak D.A. , Method of calculating H2 O transmission between 333 and 633 cm -1 , AFB Report No. AFGL-TR-79-0054, Unknown, 1979 ,
H2 O
T=338 К
P=1 атм
3. Original experimental data H₂O (338 K, 300-480 cm⁻¹)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Semi-logarithmic plot of the H2 O continuum coefficient for self broadening at 338°K
1987
Rosenkranz P.W. , Pressure broadening of rotational bands, II. Water vapor from 300 to 1100 cm-1, Journal of Chemical Physics, 1987 , Volume 87 , Number 1, Pages 163-170.
H2 O
T=430 К
P=1 атм
8. Burch, D.E., et al. (1979, 1980, 1981, 1984). Self-broadened
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Absorption cross section per H2 O molecule at 430°K, normalized to 1 atm perturber pressure. Measurements, from Burch et al. (Ref. 2): x - self-broadened.
2. E. Burch and D. A. Gryvnak, in Atmospheric Water Vapor, edited by A. Deepak, T. D. Wilkerson, and L. H. Ruhnke (Academic, New York, 1980), p. 47;
D. E. Burch, SPIE Proc. 277, 28 (1981);
D. E. Burch and D.A. Gryvnak, Report AFGL-TR-79-0054 (1979);
D. E. Burch and R. L. Alt, Report AFGL-TR-84-0128 (1984) (available from National Technical Information Service).
1980
Burch D.E., Gryvnak D.A. , Continuum absorption by H2 O vapor in the infrared and millimeter regions., Atmospheric water vapor, Editor(s) Deepak A., Wilkerson T.D., Ruhnke L.H., Academic Press, 1980 , Pages 47-76.
H2 O
T=430 К
P=∅
1. Experiment (430K, 600-1350 cm⁻¹)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Spectral plots of Cs 0 for H2 O at temperature 430°K.
1988
Prasad Varanasi , On the nature of the infrared spectrum of water vapor between 8 and 14 μm, Journal of Quantitative Spectroscopy and Radiative Transfer, 1988 , Volume 40 , Issue 3, Pages 169-175.
H2 O
T=∅
P=∅
7. D.E. Burch et al. (1984) (1000 cm⁻¹)
1000/Т (К⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Measured temperature dependence of the self-broadening coefficient, Cs 0 (molecule-1 cm2 atm-1 ) between 294 and 339°K.
[14]. D.E. Burch and R L. Alt, AFGL-TR-84-O128, U.S. Air Force (1984)
1984
Burch D.E., Alt R.L. , Continuum absorption by H2 O in the 700 - 1200 cm-1 and 2400 - 2800 cm-1 windows, Report AFGL-TR-84-0128 by Ford Aerospace and Communications Corporation, Aeronutronic Division to AFGL, United States Air Force, Hanscom AFB, Unknown, 1984 , Pages 31.
H2 O
T=∅
P=∅
8. Wavenumber 2400 cm⁻¹. Temperature dependence. Experiment
1000/Т (К⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Plots of the self-broadening coefficients at 2400 cm-1 versus the reciprocal of temperature. Experiment
1988
Prasad Varanasi , On the nature of the infrared spectrum of water vapor between 8 and 14 μm, Journal of Quantitative Spectroscopy and Radiative Transfer, 1988 , Volume 40 , Issue 3, Pages 169-175.
H2 O
T=∅
P=∅
8. D.E. Burch et al. (1980)
Температура (К)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
[13] Burch D.E., Gryvnak D.A., Continuum absorption by H2 O vapor in the infrared and millimeter regions, Atmospheric water vapor, Editor(s) Deepak A., Wilkerson T.D., Ruhnke L.H., New York, London, Toronto, Sydney, San Francisco, Academic Press, 1980 , Pages 47-76.
1980
Burch D.E., Gryvnak D.A. , Continuum absorption by H2 O vapor in the infrared and millimeter regions., Atmospheric water vapor, Editor(s) Deepak A., Wilkerson T.D., Ruhnke L.H., Academic Press, 1980 , Pages 47-76.
Волновое число (см⁻¹) Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)Ослабление (дБ/км)
1988
Prasad Varanasi , On the nature of the infrared spectrum of water vapor between 8 and 14 μm, Journal of Quantitative Spectroscopy and Radiative Transfer, 1988 , Volume 40 , Issue 3, Pages 169-175.
H2 O
T=∅
P=∅
8. G. P. Montgomery, Jr. (1978)
Температура (К)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
[17] G. P. Montgomery, Jr., Appl. Opt. 17, 2299 (1978)
1978
G. Paul Montgomery, Jr. , Temperature dependence of infrared absorption by the water vapor continuum near 1200 cm-1 , Applied Optics, 1978 , Volume 17 , Issue 15, Pages 2299-2303.
H2 O
T=∅
P=∅
3. This work (320-470K, 1200 cm⁻¹)
Температура (К)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
1988
Prasad Varanasi , On the nature of the infrared spectrum of water vapor between 8 and 14 μm, Journal of Quantitative Spectroscopy and Radiative Transfer, 1988 , Volume 40 , Issue 3, Pages 169-175.
H2 O
T=∅
P=∅
8. M.E. Thomas et al. (1982). Far-wing absorption model
Температура (К)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Far-wing absorption model of Ref.16.
[16] Thomas M.E. and R.J.Nordstrom, The N2 -broadened water vapor absorption line shape and infrared continuum absorption - I. Theoretical development, Journal of Quantitative Spectroscopy and Radiative Transfer, 1982 , Volume 28 , no. 2, Pages 81-101. Fig.5
1982
Thomas M.E. and R.J.Nordstrom , The N2 -broadened water vapor absorption line shape and infrared continuum absorption - I. Theoretical development, Journal of Quantitative Spectroscopy and Radiative Transfer, 1982 , Volume 28 , Number 2, Pages 81-101.
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
1989
Clough S.A., Kneizys F.X., Davies R.W. , Line shape and the water vapor continuum, Atmospheric Research, 1989 , Volume 23 , Issue 3-4, Pages 229-241.
H2 O
T=308 К
P=∅
7. Burch D.E. (1981) (308K, 700-1500 cm⁻¹)
Волновое число (см⁻¹)
Коэффициент поглощения (см³мол⁻¹)
Details of the self-broadened continuum at 1000 cm-1 .
Burch D.E., Continuum absorption by atmospheric H2 O, SPIE Proc. Atmospheric Transmission, V.277, Editor(s) Robert W. Fan, SPIE - The international society for optical engineering, 1981 , Pages 28-39, DOI: 10.1117/12.931899
1981
Burch D.E. , Continuum absorption by atmospheric H2 O, SPIE Proc. Atmospheric Transmission, V.277, Editor(s) Robert W. Fan, SPIE - The international society for optical engineering, 1981 , Pages 28-39.
Волновое число (см⁻¹) Волновое число (см⁻¹) Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹) Коэффициент поглощения (см²мол⁻¹атм⁻¹) Ослабление (дБ/км)
1989
Clough S.A., Kneizys F.X., Davies R.W. , Line shape and the water vapor continuum, Atmospheric Research, 1989 , Volume 23 , Issue 3-4, Pages 229-241.
H2 O
T=353 К
P=∅
7. Burch D.E. (1981) (353K, 700-1500 cm⁻¹)
Волновое число (см⁻¹)
Коэффициент поглощения (см³мол⁻¹)
Details of the self-broadened continuum at 1000 cm-1 .
Burch D.E., Continuum absorption by atmospheric H2 O, SPIE Proc. Atmospheric Transmission, V.277, Editor(s) Robert W. Fan, SPIE - The international society for optical engineering, 1981 , Pages 28-39, DOI: 10.1117/12.931899
1981
Burch D.E. , Continuum absorption by atmospheric H2 O, SPIE Proc. Atmospheric Transmission, V.277, Editor(s) Robert W. Fan, SPIE - The international society for optical engineering, 1981 , Pages 28-39.
Волновое число (см⁻¹) Волновое число (см⁻¹) Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹) Коэффициент поглощения (см²мол⁻¹атм⁻¹) Ослабление (дБ/км)
1989
Clough S.A., Kneizys F.X., Davies R.W. , Line shape and the water vapor continuum, Atmospheric Research, 1989 , Volume 23 , Issue 3-4, Pages 229-241.
H2 O
T=358 К
P=∅
7. Burch D.E. (1981) (358K)
Волновое число (см⁻¹)
Коэффициент поглощения (см³мол⁻¹)
Details of the self-broadened continuum at 1000 cm-1 .
1981
Burch D.E. , Continuum absorption by atmospheric H2 O, SPIE Proc. Atmospheric Transmission, V.277, Editor(s) Robert W. Fan, SPIE - The international society for optical engineering, 1981 , Pages 28-39.
Волновое число (см⁻¹) Волновое число (см⁻¹) Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹) Коэффициент поглощения (см²мол⁻¹атм⁻¹) Ослабление (дБ/км)
1989
Clough S.A., Kneizys F.X., Davies R.W. , Line shape and the water vapor continuum, Atmospheric Research, 1989 , Volume 23 , Issue 3-4, Pages 229-241.
H2 O
T=284 К
P=∅
7. Burch and Alt (1984) (284K)
Волновое число (см⁻¹)
Коэффициент поглощения (см³мол⁻¹)
Details of the self-broadened continuum at 1000 cm-1 .
1984
Burch D.E., Alt R.L. , Continuum absorption by H2 O in the 700 - 1200 cm-1 and 2400 - 2800 cm-1 windows, Report AFGL-TR-84-0128 by Ford Aerospace and Communications Corporation, Aeronutronic Division to AFGL, United States Air Force, Hanscom AFB, Unknown, 1984 , Pages 31.
1000/Т (К⁻¹) Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹) Коэффициент поглощения (см²мол⁻¹атм⁻¹)
1989
Clough S.A., Kneizys F.X., Davies R.W. , Line shape and the water vapor continuum, Atmospheric Research, 1989 , Volume 23 , Issue 3-4, Pages 229-241.
H2 O
T=296 К
P=∅
7. Burch and Alt (1984) (296K, 700-1050 cm⁻¹)
Волновое число (см⁻¹)
Коэффициент поглощения (см³мол⁻¹)
1984
Burch D.E., Alt R.L. , Continuum absorption by H2 O in the 700 - 1200 cm-1 and 2400 - 2800 cm-1 windows, Report AFGL-TR-84-0128 by Ford Aerospace and Communications Corporation, Aeronutronic Division to AFGL, United States Air Force, Hanscom AFB, Unknown, 1984 , Pages 31.
1000/Т (К⁻¹) Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹) Коэффициент поглощения (см²мол⁻¹атм⁻¹)
1989
Арефьев В.Н. , Молекулярное поглощение водяным паром излучения в окне относительной прозрачности атмосферы 8 - 13 мкм, Оптика атмосферы, 1989 , Volume 2 , Number 10, Pages 1034-1054.
H2 O
T=300 К
P=∅
8. G.P.Montgomery (1978)
Температура (К)
Поглощение (произвольные единицы)
Пропускание излучения диодного лазера водяным паром при разных температурах: 1 – [27].
[27] G. Paul Montgomery, Jr., Temperature dependence of infrared absorption by the water vapor continuum near 1200 cm-1 , Applied Optics, 1978 , Volume 17 , Issue 15, Pages 2299-2303, DOI: 10.1364/AO.17.002299, http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-17-15-2299 .
1978
G. Paul Montgomery, Jr. , Temperature dependence of infrared absorption by the water vapor continuum near 1200 cm-1 , Applied Optics, 1978 , Volume 17 , Issue 15, Pages 2299-2303.
Температура (К)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
1990
Grant W.B. , Water vapor absorption coefficients in the 8-13 mm spectral region: a critical review , Applied Optics, 1990 , Volume 29 , Number 4, Pages 451-462.
H2 O
T=∅
P=∅
1. Burch, D.E., et al. (1984)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Experimental data for the water vapor continuum selfbroadening coefficient from Burch and Alt, [22] measured using a spectrometer with 0.3-cm-1 resolution, and a White cell.
[22] Burch D.E., Alt R.L., Continuum absorption by H2 O in the 700 - 1200 cm-1 and 2400 - 2800 cm-1 windows, Report AFGL-TR-84-0128 by Ford Aerospace and Communications Corporation, Aeronutronic Division to AFGL, United States Air Force, Hanscom AFB, USA, Massachusetts 01731, 1984 , Pages 31.
1984
Burch D.E., Alt R.L. , Continuum absorption by H2 O in the 700 - 1200 cm-1 and 2400 - 2800 cm-1 windows, Report AFGL-TR-84-0128 by Ford Aerospace and Communications Corporation, Aeronutronic Division to AFGL, United States Air Force, Hanscom AFB, Unknown, 1984 , Pages 31.
H2 O
T=284 К
P=∅
2. Experiment (284K, 700-1100cm⁻¹)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Self-broadening coefficient from 700 cm-1 to 1100 cm-1 at 284°K.
1990
Grant W.B. , Water vapor absorption coefficients in the 8-13 mm spectral region: a critical review , Applied Optics, 1990 , Volume 29 , Number 4, Pages 451-462.
H2 O
T=296 К
P=∅
1. D.E. Burch (1982)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
[34].Burch D.E., Continuum absorption by atmospheric H2 O, Report AFGL-TR-81-0300 by Ford Aeronutronic to AFGL, Hanscom AFB, Massachusets, 1982 , Pages 46.
1982
Burch D.E. , Continuum absorption by atmospheric H2 O, Report AFGL-TR-81-0300, by Ford Aeronutronic to Air Force Geophys. Lab., Hanscom AFB, Unknown, 1982 , Pages 46.
H2 O
T=296 К
P=∅
1. Approximation of experimental data (296K, 600-1350 cm⁻¹)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Spectral plots of Cs 0 for H2 O at temperature 296°K.
1990
Ma Q., Tipping R.H. , The atmospheric water continuum in the infrared: Extension of the statistical theory of Rozenkranz, Journal of Chemical Physics, 1990 , Volume 93 , Number 10, Issue https://doi.org/, Pages 7066-7075.
H2 O
T=296 К
P=∅
2. Burch et al. (1981)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
The absorption coefficient a(ω) x 1022 in units of cm2 molecule-1 atm-1 as a function of ω in cm-1 for T = 296°K calculated with Jmax = 3; the experimental values of Burch et al. (Ref. 9) are denoted by +.
[9]. D. E. Burch, SPIE Proc. 277, 28 (1981); D. E. Burch and D. A. Gryvnak, Report No. AFGL-TR-79-0054, 1979;
D. E. Burch and R. L. Alt, Report No. AFGL-TR-84-0128, 1984.
1981
Burch D.E. , Continuum absorption by atmospheric H2 O, SPIE Proc. Atmospheric Transmission, V.277, Editor(s) Robert W. Fan, SPIE - The international society for optical engineering, 1981 , Pages 28-39.
H2 O
T=296 К
P=∅
1. Approximation of experimental data (296K, 600-1299 cm⁻¹)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Spectral plot of Cs for H2 O at 296°K.
1990
Ma Q., Tipping R.H. , The atmospheric water continuum in the infrared: Extension of the statistical theory of Rozenkranz, Journal of Chemical Physics, 1990 , Volume 93 , Number 10, Issue https://doi.org/, Pages 7066-7075.
H2 O
T=296 К
P=∅
3. D.E.Burch, et al. (1984) (296K, 300-1100 cm⁻¹)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
The absorption coefficient a(ω) x 1022 in units of cm2 molecule-1 atm-1 as a function of ω in cm-1 for T = 296°K calculated with Jmax = 4; the experimental values of Burch et al. (Ref. 9) are denoted by +.
[9]. D. E. Burch, SPIE Proc. 277, 28 (1981); D. E. Burch and D. A. Gryvnak, Report No. AFGL-TR-79-0054, 1979;
D. E. Burch and R. L. Alt, Report No. AFGL-TR-84-0128, 1984.
1984
Burch D.E., Alt R.L. , Continuum absorption by H2 O in the 700 - 1200 cm-1 and 2400 - 2800 cm-1 windows, Report AFGL-TR-84-0128 by Ford Aerospace and Communications Corporation, Aeronutronic Division to AFGL, United States Air Force, Hanscom AFB, Unknown, 1984 , Pages 31.
H2 O
T=296 К
P=∅
2. (296K, 700-1100cm⁻¹)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
The curve for 296°K from Figure 1 is repeated for comparison.
1990
Ma Q., Tipping R.H. , The atmospheric water continuum in the infrared: Extension of the statistical theory of Rozenkranz, Journal of Chemical Physics, 1990 , Volume 93 , Number 10, Issue https://doi.org/, Pages 7066-7075.
H2 O
T=430 К
P=∅
4. D.E.Burch et al. (1984) (430K, 400-850 cm⁻¹)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
The absorption coefficient a(ω) x 1022 in units of cm2 molecule-1 atm-1 as a function of ω in cm-1 for T = 430°K calculated with Jmax = 3; the experimental values of Burch et al. (Ref. 9) are denoted by +.
1980
Burch D.E., Gryvnak D.A. , Continuum absorption by H2 O vapor in the infrared and millimeter regions., Atmospheric water vapor, Editor(s) Deepak A., Wilkerson T.D., Ruhnke L.H., Academic Press, 1980 , Pages 47-76.
H2 O
T=430 К
P=∅
1. Experiment (430K, 600-1350 cm⁻¹)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Spectral plots of Cs 0 for H2 O at temperature 430°K.
1990
Thomas M.E. , Infrared and millimetre-wavelength absorption in the atmospheric windows by water vapour and nitrogen: measurements and models , Ifrared Physics, 1990 , Volume 30 , Pages 161-174.
H2 O
T=295 К
P=∅
4. D.E.Burch et al. (1984) (295K, 700-1100 cm⁻¹)
Волновое число (см⁻¹)
Коэффициент поглощения (м²мол⁻¹кПа⁻¹)
Self-broadening coefficient for wave numbers from 700 to 1100 cm-1 at 295°K.
[27] D. E. Burch and R. L. Alt, AFGL-TR-84-0128, Ford Aerospace and Communications Corporation, Aeronutronic Division (1984).
1984
Burch D.E., Alt R.L. , Continuum absorption by H2 O in the 700 - 1200 cm-1 and 2400 - 2800 cm-1 windows, Report AFGL-TR-84-0128 by Ford Aerospace and Communications Corporation, Aeronutronic Division to AFGL, United States Air Force, Hanscom AFB, Unknown, 1984 , Pages 31.
H2 O
T=296 К
P=∅
2. (296K, 700-1100cm⁻¹)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
The curve for 296°K from Figure 1 is repeated for comparison.
1990
Thomas M.E. , Infrared and millimetre-wavelength absorption in the atmospheric windows by water vapour and nitrogen: measurements and models , Ifrared Physics, 1990 , Volume 30 , Pages 161-174.
H2 O
T=∅
P=∅
7. D. E. Burch et al. (1984)
1000/Т (К⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Measured values of the self-broadening coefficient, Cs (ν, T), as a function of temperature at ν =1000 cm-1 .
[27] Burch D.E., Alt R.L., Continuum absorption by H2 O in the 700 - 1200 cm-1 and 2400 - 2800 cm-1 windows, Report AFGL-TR-84-0128 by Ford Aerospace and Communications Corporation, Aeronutronic Division to AFGL, United States Air Force, Hanscom AFB, USA, Massachusetts 01731, 1984 , Pages 31.
1984
Burch D.E., Alt R.L. , Continuum absorption by H2 O in the 700 - 1200 cm-1 and 2400 - 2800 cm-1 windows, Report AFGL-TR-84-0128 by Ford Aerospace and Communications Corporation, Aeronutronic Division to AFGL, United States Air Force, Hanscom AFB, Unknown, 1984 , Pages 31.
H2 O
T=∅
P=∅
3. This work (1000 cm⁻¹)
1000/Т (К⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
1990
Thomas M.E. , Infrared and millimetre-wavelength absorption in the atmospheric windows by water vapour and nitrogen: measurements and models , Ifrared Physics, 1990 , Volume 30 , Pages 161-174.
H2 O
T=∅
P=∅
7. G.L.Loper, et al. (1983)
1000/Т (К⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Measured values of the self-broadening coefficient, Cs (ν, T), as a function of temperature at ν =1000 cm-1 .
[29] Loper G.L., O’Neil M.A., Gelbwachs J.A., Water-vapor continuum CO2 laser absorption spectra between 27°C and -10°C, Applied Optics, 1983 , Volume 22 , no. 23, Pages 3701-3710.
1983
Loper G.L., O’Neil M.A., Gelbwachs J.A. , Water-vapor continuum CO2 laser absorption spectra between 27°C and -10°C, Applied Optics, 1983 , Volume 22 , Number 23, Pages 3701-3710.
H2 O
T=∅
P=∅
8. Collisional broadening model
Температура (К)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
1990
Thomas M.E. , Infrared and millimetre-wavelength absorption in the atmospheric windows by water vapour and nitrogen: measurements and models , Ifrared Physics, 1990 , Volume 30 , Pages 161-174.
H2 O
T=∅
P=∅
7. G.P.Montgomery (1979)
1000/Т (К⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Measured values of the self-broadening coefficient, Cs (ν, T), as a function of temperature at ν =1000 cm-1 .
[32] G. P. Montgomery, Temperature dependence of infrared absorption by the water vapor continuum near 1200 cm−1 , Appl. Opt. 17, 2299 (1978).
1978
G. Paul Montgomery, Jr. , Temperature dependence of infrared absorption by the water vapor continuum near 1200 cm-1 , Applied Optics, 1978 , Volume 17 , Issue 15, Pages 2299-2303.
H2 O
T=∅
P=∅
3. This work (320-470K, 1200 cm⁻¹)
Температура (К)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
1990
Thomas M.E. , Infrared and millimetre-wavelength absorption in the atmospheric windows by water vapour and nitrogen: measurements and models , Ifrared Physics, 1990 , Volume 30 , Pages 161-174.
H2 O
T=∅
P=∅
7. P.S.Varanasi, et al. (1968, 1987)
1000/Т (К⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Measured values of the self-broadening coefficient, Cs (ν, T), as a function of temperature at ν =1000 cm-1 .
[33]
1968
Varanasi P., Chou S., Penner S.S. , Absorption coefficients for water vapor in the 600-1000 cm-1 region, Journal of Quantitative Spectroscopy and Radiative Transfer, 1968 , Volume 8 , Pages 1537-1541.
Волновое число (см⁻¹)
Коэффициент поглощения (см⁻¹атм⁻¹)
1990
Thomas M.E. , Infrared and millimetre-wavelength absorption in the atmospheric windows by water vapour and nitrogen: measurements and models , Ifrared Physics, 1990 , Volume 30 , Pages 161-174.
H2 O
T=296 К
P=∅
8. D.E.Burch et al. (1984)
Волновое число (см⁻¹)
Коэффициент поглощения (м²мол⁻¹кПа⁻¹)
The 4-μm continuum region at T = 296°K. Cs vs wavenumber.
[27] Burch D.E., Alt R.L., Continuum absorption by H2 O in the 700 - 1200 cm-1 and 2400 - 2800 cm-1 windows, Report AFGL-TR-84-0128 by Ford Aerospace and Communications Corporation, Aeronutronic Division to AFGL, United States Air Force, Hanscom AFB, USA, Massachusetts 01731, 1984 , Pages 31.
1984
Burch D.E., Alt R.L. , Continuum absorption by H2 O in the 700 - 1200 cm-1 and 2400 - 2800 cm-1 windows, Report AFGL-TR-84-0128 by Ford Aerospace and Communications Corporation, Aeronutronic Division to AFGL, United States Air Force, Hanscom AFB, Unknown, 1984 , Pages 31.
H2 O
T=296 К
P=∅
6. Fitting (296K) (2400-2640cm⁻¹)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Self-broadening coefficients between 2400 and 2640 cm-1 for 296°K.
1990
Thomas M.E. , Infrared and millimetre-wavelength absorption in the atmospheric windows by water vapour and nitrogen: measurements and models , Ifrared Physics, 1990 , Volume 30 , Pages 161-174.
H2 O
T=296 К
P=∅
8a. K.O.White, et al. (1978)
Длина волны (мкм)
Коэффициент поглощения (Км⁻¹)
The 4-μm continuum region at T = 296°K. The absorption coefficient vs wavelength.
[37] White K.O., Watkins W.R., Bruce C.W., Meredith R.E., Smith F.G, Water vapor continuum absorption in the 3.5 – 4.0 μm region, Applied Optics, 1978, Volume 17, no. 17, Pages 2711-2720.
1978
White K.O., Watkins W.R., Bruce C.W., Meredith R.E., Smith F.G , Water vapor continuum absorption in the 3.5 – 4.0 μm region, Applied Optics, 1978 , Volume 17 , Number 17, Pages 2711-2720.
H2 O
T=296 К
P=760 атм
5. Our model
Волновое число (см⁻¹)
Коэффициент поглощения (Км⁻¹)
1990
Thomas M.E. , Infrared and millimetre-wavelength absorption in the atmospheric windows by water vapour and nitrogen: measurements and models , Ifrared Physics, 1990 , Volume 30 , Pages 161-174.
H2 O
T=∅
P=∅
9. D.E.Burch, et al. (1984) (2400 cm⁻¹)
1000/Т (К⁻¹)
Коэффициент поглощения (м²мол⁻¹кПа⁻¹)
Plot of the self-broadening coefficients at 2400 cm-1 vs the reciprocal of temperature.The symbol circles represents the experimental data points.
[27] D.E.Burch and R.L.Alt, AFGL-TR-84-0128, Ford Aerospace and Communications Corporation, Aeronutronic Division (1984).
1984
Burch D.E., Alt R.L. , Continuum absorption by H2 O in the 700 - 1200 cm-1 and 2400 - 2800 cm-1 windows, Report AFGL-TR-84-0128 by Ford Aerospace and Communications Corporation, Aeronutronic Division to AFGL, United States Air Force, Hanscom AFB, Unknown, 1984 , Pages 31.
H2 O
T=∅
P=∅
8. Wavenumber 2400 cm⁻¹. Temperature dependence. Experiment
1000/Т (К⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Plots of the self-broadening coefficients at 2400 cm-1 versus the reciprocal of temperature. Experiment
1990
Thomas M.E. , Infrared and millimetre-wavelength absorption in the atmospheric windows by water vapour and nitrogen: measurements and models , Ifrared Physics, 1990 , Volume 30 , Pages 161-174.
H2 O
T=∅
P=∅
9. D.E.Burch, et al. (1984) (2500 cm⁻¹)
1000/Т (К⁻¹)
Коэффициент поглощения (м²мол⁻¹кПа⁻¹)
Plots of the self-broadening coefficients at 2500 cm-1 vs the reciprocal of temperature.
[27] D. E. Burch and R. L. Alt, AFGL-TR-84-0128, Ford Aerospace and Communications Corporation, Aeronutronic Division (1984).
1984
Burch D.E., Alt R.L. , Continuum absorption by H2 O in the 700 - 1200 cm-1 and 2400 - 2800 cm-1 windows, Report AFGL-TR-84-0128 by Ford Aerospace and Communications Corporation, Aeronutronic Division to AFGL, United States Air Force, Hanscom AFB, Unknown, 1984 , Pages 31.
H2 O
T=∅
P=∅
8. Wavenumber 2500 cm⁻¹. Temperature dependence. Experiment
1000/Т (К⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Plots of the self-broadening coefficients at 2500 cm-1 versus the reciprocal of temperature. Experiment.
1990
Thomas M.E. , Infrared and millimetre-wavelength absorption in the atmospheric windows by water vapour and nitrogen: measurements and models , Ifrared Physics, 1990 , Volume 30 , Pages 161-174.
H2 O
T=∅
P=∅
9. D.E.Burch, et al. (1984) (2600 cm⁻¹)
1000/Т (К⁻¹)
Коэффициент поглощения (м²мол⁻¹кПа⁻¹)
Plots of the self-broadening coefficients at 2600 cm-1 vs the reciprocal of temperature. The symbol triangle represents the experimental data points.
[27] D. E. Burch and R. L. Alt, AFGL-TR-84-0128, Ford Aerospace and Communications Corporation, Aeronutronic Division (1984).
1984
Burch D.E., Alt R.L. , Continuum absorption by H2 O in the 700 - 1200 cm-1 and 2400 - 2800 cm-1 windows, Report AFGL-TR-84-0128 by Ford Aerospace and Communications Corporation, Aeronutronic Division to AFGL, United States Air Force, Hanscom AFB, Unknown, 1984 , Pages 31.
H2 O
T=∅
P=∅
8. Wavenumber 2600 cm⁻¹. Temperature dependence. Experiment
1000/Т (К⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Plots of the self-broadening coefficients at 2600 cm-1 versus the reciprocal of temperature. Experiment.
1991
A. Bauer and M. Godon , Temperature dependence of water-vapor absorption in linewings at 190 GHz, Journal of Quantitative Spectroscopy and Radiative Transfer, 1991 , Volume 46 , Issue 3, Pages 211-220.
H2 O
T=296 К
P=1 атм
8. M.E. Thomas, et al. (1982)
Смещение от центра линии (ГГц)
Коэффициент поглощения (см⁻¹)
Pure water vapor absorption vs deviation from resonant frequency v0 = 183.31 GHz; pH2O = 1 torr, T= 296°K;
[19]. M.E. Thomas and R. J. Nordstom, JQSRT 28, 81 (1982);
1982
Thomas M.E. and R.J.Nordstrom , The N2 -broadened water vapor absorption line shape and infrared continuum absorption - I. Theoretical development, Journal of Quantitative Spectroscopy and Radiative Transfer, 1982 , Volume 28 , Number 2, Pages 81-101.
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
1991
Aref'ev V. N. , Molecular absorption of radiation in the 8--13 μm atmospheric window (review), (Russian original) English version on pp 863-897, Известия АН СССР. Серия Физика атмосферы и океана, 1991 , Volume 27 , Pages 1187-1225.
H2 O
T=∅
P=∅
13. Bignell K.J. (1970). Experiment
Волновое число (см⁻¹)
Пропускание (%)
Сравнение данных разных авторов в диапазоне 8-13 мкм.
[223] Bignell K.J. The water - vapor infrared continuum, Quart. J. Roy. Meteor. Soc. 1970. V.96. No.409. 390-403
1970
K. J. Bignell , The water-vapour infra-red continuum, Quarterly Journal of Royal Meteorological Society, 1970 , Volume 96 , Issue 409, Pages 390 - 403.
Волновое число (см⁻¹) Волновое число (см⁻¹)
Коэффициент поглощения (г⁻¹см²) Коэффициент поглощения (см⁻¹атм⁻¹)
1991
Aref'ev V. N. , Molecular absorption of radiation in the 8--13 μm atmospheric window (review), (Russian original) English version on pp 863-897, Известия АН СССР. Серия Физика атмосферы и океана, 1991 , Volume 27 , Pages 1187-1225.
H2 O
T=∅
P=∅
13. Burch D.E. (1970) (700-1200 cm⁻¹)
Волновое число (см⁻¹)
Пропускание (%)
Сравнение данных разных авторов в диапазоне 8-13 мкм:
[227] Burch D.E. Investigation of the absorption of infrared radiation by atmospheric gases. in: Semi-annual Technical report. Air Force Cambridge Research Lab., Publ. U-4784 (1970) under contract NF 19628-69-c-0263. 27 p.
1970
Burch D.E. , Investigation of the absorption of infrared radiation by atmospheric gases, Semi-annual Technical report. Air Force Cambridge Research Lab., Publ. U-4784, Unknown, 1970 ,
1991
Aref'ev V. N. , Molecular absorption of radiation in the 8--13 μm atmospheric window (review), (Russian original) English version on pp 863-897, Известия АН СССР. Серия Физика атмосферы и океана, 1991 , Volume 27 , Pages 1187-1225.
H2 O
T=∅
P=∅
13. Burch D.E., et al. (1984) (700-1200 cm⁻¹)
Волновое число (см⁻¹)
Пропускание (%)
Сравнение данных разных авторов в диапазоне 8-13 мкм.
[232] Burch D.E. and Alt R.L., Continuum absorption by H2O in the 700 - 1200 cm-1 and 2400 - 2800 cm-1 windows. Report AFGL-TR-84-0128 by Ford Aerospace and Communications Corporation, Aeronutronic Division to AFGL, United States Air Force, Hanscom AFB, Massachusetts 01731 (1984), 31 p
1984
Burch D.E., Alt R.L. , Continuum absorption by H2 O in the 700 - 1200 cm-1 and 2400 - 2800 cm-1 windows, Report AFGL-TR-84-0128 by Ford Aerospace and Communications Corporation, Aeronutronic Division to AFGL, United States Air Force, Hanscom AFB, Unknown, 1984 , Pages 31.
1000/Т (К⁻¹) Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹) Коэффициент поглощения (см²мол⁻¹атм⁻¹)
1991
Aref'ev V. N. , Molecular absorption of radiation in the 8--13 μm atmospheric window (review), (Russian original) English version on pp 863-897, Известия АН СССР. Серия Физика атмосферы и океана, 1991 , Volume 27 , Pages 1187-1225.
H2 O
T=∅
P=∅
14. Montgomery G.P. (1978)
Температура (К)
Пропускание (%)
Сравнение данных разных авторов при различных температурах:
[233] Montgomery G.P. Temperature dependence of infrared absorption by the water vapor continuum near 1200 cm-1 , Appl. Optics 17, No. 15, 2299-2303 (1978).
1978
G. Paul Montgomery, Jr. , Temperature dependence of infrared absorption by the water vapor continuum near 1200 cm-1 , Applied Optics, 1978 , Volume 17 , Issue 15, Pages 2299-2303.
Температура (К)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
1991
Aref'ev V. N. , Molecular absorption of radiation in the 8--13 μm atmospheric window (review), (Russian original) English version on pp 863-897, Известия АН СССР. Серия Физика атмосферы и океана, 1991 , Volume 27 , Pages 1187-1225.
H2 O
T=∅
P=∅
14. Varanasi P. (1988)
Температура (К)
Пропускание (%)
Сравнение данных разных авторов при различных температурах:
[289] Varanasi P. On the nature of the infrared spectrum of water vapor between 8 and 14 μm, J.Quant.Spectrosc.Radiat.Transfer 40, No.3, 169-175 (1988)
1988
Prasad Varanasi , On the nature of the infrared spectrum of water vapor between 8 and 14 μm, Journal of Quantitative Spectroscopy and Radiative Transfer, 1988 , Volume 40 , Issue 3, Pages 169-175.
1000/Т (К⁻¹)Волновое число (см⁻¹) Длина волны (нм) Температура (К)
Коэффициент поглощения (см²мол⁻¹атм⁻¹) Коэффициент пропускания (произвольные единицы) Коэффициент пропускания (произвольные единицы) Коэффициент поглощения (см²мол⁻¹атм⁻¹)
1991
Delaye C. T., Thomas M. E. , Atmospheric continuum absorption models, Proc. SPIE 1487 Propagation Engineering: Fourth in a Series
, Editor(s) Luc R. Bissonnette, Walter B. Mill, SPIE - The international society for optical engineering, 1991 , Pages 291-298.
H2 O
T=∅
P=∅
1. Burch D.E. et al. (1984)
1000/Т (К⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Temperature dependence of self-broadening coefficient in the 10-μm region (Ref. 7—10).
[8] Burch D.E. and Alt R.L., Continuum absorption by H2 O in the 700 - 1200 cm-1 and 2400 - 2800 cm-1 windows. Report AFGL-TR-84-0128 by Ford Aerospace and Communications Corporation, Aeronutronic Division to AFGL, United States Air Force, Hanscom AFB, Massachusetts 01731 (1984), 31 p.
1984
Burch D.E., Alt R.L. , Continuum absorption by H2 O in the 700 - 1200 cm-1 and 2400 - 2800 cm-1 windows, Report AFGL-TR-84-0128 by Ford Aerospace and Communications Corporation, Aeronutronic Division to AFGL, United States Air Force, Hanscom AFB, Unknown, 1984 , Pages 31.
H2 O
T=300 К
P=∅
3. This work (700 cm⁻¹)
1000/Т (К⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
1991
Delaye C. T., Thomas M. E. , Atmospheric continuum absorption models, Proc. SPIE 1487 Propagation Engineering: Fourth in a Series
, Editor(s) Luc R. Bissonnette, Walter B. Mill, SPIE - The international society for optical engineering, 1991 , Pages 291-298.
H2 O
T=∅
P=∅
1. Loper G.L., et al. (1983)
1000/Т (К⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Temperature dependence of self-broadening coefficient in the 10-μm region (Ref. 7—10).
[7] Loper G.L., O’Neil M.A., Gelbwachs J.A. Water-vapor continuum CO2 laser absorption spectra between 27 C and -10 C, Appl. Optics 22 (23), 3701-3710 (1983).
1983
Loper G.L., O’Neil M.A., Gelbwachs J.A. , Water-vapor continuum CO2 laser absorption spectra between 27°C and -10°C, Applied Optics, 1983 , Volume 22 , Number 23, Pages 3701-3710.
H2 O
T=∅
P=∅
8. Collisional broadening model
Температура (К)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
1991
Delaye C. T., Thomas M. E. , Atmospheric continuum absorption models, Proc. SPIE 1487 Propagation Engineering: Fourth in a Series
, Editor(s) Luc R. Bissonnette, Walter B. Mill, SPIE - The international society for optical engineering, 1991 , Pages 291-298.
H2 O
T=∅
P=∅
1. Montgomery G.P. (1978)
1000/Т (К⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Temperature dependence of self-broadening coefficient in the 10-μm region (Ref. 7—10).
[9] Montgomery G.P. Temperature dependence of infrared absorption by the water vapor continuum near 1200 cm-1 , Appl. Optics 17, No. 15, 2299-2303 (1978).
1978
G. Paul Montgomery, Jr. , Temperature dependence of infrared absorption by the water vapor continuum near 1200 cm-1 , Applied Optics, 1978 , Volume 17 , Issue 15, Pages 2299-2303.
H2 O
T=∅
P=∅
3. Burch D.E. (1970) (280-400K, 1203 cm⁻¹)
Температура (К)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
[1]. D. E. Burch, Investigation of the Absorption of Infrared Radiation by Atmospheric Gases, Semiannual Technical Report, Aeronutronic Division of Philco-Ford Corporation, Aeronutronic Report U-4784 (31 January 1970).
1991
Delaye C. T., Thomas M. E. , Atmospheric continuum absorption models, Proc. SPIE 1487 Propagation Engineering: Fourth in a Series
, Editor(s) Luc R. Bissonnette, Walter B. Mill, SPIE - The international society for optical engineering, 1991 , Pages 291-298.
H2 O
T=296 К
P=∅
2. White K.O., et al. (1978)
Волновое число (см⁻¹)
Коэффициент поглощения (Км⁻¹)
4—μm water vapor continuum region at T =296 K. Absorption coefficient versus wavelength (Ref. 13, 14).
[13] White K.O., Watkins W.R., Bruce C.W., Meredith R.E., Smith F.G. Water vapor continuum absorption in the 3.5 – 4.0 μm region, Appl. Opt. 1978, V.17, No.17, p.2711-2720.
1978
White K.O., Watkins W.R., Bruce C.W., Meredith R.E., Smith F.G , Water vapor continuum absorption in the 3.5 – 4.0 μm region, Applied Optics, 1978 , Volume 17 , Number 17, Pages 2711-2720.
H2 O
T=296 К
P=760 атм
5. Our measurement
Волновое число (см⁻¹)
Коэффициент поглощения (Км⁻¹)
1991
Ma Q. , Tipping R.H. , A far wing line shape theory and its application to the water continuum. I., Journal of Chemical Physics, 1991 , Volume 95 , Number 9, Pages 6290-6301.
H2 O
T=296 К
P=∅
4. The experimental values of Burch et al.(1979,1981,1984) (296K, 350-1100 cm⁻¹)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
The absorption coefficient α(ω) (in units of cm2 molecule-1 atm -1 ) as a function of frequency ω (in units of cm-1 ) calculated for T = 296°K. The experimental values of Burch et al.[9] are denoted by +,
9 D. E. Burch, SPIE Proc. 277, 28 (1981);
D. E. Burch and D. A. Gryvnak, Report No. AFGL-TR-79-0054, 1979;
D. E. Burch and R. L. Alt, Report No. AFGL-TR-84-0128, 1984.
1981
Burch D.E. , Continuum absorption by atmospheric H2 O, SPIE Proc. Atmospheric Transmission, V.277, Editor(s) Robert W. Fan, SPIE - The international society for optical engineering, 1981 , Pages 28-39.
H2 O
T=296 К
P=∅
4. Experiment (296K, 300-800 cm⁻¹)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Semi-logarithmic plot of the H2 O continuum coefficient for self broadening at 296°K. The solid squares represent experimental values.
1991
Ma Q. , Tipping R.H. , A far wing line shape theory and its application to the water continuum. I., Journal of Chemical Physics, 1991 , Volume 95 , Number 9, Pages 6290-6301.
H2 O
T=338 К
P=∅
5. D.E. Burch (1981) (338K, 300-450 cm⁻¹)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
The absorption coefficient α(ω) (in units of cm2 molecule-1 atm-1 ) as a function of frequency ω (in units of cm-1 ) calculated for T = 338°K. The experimental values of Burch et al. [9] are denoted by +.
[9]. D.E. Burch, SPIE Proc. 277, 28 (1981);
D. E. Burch and D. A. Gryvnak, Report No. AFGL-TR-79-0054, 1979;
D. E. Burch and R. L. Alt, Report No. AFGL-TR-84-0128, 1984.
1979
Burch D.E., Gryvnak D.A. , Method of calculating H2 O transmission between 333 and 633 cm -1 , AFB Report No. AFGL-TR-79-0054, Unknown, 1979 ,
H2 O
T=338 К
P=1 атм
3. Original experimental data H₂O (338 K, 300-480 cm⁻¹)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Semi-logarithmic plot of the H2 O continuum coefficient for self broadening at 338°K
1991
Ma Q. , Tipping R.H. , A far wing line shape theory and its application to the water continuum. I., Journal of Chemical Physics, 1991 , Volume 95 , Number 9, Pages 6290-6301.
H2 O
T=430 К
P=∅
6. D.E.Burch (1981) (430K, 400-800 cm⁻¹)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
The absorption coefficient α(ω) (in units of cm2 molecule-1 atm-1 ) as a function of frequency ω (in units of cm-1 ) calculated for T = 430°K. The experimental values of Burch et al.[9] are denoted by +.
[9]. D.E. Burch, SPIE Proc. 277, 28 (1981);
D. E. Burch and D. A. Gryvnak, Report No. AFGL-TR-79-0054, 1979;
D. E. Burch and R. L. Alt, Report No. AFGL-TR-84-0128, 1984.
1981
Burch D.E. , Continuum absorption by atmospheric H2 O, SPIE Proc. Atmospheric Transmission, V.277, Editor(s) Robert W. Fan, SPIE - The international society for optical engineering, 1981 , Pages 28-39.
H2 O
T=430 К
P=∅
1. Experimental data (430K, 625-818 cm⁻¹)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Spectral plot of Cs for H2 O at 430°K.
1992
Kilsby C.G., Edwards D.P., Saunders R. W., Foot J.S. , Water-Vapour Continuum Absorption In the Tropics: Aircraft Measurements and Model Comparisons , Quarterly Journal of Royal Meteorological Society, 1992 , Volume 118 , Issue 506 Part A, Pages 715–748.
H2 O
T=296 К
P=∅
2. Best fit to Burch D.E. at al. (1984) (296K, 700-1200 cm⁻¹)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
A best fit to Burch and Alt (1984) data is shown.
Burch, D. E. and Alt, R. L. Continuum absorption by H2 O in the 700-1200 cm-1 and 2400-2800 cm-1 windows. Report AFGL TR-84-0128. AFGL, Hanscom, AFB, MA 1984.
1984
Burch D.E., Alt R.L. , Continuum absorption by H2 O in the 700 - 1200 cm-1 and 2400 - 2800 cm-1 windows, Report AFGL-TR-84-0128 by Ford Aerospace and Communications Corporation, Aeronutronic Division to AFGL, United States Air Force, Hanscom AFB, Unknown, 1984 , Pages 31.
H2 O
T=296 К
P=∅
1. Our fitting (296K, 700-1100cm⁻¹)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
1992
Kilsby C.G., Edwards D.P., Saunders R. W., Foot J.S. , Water-Vapour Continuum Absorption In the Tropics: Aircraft Measurements and Model Comparisons , Quarterly Journal of Royal Meteorological Society, 1992 , Volume 118 , Issue 506 Part A, Pages 715–748.
H2 O
T=∅
P=∅
2. Empirical model of Clough et al. (1989) based on Burch and Alt (1984)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
The self-broadened continuum absorption coefficient Cs at 296°K as a function of wavenumber.
Clough et al. (1989) (short-dashed line), based on Burch and Alt (1984).
Clough, S. A., Kneizys, F. X., Davies, R., Line shape and the water vapour continuum. Atmos. Res., 23, (3/4), 229-241 1989.
Burch, D. E. and Alt, R. L. Continuum absorption by H2O in the 700-1200 cm-1 and 2400-2800 windows. Report AFGL TR-84-0128. AFGL, Hanscom, AFB, MA 1984.
1984
Burch D.E., Alt R.L. , Continuum absorption by H2 O in the 700 - 1200 cm-1 and 2400 - 2800 cm-1 windows, Report AFGL-TR-84-0128 by Ford Aerospace and Communications Corporation, Aeronutronic Division to AFGL, United States Air Force, Hanscom AFB, Unknown, 1984 , Pages 31.
H2 O
T=296 К
P=∅
2. (296K, 700-1100cm⁻¹)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
The curve for 296°K from Figure 1 is repeated for comparison.
1992
Kilsby C.G., Edwards D.P., Saunders R. W., Foot J.S. , Water-Vapour Continuum Absorption In the Tropics: Aircraft Measurements and Model Comparisons , Quarterly Journal of Royal Meteorological Society, 1992 , Volume 118 , Issue 506 Part A, Pages 715–748.
H2 O
T=∅
P=∅
2. Empirical model of Roberts et al. (1976)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
The self-broadened continuum absorption coefficient Cs at 296°K as a function of wavenumber. Empirical model of Roberts et al. (1976) based on Burch (1981).
Roberts, R. E., Selby. J. E. A., Biberman, L. M. Infrared continuum absorption by atmospheric water vapour in the 8-12 μm window. Appl. Opr., 15, (9), 2085-2090, 1976.
Burch, D. E. Continuum absorption by atmospheric H2 O Proc. SOC. Photo-Instrum. Eng., 277, 28-39 (1981)
1976
Robert E. Roberts, John E. A. Selby, and Lucien M. Biberman , Infrared continuum absorption by atmospheric water vapor in the 8–12-µm window, Applied Optics, 1976 , Volume 15 , Issue 9, Pages 2085-2090.
H2 O
T=296 К
P=∅
2. Linear regression to all Burch's recent data
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Water vapor continuum absorption coefficient Co (v) at T=296°K as a function of frequency v and wavelength λ in the 8-30 μm region. The solid line represents a linear regression (described in text) to all Burch's recent water vapor data for the 8-30 μm region.
1992
Kilsby C.G., Edwards D.P., Saunders R. W., Foot J.S. , Water-Vapour Continuum Absorption In the Tropics: Aircraft Measurements and Model Comparisons , Quarterly Journal of Royal Meteorological Society, 1992 , Volume 118 , Issue 506 Part A, Pages 715–748.
H2 O
T=∅
P=∅
3. Laboratory measured values of Burch and Alt (1984) (1000 cm⁻¹)
1000/Т (К⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
The crosses show the laboratory measured values of Burch and Alt (1984).
Burch, D. E. and Alt, R. L. Continuum absorption by H2 O in the 700-1200 cm-1 and 2400-2800 cm-1 windows. Report AFGL TR-84-0128. AFGL, Hanscom, AFB, MA 1984.
1984
Burch D.E., Alt R.L. , Continuum absorption by H2 O in the 700 - 1200 cm-1 and 2400 - 2800 cm-1 windows, Report AFGL-TR-84-0128 by Ford Aerospace and Communications Corporation, Aeronutronic Division to AFGL, United States Air Force, Hanscom AFB, Unknown, 1984 , Pages 31.
H2 O
T=∅
P=∅
3. This work (1000 cm⁻¹)
1000/Т (К⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
1992
Kilsby C.G., Edwards D.P., Saunders R. W., Foot J.S. , Water-Vapour Continuum Absorption In the Tropics: Aircraft Measurements and Model Comparisons , Quarterly Journal of Royal Meteorological Society, 1992 , Volume 118 , Issue 506 Part A, Pages 715–748.
H2 O
T=296 К
P=∅
3. Roberts et al. (1976) parametrization (T₀=1800K) (1000 cm⁻¹)
1000/Т (К⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Cs at 1000 cm-1 as a function of inverse temperature according to the empirical models of Roberts et al. (1976). The Roberts et al. (1976) parametrization is shown for three values of To: 1800K (dotted line);
Roberts, R. E., Selby. J. E. A. , Biberman, L. M. Infrared continuum absorption by atmospheric water vapour in the 8-12 μm window. Appl. Opr., 15, (9), 2085-2090, 1976.
1976
Robert E. Roberts, John E. A. Selby, and Lucien M. Biberman , Infrared continuum absorption by atmospheric water vapor in the 8–12-µm window, Applied Optics, 1976 , Volume 15 , Issue 9, Pages 2085-2090.
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
1992
Kilsby C.G., Edwards D.P., Saunders R. W., Foot J.S. , Water-Vapour Continuum Absorption In the Tropics: Aircraft Measurements and Model Comparisons , Quarterly Journal of Royal Meteorological Society, 1992 , Volume 118 , Issue 506 Part A, Pages 715–748.
H2 O
T=∅
P=∅
3. Roberts et al. (1976) parametrization (T₀=2900K) (1000 cm⁻¹)
1000/Т (К⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Cs at 1000 cm-1 as a function of inverse temperature according to the empirical models of Roberts et al. (1976). The Roberts et al. (1976) parametrization is shown for three values of To: 1800K (dotted line);
Roberts, R. E., Selby. J. E. A. , Biberman, L. M. Infrared continuum absorption by atmospheric water vapour in the 8-12 μm window. Appl. Opr., 15, (9), 2085-2090, 1976.
1976
Robert E. Roberts, John E. A. Selby, and Lucien M. Biberman , Infrared continuum absorption by atmospheric water vapor in the 8–12-µm window, Applied Optics, 1976 , Volume 15 , Issue 9, Pages 2085-2090.
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
1992
Kilsby C.G., Edwards D.P., Saunders R. W., Foot J.S. , Water-Vapour Continuum Absorption In the Tropics: Aircraft Measurements and Model Comparisons , Quarterly Journal of Royal Meteorological Society, 1992 , Volume 118 , Issue 506 Part A, Pages 715–748.
H2 O
T=296 К
P=∅
3. Roberts et al. (1976) parametrization (T₀=4000K) (1000 cm⁻¹)
1000/Т (К⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Cs at 1000 cm-1 as a function of inverse temperature according to the empirical models of Roberts et al. (1976). The Roberts et al. (1976) parametrization is shown for three values of To: 1800K (dotted line);
Roberts, R. E., Selby. J. E. A. , Biberman, L. M. Infrared continuum absorption by atmospheric water vapour in the 8-12 μm window. Appl. Opr., 15, (9), 2085-2090, 1976.
1976
Robert E. Roberts, John E. A. Selby, and Lucien M. Biberman , Infrared continuum absorption by atmospheric water vapor in the 8–12-µm window, Applied Optics, 1976 , Volume 15 , Issue 9, Pages 2085-2090.
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
1992
M. Godon, J. Carlier and A. Bauer , Laboratory studies of water vapor absorption in the atmospheric window at 213 GHz, Journal of Quantitative Spectroscopy and Radiative Transfer, 1992 , Volume 47 , Issue 4, Pages 275-285.
H2 O
T=296 К
P=0.00131579 атм
9. S.A.Zhevakin et al. (1963). Calculated values
Частота (ГГц)
Коэффициент поглощения (см⁻¹)
Absorption of pure water vapor (logarithmic scale) vs frequency in GHz; p = 1 torr, T = 296°K.
[54]. S. A. Zhevakin and A. P. Naumov, IZV. Vysshikh Uchebn, Zavedenii Radiofiz. 6, 674 (1963).
1963
Жевакин С.А., Наумов А.П. , О коэффициенте поглощения электромагнитных волн водяным паром в диапазоне 10 мкм - 2 см, Известия ВУЗов, Радиофизика, 1963 , Volume 6 , Number 4, Pages 674-693.
H2 O
T=293 К
P=760 атм
1. Our calculation
Волновое число (см⁻¹)
Коэффициент поглощения (дБ/км)
Коэффициент поглощения водяным паром, вычисленный с формой линии по кинетическому уравнению.
1992
Ma Q. , Tipping R.H. , A far wing line shape theory and its application to the water vibrational bands. II., Journal of Chemical Physics, 1992 , Volume 96 , Number 12, Pages 8655-8663.
H2 O
T=296 К
P=∅
11. Burch et al. (1984, 1985) (296K, 3090-4220 cm⁻¹)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
[18] D. E. Burch and R. L. Alt, AFGL-TR-84-0128 (1984);
D. E. Burch, AFGL-TR-85-0036 (1985).
1985
Burch D.E. , Absorption by H2 O in narrow windows between 3000 - 4200 cm-1 , Report AFGL-TR-85-0036 by Ford Aerospace and Communications Corporation, Aeronutronic Division to AFGL, United States Air Force, Hanscom AFB, Unknown, 1985 , Pages 37.
H2 O
T=296 К
P=∅
3. Corrected e Cs ⁰ (3000-4400 cm⁻¹)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Spectral plots of the normalized absorption coefficients from 3000 to 4200 cm-1 for self broadening. The corrected values (solid squares) are the sums of the empirical and calculated values (see Eq. 17). Temperature, 296 K.
1992
Ma Q. , Tipping R.H. , A far wing line shape theory and its application to the water vibrational bands. II., Journal of Chemical Physics, 1992 , Volume 96 , Number 12, Pages 8655-8663.
H2 O
T=296 К
P=∅
4. Rosenkranz's results
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
The absorption coefficient α(ω) (in units of cm2 molecule-1 atm-1 ) as a function of frequency ω (in units of cm-1) calculated for T= 296°K. The results obtained from Rosenkranz's band averaged relaxation parameter with modified normalization factor are the dotted curve.
P. W. Rosenkranz, J. Chem. Phys. 83, 6139 (1985); 87,163 (1987).
1987
Rosenkranz P.W. , Pressure broadening of rotational bands, II. Water vapor from 300 to 1100 cm-1, Journal of Chemical Physics, 1987 , Volume 87 , Number 1, Pages 163-170.
H2 O
T=298 К
P=1 атм
6. Self-broadened
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Absorption cross section per H2 O molecule at 296°K, normalized to 1 atm perturber pressure. Calculations are for broadening by H2 O (squares).
1992
Ma Q. , Tipping R.H. , A far wing line shape theory and its application to the water vibrational bands. II., Journal of Chemical Physics, 1992 , Volume 96 , Number 12, Pages 8655-8663.
H2 O
T=428 К
P=∅
9. Burch D.E. et al. (1971) (428K, 2400-2670 cm⁻¹)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
The experimental data is represented by Δ.
[18] Burch D.E., Gryvnak D.A., Pembrook J.D. Investigation of the absorption of infrared radiation by atmospheric gases: water, nitrogen, nitrous oxide AFCRL-71-0124 U-4897, 1971
1971
Burch D.E., Gryvnak D.A., Pembrook J.D. , Investigation of the absorption of infrared radiation by atmospheric gases: water, nitrogen, nitrous oxide, Aeronutronic, Rep. U4897, Contract F19628-69-C-0263, Philco-Ford Corp., Unknown, 1971 ,
H2 O
T=428 К
P=∅
2. Experimental points (428K, 2400-2829cm⁻¹)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Spectral plots of C0 s ,w between 2400 and 2829 cm-1 for H2 O at four temperatures.
1992
Ma Q. , Tipping R.H. , A far wing line shape theory and its application to the water vibrational bands. II., Journal of Chemical Physics, 1992 , Volume 96 , Number 12, Pages 8655-8663.
H2 O
T=296 К
P=∅
9. Burch D.E. et al. (1984) (296K, 2400-2650 cm⁻¹)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
The experimental data is represented by o.
[18] D. E. Burch and R. L. Alt, AFGL-TR-84-0128 (1984);
D. E. Burch, AFGL-TR-85-0036 (1985).
1984
Burch D.E., Alt R.L. , Continuum absorption by H2 O in the 700 - 1200 cm-1 and 2400 - 2800 cm-1 windows, Report AFGL-TR-84-0128 by Ford Aerospace and Communications Corporation, Aeronutronic Division to AFGL, United States Air Force, Hanscom AFB, Unknown, 1984 , Pages 31.
H2 O
T=296 К
P=∅
6. Experiment (296K, 2400-2640cm⁻¹)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Self-broadening coefficients between 2400 and 2640 cm-1 for 296°K.
1992
Ma Q. , Tipping R.H. , A far wing line shape theory and its application to the water vibrational bands. II., Journal of Chemical Physics, 1992 , Volume 96 , Number 12, Pages 8655-8663.
H2 O
T=328 К
P=∅
9. Burch D.E. et al. (1984) (328K, 2400-2650 cm⁻¹)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
The experimental data are represented by x.
[18] D. E. Burch and R. L. Alt, AFGL-TR-84-0128 (1984);
D. E. Burch, AFGL-TR-85-0036 (1985).
1984
Burch D.E., Alt R.L. , Continuum absorption by H2 O in the 700 - 1200 cm-1 and 2400 - 2800 cm-1 windows, Report AFGL-TR-84-0128 by Ford Aerospace and Communications Corporation, Aeronutronic Division to AFGL, United States Air Force, Hanscom AFB, Unknown, 1984 , Pages 31.
H2 O
T=328 К
P=∅
6. Experiment (328K, 2400-2640cm⁻¹)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Self-broadening coefficients between 2400 and 2640 cm-1 for 328°K.
1993
G. R. Davis , The far infrared continuum absorption of water vapour, Journal of Quantitative Spectroscopy and Radiative Transfer, 1993 , Volume 50 , Issue 6, Pages 673-694.
H2 O
T=∅
P=∅
14. D. E. Burch (1968) (0-2 cm⁻¹)
Волновое число (см⁻¹)
Коэффициент поглощения (м²мол⁻¹)
Self-broadened continuum coetficients in the infrared and submiliimetre.
[37] Burch D.E., Absorption of infrared radiant energy by CO2 and H2 O. III. Absorption by H2 O between 0.5-36 cm-1 (278-2 cm)., Journal of Optical Society of America, 1968 , Volume 58 , no. 10, Pages 1383-1394, DOI: https://doi.org/10.1364/JOSA.58.001383.
1968
Burch D.E. , Absorption of infrared radiant energy by CO2 and H2 O. III. Absorption by H2 O between 0.5-36 cm-1 (278-2 cm)., Journal of Optical Society of America, 1968 , Volume 58 , Number 10, Pages 1383-1394.
Волновое число (см⁻¹) Волновое число (см⁻¹)
Коэффициент поглощения (г⁻¹см²)Коэффициент пропускания (произвольные единицы)
1993
G. R. Davis , The far infrared continuum absorption of water vapour, Journal of Quantitative Spectroscopy and Radiative Transfer, 1993 , Volume 50 , Issue 6, Pages 673-694.
H2 O
T=∅
P=∅
14. D.E. Burch et al. (1980)
Волновое число (см⁻¹)
Коэффициент поглощения (м²мол⁻¹)
Self-broadened continuum coetficients in the infrared and submiliimetre.
Burch D.E., Gryvnak D.A., Continuum absorption by H2 O vapor in the infrared and millimeter regions, Atmospheric water vapor, Editor(s) Deepak A., Wilkerson T.D., Ruhnke L.H., New York, London, Toronto, Sydney, San Francisco, Academic Press, 1980, Pages 47-76.
1980
Burch D.E., Gryvnak D.A. , Continuum absorption by H2 O vapor in the infrared and millimeter regions., Atmospheric water vapor, Editor(s) Deepak A., Wilkerson T.D., Ruhnke L.H., Academic Press, 1980 , Pages 47-76.
H2 O
T=296 К
P=∅
1. Experiment (296K, 600-1350 cm⁻¹)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Spectral plots of Cs 0 for H2 O at temperature 296°K.
1993
J.M. Hartmann, M.Y. Perrin, Q. Ma and R.H. Tipping , The infrared continuum of pure water vapor: calculations and high temperature measurements, Journal of Quantitative Spectroscopy and Radiative Transfer, 1993 , Volume 49 , Issue 6, Pages 675-691.
H2 O
T=686 К
P=24.15 атм
14. Thomas (1990). Experiment (2200-3300 cm⁻¹)
Волновое число (см⁻¹)
Коэффициент поглощения (см⁻¹)
Pure H2 O absorption coefficients for the temperature of 686°K and the pressure 24.15 atm: experimental data from Fig. 11 of Ref. 9;
[9] Thomas M.E., Infrared and millimetre-wavelength absorption in the atmospheric windows by water vapour and nitrogen: measurements and models, Infrared Phys. 30, 161-174 (1990) doi:10.1016/002.
1990
Thomas M.E. , Infrared and millimetre-wavelength absorption in the atmospheric windows by water vapour and nitrogen: measurements and models , Ifrared Physics, 1990 , Volume 30 , Pages 161-174.
H2 O
T=685 К
P=24.151 атм
11. Water vapor (24.15 atm, 685K)
Волновое число (см⁻¹)
Коэффициент поглощения (м⁻¹)
Pure water vapor absorption coefficient at T = 685°K and 24.15 atm.
1993
J.M. Hartmann, M.Y. Perrin, Q. Ma and R.H. Tipping , The infrared continuum of pure water vapor: calculations and high temperature measurements, Journal of Quantitative Spectroscopy and Radiative Transfer, 1993 , Volume 49 , Issue 6, Pages 675-691.
H2 O
T=686 К
P=24.15 атм
14. Thomas (1990). Experiment (4100-5000 cm⁻¹)
Волновое число (см⁻¹)
Коэффициент поглощения (см⁻¹)
Pure H2 O absorption coefficients for the temperature of 686°K and the pressure 24.15 atm: experimental data from Fig. 11 of Ref. 9.
[9] Thomas M.E., Infrared and millimetre-wavelength absorption in the atmospheric windows by water vapour and nitrogen: measurements and models, Infrared Phys. 30, 161-174 (1990) doi:10.1016/002.
1990
Thomas M.E. , Infrared and millimetre-wavelength absorption in the atmospheric windows by water vapour and nitrogen: measurements and models , Ifrared Physics, 1990 , Volume 30 , Pages 161-174.
1000/Т (К⁻¹) 1000/Т (К⁻¹) Волновое число (см⁻¹) Волновое число (см⁻¹) Длина волны (мкм)
Коэффициент поглощения (м²мол⁻¹кПа⁻¹) Коэффициент поглощения (см²мол⁻¹атм⁻¹) Коэффициент поглощения (м⁻¹) Коэффициент поглощения (м²мол⁻¹кПа⁻¹) Коэффициент поглощения (Км⁻¹)
1993
J.M. Hartmann, M.Y. Perrin, Q. Ma and R.H. Tipping , The infrared continuum of pure water vapor: calculations and high temperature measurements, Journal of Quantitative Spectroscopy and Radiative Transfer, 1993 , Volume 49 , Issue 6, Pages 675-691.
H2 O
T=686 К
P=24.15 атм
14. Thomas (1990). Experiment (5600-6000 cm⁻¹)
Волновое число (см⁻¹)
Коэффициент поглощения (см⁻¹)
Pure H2 O absorption coefficients for the temperature of 686°K and the pressure 24.15 atm: experimental data from Fig.11 of Ref. 9.
[9] Thomas M.E., Infrared and millimetre-wavelength absorption in the atmospheric windows by water vapour and nitrogen: measurements and models, Infrared Phys. 30, 161-174 (1990) doi:10.1016/002.
1990
Thomas M.E. , Infrared and millimetre-wavelength absorption in the atmospheric windows by water vapour and nitrogen: measurements and models , Ifrared Physics, 1990 , Volume 30 , Pages 161-174.
H2 O
T=685 К
P=24.151 атм
11. Water vapor (24.15 atm, 685K)
Волновое число (см⁻¹)
Коэффициент поглощения (м⁻¹)
Pure water vapor absorption coefficient at T = 685°K and 24.15 atm.
1993
J.M. Hartmann, M.Y. Perrin, Q. Ma and R.H. Tipping , The infrared continuum of pure water vapor: calculations and high temperature measurements, Journal of Quantitative Spectroscopy and Radiative Transfer, 1993 , Volume 49 , Issue 6, Pages 675-691.
H2 O
T=∅
P=∅
3. Burch, et al. (1984,1985). H₂O continuum absorption coefficient (2400 cm⁻¹)
1000/Т (К⁻¹)
Коэффициент поглощения (см⁻¹Амага⁻²)
Measured pure H2 O continuum absorption coefficients vs temperature for the following wavenumbers: 2400 cm-1 ; Ref.(30).
[30] D.E. Burch, Report AFGL-TR-85 (1985); D.E. Burch and R. L. Alt, Report AFGL-TR-0128 (1984).
1984
Burch D.E., Alt R.L. , Continuum absorption by H2 O in the 700 - 1200 cm-1 and 2400 - 2800 cm-1 windows, Report AFGL-TR-84-0128 by Ford Aerospace and Communications Corporation, Aeronutronic Division to AFGL, United States Air Force, Hanscom AFB, Unknown, 1984 , Pages 31.
1000/Т (К⁻¹)Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹) Коэффициент поглощения (см²мол⁻¹атм⁻¹)
1993
J.M. Hartmann, M.Y. Perrin, Q. Ma and R.H. Tipping , The infrared continuum of pure water vapor: calculations and high temperature measurements, Journal of Quantitative Spectroscopy and Radiative Transfer, 1993 , Volume 49 , Issue 6, Pages 675-691.
H2 O
T=∅
P=∅
3. Burch, et al. (1984,1985). H₂O continuum absorption coefficient (2600 cm⁻¹)
1000/Т (К⁻¹)
Коэффициент поглощения (см⁻¹Амага⁻²)
Measured pure H2 O continuum absorption coefficients vs temperature for the following wavenumbers: 2600 cm-1 ; Ref. 30.
[30] D. E. Burch, Report AFGL-TR-85 (1985);
D. E. Burch and R. L. Alt, Report AFGL-TR-0128 (1984).
1985
Burch D.E. , Absorption by H2 O in narrow windows between 3000 - 4200 cm-1 , Report AFGL-TR-85-0036 by Ford Aerospace and Communications Corporation, Aeronutronic Division to AFGL, United States Air Force, Hanscom AFB, Unknown, 1985 , Pages 37.
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
1993
J.M. Hartmann, M.Y. Perrin, Q. Ma and R.H. Tipping , The infrared continuum of pure water vapor: calculations and high temperature measurements, Journal of Quantitative Spectroscopy and Radiative Transfer, 1993 , Volume 49 , Issue 6, Pages 675-691.
H2 O
T=296 К
P=∅
7. D.E. Burch, et al. (1975, 1979, 1987) (296K)
Смещение от центра линии (см⁻¹)
Средний эффективный параметр уширения (см⁻¹атм⁻¹)
Averaged effective broadening-parameter vs displacement from line center deduced from (Ref. 29 below 500°K, Table 3 above).
[29]. D.E. Burch, D.A. Gryvnak and J.D. Pembrook, Report AFGL-TR-79-0054 1979);
D. E. Bruch, D. A. Gryvnak, and J. D. Pembrook, Report AFCRL-TR-75-0420 (1975) and
C. Boulet, ibid. 26, 554 (1987).
1979
Burch D.E., Gryvnak D.A. , Method of calculating H2 O transmission between 333 and 633 cm -1 , AFB Report No. AFGL-TR-79-0054, Unknown, 1979 ,
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
1993
J.M. Hartmann, M.Y. Perrin, Q. Ma and R.H. Tipping , The infrared continuum of pure water vapor: calculations and high temperature measurements, Journal of Quantitative Spectroscopy and Radiative Transfer, 1993 , Volume 49 , Issue 6, Pages 675-691.
H2 O
T=296 К
P=∅
7. Q. Ma et al. (1990) (296K)
Смещение от центра линии (см⁻¹)
Средний эффективный параметр уширения (см⁻¹атм⁻¹)
Averaged effective broadening-parameter vs displacement calculated (see text) according to the model of Ref. 19.
[19]. Ma Q. , Tipping R.H. , The atmospheric water continuum in the infrared: Extension of the statistical theory of Rozenkranz, Journal of Chemical Physics, 1990 , Volume 93 , no. 10, Issue https://doi.org/, Pages 7066-7075, DOI: 10.1063/1.459429, https://doi.org/10.1063/1.459429 ).
1990
Ma Q., Tipping R.H. , The atmospheric water continuum in the infrared: Extension of the statistical theory of Rozenkranz, Journal of Chemical Physics, 1990 , Volume 93 , Number 10, Issue https://doi.org/, Pages 7066-7075.
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
1993
J.M. Hartmann, M.Y. Perrin, Q. Ma and R.H. Tipping , The infrared continuum of pure water vapor: calculations and high temperature measurements, Journal of Quantitative Spectroscopy and Radiative Transfer, 1993 , Volume 49 , Issue 6, Pages 675-691.
H2 O
T=430 К
P=∅
7. D.E. Burch, et al. (430K)
Смещение от центра линии (см⁻¹)
Средний эффективный параметр уширения (см⁻¹атм⁻¹)
Averaged effective broadening-parameter vs displacement from line center deduced from (Ref. 29 below 500°K, Table 3 above). [29].
D. E. Burch, D. A. Gryvnak and J. D. Pembrook, Report AFGL-TR-79-0054 1979);
D. E. Bruch, D. A. Gryvnak, and J. D. Pembrook, Report AFCRL-TR-75-0420 (1975) and
C. Boulet, ibid. 26, 554 (1987).
1979
Burch D.E., Gryvnak D.A. , Method of calculating H2 O transmission between 333 and 633 cm -1 , AFB Report No. AFGL-TR-79-0054, Unknown, 1979 ,
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
1993
J.M. Hartmann, M.Y. Perrin, Q. Ma and R.H. Tipping , The infrared continuum of pure water vapor: calculations and high temperature measurements, Journal of Quantitative Spectroscopy and Radiative Transfer, 1993 , Volume 49 , Issue 6, Pages 675-691.
H2 O
T=575 К
P=∅
7. D.E. Burch, et al. (575K)
Смещение от центра линии (см⁻¹)
Средний эффективный параметр уширения (см⁻¹атм⁻¹)
Averaged effective broadening-parameter vs displacement from line center deduced from (Ref. 29 below 500°K, Table 3 above).
[29]. D.E. Burch, D.A. Gryvnak and J.D. Pembrook, Report AFGL-TR-79-0054 (1979);
D. E. Bruch, D. A. Gryvnak, and J. D. Pembrook, Report AFCRL-TR-75-0420 (1975) and
C. Boulet, ibid. 26, 554 (1987)
1979
Burch D.E., Gryvnak D.A. , Method of calculating H2 O transmission between 333 and 633 cm -1 , AFB Report No. AFGL-TR-79-0054, Unknown, 1979 ,
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
1993
J.M. Hartmann, M.Y. Perrin, Q. Ma and R.H. Tipping , The infrared continuum of pure water vapor: calculations and high temperature measurements, Journal of Quantitative Spectroscopy and Radiative Transfer, 1993 , Volume 49 , Issue 6, Pages 675-691.
H2 O
T=765 К
P=∅
7. D.E. Burch, et al. (765K)
Смещение от центра линии (см⁻¹)
Средний эффективный параметр уширения (см⁻¹атм⁻¹)
Averaged effective broadening-parameter vs displacement from line center deduced from (Ref. 29 below 500°K, Table 3 above).
[29]. D.E. Burch, D.A. Gryvnak and J.D. Pembrook, Report AFGL-TR-79-0054 1979);
D. E. Bruch, D. A. Gryvnak, and J. D. Pembrook, Report AFCRL-TR-75-0420 (1975) and
C. Boulet, ibid. 26, 554 (1987).
1979
Burch D.E., Gryvnak D.A. , Method of calculating H2 O transmission between 333 and 633 cm -1 , AFB Report No. AFGL-TR-79-0054, Unknown, 1979 ,
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
1993
J.M. Hartmann, M.Y. Perrin, Q. Ma and R.H. Tipping , The infrared continuum of pure water vapor: calculations and high temperature measurements, Journal of Quantitative Spectroscopy and Radiative Transfer, 1993 , Volume 49 , Issue 6, Pages 675-691.
H2 O
T=430 К
P=∅
7. Q. Ma et al. (1990) (430K)
Смещение от центра линии (см⁻¹)
Средний эффективный параметр уширения (см⁻¹атм⁻¹)
Averaged effective broadening-parameter vs displacement calculated (see text) according to the model of Ref. 19.
[19]. Q. Ma and R.H. Tipping, J. Chem. Phys. 93, 7066 (1990).
1990
Ma Q., Tipping R.H. , The atmospheric water continuum in the infrared: Extension of the statistical theory of Rozenkranz, Journal of Chemical Physics, 1990 , Volume 93 , Number 10, Issue https://doi.org/, Pages 7066-7075.
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
1993
J.M. Hartmann, M.Y. Perrin, Q. Ma and R.H. Tipping , The infrared continuum of pure water vapor: calculations and high temperature measurements, Journal of Quantitative Spectroscopy and Radiative Transfer, 1993 , Volume 49 , Issue 6, Pages 675-691.
H2 O
T=575 К
P=∅
7. Q. Ma et al. (1990) (575K)
Смещение от центра линии (см⁻¹)
Средний эффективный параметр уширения (см⁻¹атм⁻¹)
Averaged effective broadening-parameter vs displacement from line center calculated (see text) according to the model of Ref. 19.
[19]. Q. Ma and R.H. Tipping, J. Chem. Phys. 93, 7066 (1990).
1990
Ma Q., Tipping R.H. , The atmospheric water continuum in the infrared: Extension of the statistical theory of Rozenkranz, Journal of Chemical Physics, 1990 , Volume 93 , Number 10, Issue https://doi.org/, Pages 7066-7075.
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
1993
J.M. Hartmann, M.Y. Perrin, Q. Ma and R.H. Tipping , The infrared continuum of pure water vapor: calculations and high temperature measurements, Journal of Quantitative Spectroscopy and Radiative Transfer, 1993 , Volume 49 , Issue 6, Pages 675-691.
H2 O
T=765 К
P=∅
7. Q. Ma et al. (1990) (765K)
Смещение от центра линии (см⁻¹)
Средний эффективный параметр уширения (см⁻¹атм⁻¹)
Averaged effective broadening-parameter vs displacement from line center deduced from (Ref. 29 below 500°K, Table 3 above).
[29]. D. E. Burch, D. A. Gryvnak and J. D. Pembrook, Report AFGL-Averaged effective broadening-parameter vs displacement from line center calculated (see text) according to the model of Ref. 19.
[19]. Q. Ma and R.H. Tipping, J. Chem. Phys. 93, 7066 (1990).
1990
Ma Q., Tipping R.H. , The atmospheric water continuum in the infrared: Extension of the statistical theory of Rozenkranz, Journal of Chemical Physics, 1990 , Volume 93 , Number 10, Issue https://doi.org/, Pages 7066-7075.
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
1994
Ma Q. , Tipping R.H. , A near-wing correction to the quasistatic far-wing line shape theory, Journal of Chemical Physics, 1994 , Volume 100 , Number 4, Pages 2537 - 2546.
H2 O
T=296 К
P=∅
4. Burch, et al. (1979, 1981, 1984, 1985) (296K, 300-1100 cm⁻¹)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
The absorption coefficient α(ω) (in units of cm2 molecule-1 atm-1 ) as a function of frequency ω for 300cm-1 < ω< 11 00 cm-1 calculated for T=296°K. The experimental values of Burch, et al (Refs.6-9) are denoted by +.
[6]. E. Burch and O. A. Gryvnak, Report No. AFGL-TR-79-0054 (1979).
[7]. E. Burch, SPIE Proc. 277, 28 (1981).
[8]. E. Burch and R. L. Alt, Report No. AFGL-TR-84-0128 (1984).
[9]. E. Burch, Report No. AFGL-TR-85-0036 (1985).
1981
Burch D.E. , Continuum absorption by atmospheric H2 O, SPIE Proc. Atmospheric Transmission, V.277, Editor(s) Robert W. Fan, SPIE - The international society for optical engineering, 1981 , Pages 28-39.
H2 O
T=296 К
P=∅
4. Experiment (296K, 300-800 cm⁻¹)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Semi-logarithmic plot of the H2 O continuum coefficient for self broadening at 296°K. The solid squares represent experimental values.
1994
Ma Q. , Tipping R.H. , A near-wing correction to the quasistatic far-wing line shape theory, Journal of Chemical Physics, 1994 , Volume 100 , Number 4, Pages 2537 - 2546.
H2 O
T=296 К
P=∅
6. E. Burch et al. (1984, 1985) ()296K, 3000-4200 cm⁻¹
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
The absorption coefficient α(ω) (in units of cm2 molecule-1 atm-1 ) as a function offrequency for 3000 cm-1 <ω <4300 cm-1 calculated for T=296°K. The experimental data from Burch et al (Refs. 8 and 9) are denoted by +.
[8]. E. Burch and R. L. Alt, Report No. AFGL-TR-84-0128 (1984).
[9]. E. Burch, Report No. AFGL-TR-85-0036 (1985).
1985
Burch D.E. , Absorption by H2 O in narrow windows between 3000 - 4200 cm-1 , Report AFGL-TR-85-0036 by Ford Aerospace and Communications Corporation, Aeronutronic Division to AFGL, United States Air Force, Hanscom AFB, Unknown, 1985 , Pages 37.
H2 O
T=296 К
P=∅
3. Corrected e Cs ⁰ (3000-4400 cm⁻¹)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Spectral plots of the normalized absorption coefficients from 3000 to 4200 cm-1 for self broadening. The corrected values (solid squares) are the sums of the empirical and calculated values (see Eq. 17). Temperature, 296 K.
1995
A. Bauer, M. Godon, J. Carlier and Q. Ma , Water vapor absorption in the atmospheric window at 239 GHz, Journal of Quantitative Spectroscopy and Radiative Transfer, 1995 , Volume 53 , Issue 4, Pages 411-423.
H2 O
T=296 К
P=0.00131579 атм
9. Q.Ma et al. (1990)
Частота (ГГц)
Коэффициент поглощения (см⁻¹)
Absorption of pure water vapor versus frequency in GHz, in the atmospheric windows; PH2O = 1 torr, T = 296 K. Comparison of experimental data with models.
Q. Ma and R. H. Tipping, J. Chem. Phys. 93, 6127 (1990).
1990
Ma Q.,Tipping R.H. , Water vapor continuum in the millimeter spectral region, Journal of Chemical Physics, 1990 , Volume 93 , Number 9, Pages 6127-6139.
H2 O
T=315.5 К
P=∅
1. MPM model continuum of Liebe 315.5K
Частота (ГГц)
Коэффициент поглощения (дБ/км)
The absorption coefficient a ( f,T) in dB/km vs frequency f in GHz for temperature T=315ю5K. The triangles are from the MPM model continuum of Liebe (Refs. 5 and 6).
1995
A. Bauer, M. Godon, J. Carlier and Q. Ma , Water vapor absorption in the atmospheric window at 239 GHz, Journal of Quantitative Spectroscopy and Radiative Transfer, 1995 , Volume 53 , Issue 4, Pages 411-423.
H2 O
T=296 К
P=1 атм
9. S.A.Zhevakin et al. (1963). Calculation, Zhevakin-Naumov line shape.
Частота (ГГц)
Коэффициент поглощения (см⁻¹)
Absorption of pure water vapor versus frequency in GHz, in the atmospheric windows; PH2O = 1 torr, T = 296°K. Comparison of experimental data with models.
S. A. Zhevakin and A. P. Naumov, Izv. Vysshik Uchebn. Zavedenii. Radiofiz. 6, 674 (1963).
1963
Жевакин С.А., Наумов А.П. , О коэффициенте поглощения электромагнитных волн водяным паром в диапазоне 10 мкм - 2 см, Известия ВУЗов, Радиофизика, 1963 , Volume 6 , Number 4, Pages 674-693.
H2 O
T=293 К
P=760 атм
1. Calculation using J.H. Van Vleck profile
Волновое число (см⁻¹)
Коэффициент поглощения (дБ/км)
Коэффициент поглощения водяным паром, вычисленный с формой линии по Ван-Флеку – Вайскопфу.
J.H. Van Vleck, The absorption of microwave by uncondenced water vapour, Phys.Rev., 1947, v.71(7), p. 425.
1995
Tipping R.H., Ma Q. , Theory of the water continuum and validations, Atmospheric Research, 1995 , Volume 36 , Number 1-2, Pages 69-94.
H2 O
T=∅
P=∅
11. Hinderling et al. (1987) (253-278K) 10P(20)
Температура (К)
Коэффициент поглощения (см²мбар⁻¹)
Comparison between the theoretical temperature dependence and the laboratory data of Hinderling et al. (1987) at the 10P(20) CO2 laser line frequency of 944.195 cm-1 .
Hinderling, J., Sigrist, M.W. and Kneubuhl, F.K., Laser-photoacoustic spectroscopy of water vapor continuum and line absorption in the 8 to 14 μm atmospheric window. Infrared Phys., 27: 63-120. 1987.
1987
Hinderling J., Sigrist M.W., Kneubuhl F.K. , Laser-photoacoustic spectroscopy of water-vapor continuum and line absorption in the 8 to 14-μm atmospheric window, Infrared Physics & Technology, 1987 , Volume 27 , Number 2, Pages 63-120.
H2 O
T=∅
P=∅
24. Laser line 10P(20)
Температура (К)
Коэффициент поглощения (см²мбар⁻¹)
Continuum absorption. Laser line 10P(20).
1995
Tipping R.H., Ma Q. , Theory of the water continuum and validations, Atmospheric Research, 1995 , Volume 36 , Number 1-2, Pages 69-94.
H2 O
T=∅
P=∅
11. Hinderling et al. (1987) (275-305K). 10P(20)
Температура (К)
Коэффициент поглощения (см²мбар⁻¹)
Comparison between the theoretical temperature dependence and the laboratory data of Hinderling et al. (1987) at the 10P(20) CO2 laser line frequency of 944.195 cm-1 .
Hinderling, J., Sigrist, M.W. and Kneubuhl, F.K., Laser-photoacoustic spectroscopy of water vapor continuum and line absorption in the 8 to 14 μm atmospheric window. Infrared Phys., 27: 63-120. 1987.
1987
Hinderling J., Sigrist M.W., Kneubuhl F.K. , Laser-photoacoustic spectroscopy of water-vapor continuum and line absorption in the 8 to 14-μm atmospheric window, Infrared Physics & Technology, 1987 , Volume 27 , Number 2, Pages 63-120.
H2 O
T=∅
P=0.937577 атм
19. Laser line: 10P(20). Density=2.07
Температура (К)
Коэффициент поглощения (см²мбар⁻¹)
Laser line: 10P(20). Water vapor density [1E-6 mol/cm3 ] = 2.07
1995
Tipping R.H., Ma Q. , Theory of the water continuum and validations, Atmospheric Research, 1995 , Volume 36 , Number 1-2, Pages 69-94.
H2 O
T=∅
P=∅
11. Hinderling et al. (1987) (305-345K). 10P(20) CO₂ laser line frequency of 944.195 cm⁻¹
Температура (К)
Коэффициент поглощения (см²мбар⁻¹)
Comparison between the theoretical temperature dependence and the laboratory data of Hinderling et al. (1987) at the 10P(20) CO2 laser line frequency of 944.195 cm-1 .
Hinderling, J., Sigrist, M.W. and Kneubuhl, F.K., Laser-photoacoustic spectroscopy of water vapor continuum and line absorption in the 8 to 14 μm atmospheric window. Infrared Phys., 27: 63-120. 1987.
1987
Hinderling J., Sigrist M.W., Kneubuhl F.K. , Laser-photoacoustic spectroscopy of water-vapor continuum and line absorption in the 8 to 14-μm atmospheric window, Infrared Physics & Technology, 1987 , Volume 27 , Number 2, Pages 63-120.
H2 O
T=∅
P=∅
20. Suck S.H., et al. (1979). Dimer model
Температура (К)
Коэффициент поглощения (см²мбар⁻¹)
Solid lines represent best fits on the basis of equation (29).
Suck S.H., Kassner J.L., Jr., Jamaguchi J. Water clusters interpretation of IR absorption spectra in the 8-14 μm wavelength region Appl.Opt. 18, No.15, 2609-2617 (1979)
1995
Tipping R.H., Ma Q. , Theory of the water continuum and validations, Atmospheric Research, 1995 , Volume 36 , Number 1-2, Pages 69-94.
H2 O
T=∅
P=∅
12. Burch et al. (1971) (1203 cm⁻¹)
Температура (К)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Comparison between the theoretical temperature dependence and various laboratory data: Burch et al. (1971).
Burch, D.E., Gryvnak, D.A. and Pembrook, J.D., 1971. Investigation of the Absorption of Atmospheric Gases. AFCRL-TR-71-0124.
1971
Burch D.E., Gryvnak D.A., Pembrook J.D. , Investigation of the absorption of infrared radiation by atmospheric gases: water, nitrogen, nitrous oxide, Aeronutronic, Rep. U4897, Contract F19628-69-C-0263, Philco-Ford Corp., Unknown, 1971 ,
H2 O
T=∅
P=∅
1. 2600 cm⁻¹. Original data
1/Т (К⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Semi-logarithm plots of C0 S,w vs 1/T for wavenumber 2600 cm-1. Original.
1995
Tipping R.H., Ma Q. , Theory of the water continuum and validations, Atmospheric Research, 1995 , Volume 36 , Number 1-2, Pages 69-94.
H2 O
T=∅
P=∅
12. Loper, G.L., et al. (1983)
Температура (К)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Comparison between the theoretical temperature dependence and various laboratory data: Loper et al. (1983);
Loper, G.L., O'Neill, M.A. and Gelbawachs, J.A., 1983. Water-vapor continuum CO2 laser absorption spectra between 27°C and - 10°C. Appl. Opt., 23: 3701-3710.
1983
Loper G.L., O’Neil M.A., Gelbwachs J.A. , Water-vapor continuum CO2 laser absorption spectra between 27°C and -10°C, Applied Optics, 1983 , Volume 22 , Number 23, Pages 3701-3710.
H2 O
T=∅
P=∅
8. Aerospace
Температура (К)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
1995
Tipping R.H., Ma Q. , Theory of the water continuum and validations, Atmospheric Research, 1995 , Volume 36 , Number 1-2, Pages 69-94.
H2 O
T=∅
P=∅
12. Montgomery, G.P. (1978) (1200 cm⁻¹)
Температура (К)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Comparison between the theoretical temperature dependence and various laboratory data: Momtgomery (1978);
G. Paul Montgomery, Jr., Temperature dependence of infrared absorption by the water vapor continuum near 1200 cm-1 , Applied Optics, 1978, Volume 17, Issue 15, Pages 2299-2303, DOI: 10.1364/AO.17.002299, http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-17-15-2299 .
1978
G. Paul Montgomery, Jr. , Temperature dependence of infrared absorption by the water vapor continuum near 1200 cm-1 , Applied Optics, 1978 , Volume 17 , Issue 15, Pages 2299-2303.
H2 O
T=∅
P=∅
3. This work (320-470K, 1200 cm⁻¹)
Температура (К)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
1995
Tipping R.H., Ma Q. , Theory of the water continuum and validations, Atmospheric Research, 1995 , Volume 36 , Number 1-2, Pages 69-94.
H2 O
T=∅
P=∅
12. Roberts, R.E., et al. (1976)
Температура (К)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Comparison between the theoretical temperature dependence and various laboratory data: Burch data, cited by Roberts et al. ( 1976 ), all for ω ~ 1203 cm-1 ;
Robert E. Roberts, John E. A. Selby, and Lucien M. Biberman, Infrared continuum absorption by atmospheric water vapor in the 8–12-µm window, Applied Optics, 1976, Volume 15, Issue 9, Pages 2085-2090, DOI: 10.1364/AO.15.002085, http://www.opticsinfobase.org/abstract.cfm?URI=ao-15-9-2085 ([21] The most recent unpublished data from Burch's laboratory on the H2 O continuum in the 8-12-μm region have been made available to us by D. Gryvnak, private communication (November 1975))
1976
Robert E. Roberts, John E. A. Selby, and Lucien M. Biberman , Infrared continuum absorption by atmospheric water vapor in the 8–12-µm window, Applied Optics, 1976 , Volume 15 , Issue 9, Pages 2085-2090.
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
1995
Tipping R.H., Ma Q. , Theory of the water continuum and validations, Atmospheric Research, 1995 , Volume 36 , Number 1-2, Pages 69-94.
H2 O
T=∅
P=∅
12. Varanasi, P. (1988)
Температура (К)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Comparison between the theoretical temperature dependence and various laboratory data: Varanasi (1988b) for ω ~ 1000 cm-1 .
Varanasi, P., 1988. On the nature of the infrared spectrum of water vapor between 8 and 14 am. J. Quant. Spectrosc. Rad. Trans., 40:169-175.
1988
Prasad Varanasi , On the nature of the infrared spectrum of water vapor between 8 and 14 μm, Journal of Quantitative Spectroscopy and Radiative Transfer, 1988 , Volume 40 , Issue 3, Pages 169-175.
H2 O
T=∅
P=∅
8. Our data
Температура (К)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Comparison of the temperature dependence of the self-broadening coefficient, Cs 0 (molecule-1 cm2 atm-1 ) reported by various investigators.
1995
Tipping R.H., Ma Q. , Theory of the water continuum and validations, Atmospheric Research, 1995 , Volume 36 , Number 1-2, Pages 69-94.
H2 O
T=296 К
P=∅
5. D.E.Burch, et al. (1984) Experiment (296K, 300-1000 cm⁻¹)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
The H2 O+H2 O absorption coefficient a(ω) (in units of cm2 molecule-1 atm -1 ) as a function of frequency ω (in units of cm-1 ) calculated for T = 296°K. The experimental values of Burch et al.(1984,1985).
E. Burch and R. L. Alt, Report No. AFGL-TR-84-0128 (1984).
E. Burch, Report No. AFGL-TR-85-0036 (1985).
1984
Burch D.E., Alt R.L. , Continuum absorption by H2 O in the 700 - 1200 cm-1 and 2400 - 2800 cm-1 windows, Report AFGL-TR-84-0128 by Ford Aerospace and Communications Corporation, Aeronutronic Division to AFGL, United States Air Force, Hanscom AFB, Unknown, 1984 , Pages 31.
H2 O
T=296 К
P=∅
1. Our experimental results (296K, 700-1100cm⁻¹)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Self-broadening coefficient from 700 cm-1 to 1100 cm-1 at 296°K.
1995
Tipping R.H., Ma Q. , Theory of the water continuum and validations, Atmospheric Research, 1995 , Volume 36 , Number 1-2, Pages 69-94.
H2 O
T=428 К
P=∅
7. Burch et al. (1971) (428K, 2400-2700 cm⁻¹)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Comparison between the H2 O-H2 O theoretical values and the laboratory experimental data of Burch et al. (1984,1985) for three temperatures in the spectral range 2400 cm-1 < ω< 2700 cm-1 . The corresponding experimental data are represented by Burch et al data at T=428°K.
Burch D.E., Gryvnak D.A., Pembrook J.D. Investigation of the absorption of infrared radiation by atmospheric gases: water, nitrogen, nitrous oxide AFCRL-71-0124 U-4897, 1971
1971
Burch D.E., Gryvnak D.A., Pembrook J.D. , Investigation of the absorption of infrared radiation by atmospheric gases: water, nitrogen, nitrous oxide, Aeronutronic, Rep. U4897, Contract F19628-69-C-0263, Philco-Ford Corp., Unknown, 1971 ,
H2 O
T=428 К
P=∅
2. Experimental points (428K, 2400-2829cm⁻¹)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Spectral plots of C0 s ,w between 2400 and 2829 cm-1 for H2 O at four temperatures.
1995
Tipping R.H., Ma Q. , Theory of the water continuum and validations, Atmospheric Research, 1995 , Volume 36 , Number 1-2, Pages 69-94.
H2 O
T=296 К
P=∅
7. Burch et al. (1984) (296K, 2400-2700 cm⁻¹)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Comparison between the H2 O-H2 O theoretical values and the laboratory experimental data of Burch et al. (1984,1985) for three temperatures in the spectral range 2400 cm-1 < ω< 2700 cm-1 . The experimental data are Burch D.E. et al. data (296K).
D. E. Burch and R. L. Alt, Continuous Absorption by Water in the 700-1200 cm-1 and 2400-2800 cm-1 windows. AFGL-TR-84-0128 (1984);
D. E. Burch, Absorption by H2O in Narrow Windows between 3000 and 4200 cm-1 . AFGL-TR-85-0036 (1985).
1984
Burch D.E., Alt R.L. , Continuum absorption by H2 O in the 700 - 1200 cm-1 and 2400 - 2800 cm-1 windows, Report AFGL-TR-84-0128 by Ford Aerospace and Communications Corporation, Aeronutronic Division to AFGL, United States Air Force, Hanscom AFB, Unknown, 1984 , Pages 31.
H2 O
T=296 К
P=∅
6. Experiment (296K, 2400-2640cm⁻¹)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Self-broadening coefficients between 2400 and 2640 cm-1 for 296°K.
1995
Tipping R.H., Ma Q. , Theory of the water continuum and validations, Atmospheric Research, 1995 , Volume 36 , Number 1-2, Pages 69-94.
H2 O
T=328 К
P=∅
7. Burch et al. (1984) (328K, 2400-2700 cm⁻¹)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Comparison between the H2 O-H2 O theoretical values and the laboratory experimental data of Burch et al. (1984,1985) for three temperatures in the spectral range 2400 cm-1 < ω< 2700 cm-1 . The experimental data are represented by Burch et al. data at T=328K.
D.E. Burch and R.L. Alt, Continuous Absorption by Water in the 700-1200 cm-1 and 2400-2800 cm-1 windows. AFGL-TR-84-0128 (1984);
D.E. Burch, Absorption by H2O0 in Narrow Windows between 3000 and 4200 cm-1 . AFGL-TR-85-0036 (1985).
1984
Burch D.E., Alt R.L. , Continuum absorption by H2 O in the 700 - 1200 cm-1 and 2400 - 2800 cm-1 windows, Report AFGL-TR-84-0128 by Ford Aerospace and Communications Corporation, Aeronutronic Division to AFGL, United States Air Force, Hanscom AFB, Unknown, 1984 , Pages 31.
H2 O
T=328 К
P=∅
6. Experiment (328K, 2400-2640cm⁻¹)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Self-broadening coefficients between 2400 and 2640 cm-1 for 328°K.
1995
Tipping R.H., Ma Q. , Theory of the water continuum and validations, Atmospheric Research, 1995 , Volume 36 , Number 1-2, Pages 69-94.
H2 O
T=296 К
P=∅
8. Burch et al. (1984), Burch D.E. (1985) Experimental values (3000-4300 cm⁻¹)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Comparison between the H2 O-H2 O theoretical values and the laboratory experimental data of Burch (1984,1985) for T=296 K in the spectral range 3000 cm-1 <ω < 4300 cm-1 . The experimental values are related to Burch et al.
D. E. Burch and R. L. Alt, AFGL-TR-84-0128 (1984);
D. E. Burch, AFGL-TR-85-0036 (1985).
1985
Burch D.E. , Absorption by H2 O in narrow windows between 3000 - 4200 cm-1 , Report AFGL-TR-85-0036 by Ford Aerospace and Communications Corporation, Aeronutronic Division to AFGL, United States Air Force, Hanscom AFB, Unknown, 1985 , Pages 37.
H2 O
T=296 К
P=∅
3. Empirical e Cs ⁰ (3000-4400 cm⁻¹)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Spectral plots of the normalized absorption coefficients from 3000 to 4200 cm-1 for self broadening. The triangles represent empirical values derived from the ratio of the experimental transmittance values to the monochromatic values calculated from line parameters and convolved with an instrument slit function (see Eqs. 14, 15). Temperature, 296°K.
1996
David C. Tobin, L. Larrabee Strow, Walter J. Lafferty, and W. Bruce Olson , Experimental investigation of the self- and N2 -broadened continuum within the ν2 band of water vapor, Applied Optics, 1996 , Volume 35 , Issue 4, Pages 4724-473.
H2 O
T=308 К
P=∅
5. D. E. Burch (1982) (308K, 1400-1900 cm⁻¹)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Self-broadened continuum coefficients from this research, Burch, CKD models, Ma and Tipping, and impact theory. (semilog format)
[14] D. E. Burch, “Continuum absorption by H2 O,” Ford Aerontronic Rep. AFGL-TR-81-0300 (U.S. Air Force Geophysics Laboratory, Hanscom Air Force Base, Mass., 1982).
1981
Burch D.E. , Continuum absorption by atmospheric H2 O, SPIE Proc. Atmospheric Transmission, V.277, Editor(s) Robert W. Fan, SPIE - The international society for optical engineering, 1981 , Pages 28-39.
H2 O
T=308 К
P=∅
8. Composite of spectral curves of the empirical continuum. H₂O. (308K, 1400-1850 cm⁻¹)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Composite of spectral curves from 1400 to 1850 cm-1 of the empirical continuum.T=308°K.
1996
David C. Tobin, L. Larrabee Strow, Walter J. Lafferty, and W. Bruce Olson , Experimental investigation of the self- and N2 -broadened continuum within the ν2 band of water vapor, Applied Optics, 1996 , Volume 35 , Issue 4, Pages 4724-473.
H2 O
T=322 К
P=∅
5. D. E. Burch (1982) (322K, 1850-2000 cm⁻¹)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Self-broadened continuum coefficients from Burch [14].
[14] D. E. Burch, Continuum absorption by H2 O, Ford Aerontronic Rep. AFGL-TR-81-0300 (U.S. Air Force Geophysics Laboratory, Hanscom Air Force Base, Mass., 1982).
1981
Burch D.E. , Continuum absorption by atmospheric H2 O, SPIE Proc. Atmospheric Transmission, V.277, Editor(s) Robert W. Fan, SPIE - The international society for optical engineering, 1981 , Pages 28-39.
H2 O
T=322 К
P=∅
8. H₂O. (322K, 1850-2250 cm⁻¹)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Composite of spectral curves from 1850 to 2250 cm-1 of the empirical continuum. T=322°K.
1996
David C. Tobin, L. Larrabee Strow, Walter J. Lafferty, and W. Bruce Olson , Experimental investigation of the self- and N2 -broadened continuum within the ν2 band of water vapor, Applied Optics, 1996 , Volume 35 , Issue 4, Pages 4724-473.
H2 O
T=300 К
P=∅
5. R.H. Tipping, et al. (1995) (300K)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Self-broadened continuum coefficients from Ma and Tipping [5].
[5] R. H. Tipping and Q. Ma, “Theory of the water vapor continuum and validations,” Atmos. Res. 36, 69–94 (1995), and references therein.
1995
Tipping R.H., Ma Q. , Theory of the water continuum and validations, Atmospheric Research, 1995 , Volume 36 , Number 1-2, Pages 69-94.
H2 O
T=296 К
P=∅
3. The present theory (296K)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
The H2 O+H2 O absorption coefficient α(ω) (in units of cm2 molecule-1 atm -1 ) as a function of frequency ω (in units of cm-1 ) calculated for T= 296°K. The results obtained from the two averaged line shape functions.
1996
David C. Tobin, L. Larrabee Strow, Walter J. Lafferty, and W. Bruce Olson , Experimental investigation of the self- and N2 -broadened continuum within the ν2 band of water vapor, Applied Optics, 1996 , Volume 35 , Issue 4, Pages 4724-473.
H2 O
T=300 К
P=∅
5a. D.E. Burch (1982, 308 K)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Self-broadened continuum coefficients from Burch [14].
[14] D. E. Burch, Continuum absorption by H2 O, Ford Aerontronic Rep. AFGL-TR-81-0300 (U.S. Air Force Geophysics Laboratory, Hanscom Air Force Base, Mass., 1982.
1981
Burch D.E. , Continuum absorption by atmospheric H2 O, SPIE Proc. Atmospheric Transmission, V.277, Editor(s) Robert W. Fan, SPIE - The international society for optical engineering, 1981 , Pages 28-39.
H2 O
T=308 К
P=∅
8. Composite of spectral curves of the empirical continuum. H₂O. (308K, 1400-1850 cm⁻¹)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Composite of spectral curves from 1400 to 1850 cm-1 of the empirical continuum.T=308°K.
1996
David C. Tobin, L. Larrabee Strow, Walter J. Lafferty, and W. Bruce Olson , Experimental investigation of the self- and N2 -broadened continuum within the ν2 band of water vapor, Applied Optics, 1996 , Volume 35 , Issue 4, Pages 4724-473.
H2 O
T=322 К
P=∅
6. D.E.Burch (322K, 1900-2020 cm⁻¹)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Expanded portion of Fig.5. Self-broadened continuum coefficients from Burch [14].
[14] D. E. Burch, Continuum absorption by H2 O, Ford Aerontronic Rep. AFGL-TR-81-0300 (U.S. Air Force Geophysics Laboratory, Hanscom Air Force Base, Mass., 1982).
1982
Burch D.E. , Continuum absorption by atmospheric H2 O, Report AFGL-TR-81-0300, by Ford Aeronutronic to Air Force Geophys. Lab., Hanscom AFB, Unknown, 1982 , Pages 46.
H2 O
T=322 К
P=∅
8. H₂O. (T=322K, 1850-2250 cm⁻¹)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Composite of spectral curves from 1850 to 2250 cm-1 of the empirical continuum.
1997
K. Yoshino, J.R. Esmond, W.H. Parkinson, K. Ito, and T. Matsui
, Absorption cross section measurements of water vapor in the wavelength region 120 to 188 nm," Chem. Phys. 211, 387-391 (1996) (Erratum)
, Chemical Physics, 1997 , Volume 215 , Issue 3, Pages 429-430.
H2 O
T=295 К
P=1 атм
3. K. Watanabe et al. (1953)
Длина волны (нм)
Сечение поглощения (см²)
The absorption cross sections of H2 O at 295°K in the wavelength region 125 to 185 nm along with previous measurements.
[8] K. Watanabe and M. Zelikoff, Absorption coefficients of water vapor in the vacuum ultraviolet, JOSA, Vol. 43, Issue 9, pp. 753-754 (1953) http://dx.doi.org/10.1364/JOSA.43.000753
1953
K. Watanabe and M. Zelikoff , Absorption coefficients of water vapor in the vacuum ultraviolet, Journal of Optical Society of America, 1953 , Volume 43 , Issue 9, Pages 753-754.
Длина волны (А) Длина волны (нм)
Коэффициент поглощения (см⁻¹) Сечение поглощения (см⁻²)
1997
K. Yoshino, J.R. Esmond, W.H. Parkinson, K. Ito, and T. Matsui
, Absorption cross section measurements of water vapor in the wavelength region 120 to 188 nm," Chem. Phys. 211, 387-391 (1996) (Erratum)
, Chemical Physics, 1997 , Volume 215 , Issue 3, Pages 429-430.
H2 O
T=295 К
P=1 атм
3. W.F.Chan, et al. (1993)
Длина волны (нм)
Сечение поглощения (см²)
The absorption cross sections of H20 at 295 K in the wavelength region 125 to 185 nm along with previous measurements.
[13] W.F. Chan, G. Cooper, and C.E. Brion, The electronic spectrum of water in the discrete and continuum regions. Absolute optical oscillator strengths for photoabsorption (6-200 eV), Chemical Physics, Volume 178, Issues 1–3, 15 December 1993, Pages 387-400 http://dx.doi.org/10.1016/0301-0104(93)85078-M
1993
W.F. Chan, G. Cooper, and C.E. Brion , The electronic spectrum of water in the discrete and continuum regions. Absolute optical oscillator strengths for photoabsorption (6-200 eV), Chemical Physics, 1993 , Volume 178 , Issue 1–3, Pages 387-400.
Длина волны (нм)
Сечение поглощения (см⁻²)
1998
P.W. Rosenkranz , Water vapor microwave continuum absorption: A comparison of measurements and models, Radio Science, 1998 , Volume 33 , Number 4, Pages 919-928.
H2 O
T=∅
P=∅
1. Bauer, A., et al (1995) (239GHz)
Температура (К)
Поглощение (произвольные единицы)
Self-broadened continuum coefficient (equation(4)), measured in pure water vapor: triangles indicate data from Bauer et al [1995].
Bauer, A., M. Godon, J. Carlier, and Q. Ma, Water vapor absorption in the atmospheric window at 239 GHz. J. Quant. Spectrosc. Radiat. Transfer, 1995. V.53, P.411-423.
1995
A. Bauer, M. Godon, J. Carlier and Q. Ma , Water vapor absorption in the atmospheric window at 239 GHz, Journal of Quantitative Spectroscopy and Radiative Transfer, 1995 , Volume 53 , Issue 4, Pages 411-423.
Частота (ГГц)
Коэффициент поглощения (см⁻¹)
1998
P.W. Rosenkranz , Water vapor microwave continuum absorption: A comparison of measurements and models, Radio Science, 1998 , Volume 33 , Number 4, Pages 919-928.
H2 O
T=∅
P=∅
1. Godon M., et al. [1992) (214GHz)
Температура (К)
Поглощение (произвольные единицы)
Self-broadened continuum coefficient (equation(4)), measured in pure water vapor: squares indicate data from Godon et al, [1992].
Godon M., Carlier J., Bauer A. Laboratory studies of water vapor absorption in the atmospheric window at 213 GHz. JQSRT 1992, 47, 275-85.
1992
M. Godon, J. Carlier and A. Bauer , Laboratory studies of water vapor absorption in the atmospheric window at 213 GHz, Journal of Quantitative Spectroscopy and Radiative Transfer, 1992 , Volume 47 , Issue 4, Pages 275-285.
Температура (К)Частота (ГГц)
Коэффициент поглощения (см⁻¹) Коэффициент поглощения (см⁻¹)
1999
Ma Q., Tipping R.H. , The averaged density matrix in the coordinate representation: Application to the calculation of the far-wing line shapes for H2 O, Journal of Chemical Physics, 1999 , Volume 111 , Number 13, Pages 5909-5921.
H2 O
T=296 К
P=∅
5. D.E.Burch (1981) (296K, 600-1200 cm⁻¹)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
The calculated self-broadened absorption coefficient (in units of cm2 molecule-1 atm-1 ) at T=296 K in the 300–1100 cm-1 spectral region is represented by Δ. For comparison, the experimental values are denoted by +.
[12] D. E. Burch, Proc. SPIE 277, 28,1981;
D. E. Burch and D. A. Gryvnak, Report No. AFGL-TR-79-0054, 1979;
D. E. Burch and R. L. Alt, Report No. AFGL-TR-84-0128, 1984;
D. E. Burch, Report No. AFGL-TR-85-0036, 1985.
1981
Burch D.E. , Continuum absorption by atmospheric H2 O, SPIE Proc. Atmospheric Transmission, V.277, Editor(s) Robert W. Fan, SPIE - The international society for optical engineering, 1981 , Pages 28-39.
H2 O
T=296 К
P=∅
1. Experimental data (296K, 600-1200 cm⁻¹)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Spectral plot of Cs for H2 O at 296°K.
1999
Ma Q., Tipping R.H. , The averaged density matrix in the coordinate representation: Application to the calculation of the far-wing line shapes for H2 O, Journal of Chemical Physics, 1999 , Volume 111 , Number 13, Pages 5909-5921.
H2 O
T=430 К
P=∅
6. D.E.Burch (1981), D.E.Burch et al. (1979), D.E.Burch et al. (1984), D.E.Burch (1985)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
The calculated self-broadened absorption coefficient (in units of cm2 molecule-1 atm-1 ) at T=430 K in the 300–1100 cm-1 spectral region is represented by Δ. For comparison, the experimental values are denoted by +.
[12] D. E. Burch, Proc. SPIE 277, 28, 1981;
D. E. Burch and D. A. Gryvnak, Report No. AFGL-TR-79-0054, 1979;
D. E. Burch and R. L. Alt, Report No. AFGL-TR-84-0128, 1984;
D. E. Burch, Report No. AFGL-TR-85-0036, 1985.
1981
Burch D.E. , Continuum absorption by atmospheric H2 O, SPIE Proc. Atmospheric Transmission, V.277, Editor(s) Robert W. Fan, SPIE - The international society for optical engineering, 1981 , Pages 28-39.
H2 O
T=430 К
P=∅
1. Experimental data (430K, 625-818 cm⁻¹)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Spectral plot of Cs for H2 O at 430°K.
2000
Vigasin A.A. , Water vapor continuous absorption in various mixtures: possible role of weakly bound complexes, Journal of Quantitative Spectroscopy and Radiative Transfer, 2000 , Volume 64 , Number 1, Pages 25-40.
H2 O
T=∅
P=∅
1. Bauer A., et al. (1991) (190GHz)
Температура (К)
Коэффициент поглощения (см⁻¹)
Temperature dependence of continua absorptions in pure water vapor at 190 GHz.
[9] A. Bauer and M. Godon, Temperature dependence of water-vapor absorption in linewings at 190 GHz, Journal of Quantitative Spectroscopy and Radiative Transfer, 1991, Volume 46, Issue 3, Pages 211-220, DOI: 10.1016/0022-4073(91)90025-L.
1991
A. Bauer and M. Godon , Temperature dependence of water-vapor absorption in linewings at 190 GHz, Journal of Quantitative Spectroscopy and Radiative Transfer, 1991 , Volume 46 , Issue 3, Pages 211-220.
Смещение от центра линии (ГГц)
Коэффициент поглощения (см⁻¹)
2000
Vigasin A.A. , Water vapor continuous absorption in various mixtures: possible role of weakly bound complexes, Journal of Quantitative Spectroscopy and Radiative Transfer, 2000 , Volume 64 , Number 1, Pages 25-40.
H2 O
T=∅
P=∅
3. Bauer A., et al. (1991) (190 GHz)
Температура (К)
Коэффициент поглощения (см⁻¹)
Comparison of temperature dependencies for pure water vapor continua absorptions in mm-wave range. Experimental data are from Refs. [9].
[9] Bauer A., Godon M. JQSRT 1991;46:211.
1991
A. Bauer and M. Godon , Temperature dependence of water-vapor absorption in linewings at 190 GHz, Journal of Quantitative Spectroscopy and Radiative Transfer, 1991 , Volume 46 , Issue 3, Pages 211-220.
Смещение от центра линии (ГГц)
Коэффициент поглощения (см⁻¹)
2000
Vigasin A.A. , Water vapor continuous absorption in various mixtures: possible role of weakly bound complexes, Journal of Quantitative Spectroscopy and Radiative Transfer, 2000 , Volume 64 , Number 1, Pages 25-40.
H2 O
T=∅
P=∅
3. Bauer A., et al. (1995) (239 GHz)
Температура (К)
Коэффициент поглощения (см⁻¹)
Comparison of temperature dependencies for pure water vapor continua absorptions in mm-wave range. Experimental data are from Refs. [11].
[11] A. Bauer, M. Godon, J. Carlier and Q. Ma, Water vapor absorption in the atmospheric window at 239 GHz, Journal of Quantitative Spectroscopy and Radiative Transfer, 1995, Volume 53, Issue 4, Pages 411-423, DOI: 10.1016/0022-4073(95)90016-0.
1995
A. Bauer, M. Godon, J. Carlier and Q. Ma , Water vapor absorption in the atmospheric window at 239 GHz, Journal of Quantitative Spectroscopy and Radiative Transfer, 1995 , Volume 53 , Issue 4, Pages 411-423.
Частота (ГГц)
Коэффициент поглощения (см⁻¹)
2000
Vigasin A.A. , Water vapor continuous absorption in various mixtures: possible role of weakly bound complexes, Journal of Quantitative Spectroscopy and Radiative Transfer, 2000 , Volume 64 , Number 1, Pages 25-40.
H2 O
T=∅
P=∅
3a. Aref'ev V.N. (1989). 10P(20)
Температура (К)
Коэффициент поглощения (см⁻¹)
Comparison of temperature dependencies for pure water vapor continua absorptions in infrared range. Experimental data for CO2 laser absorption are from Refs. [14]. The data for the infrared continuum are depicted in arbitrary units.
[14] Aref'ev V.N. Optika Atmos 1989; 2:1034 (in Russian).
1989
Арефьев В.Н. , Молекулярное поглощение водяным паром излучения в окне относительной прозрачности атмосферы 8 - 13 мкм, Оптика атмосферы, 1989 , Volume 2 , Number 10, Pages 1034-1054.
Длина волны (мкм) Температура (К)
Поглощение (произвольные единицы) Поглощение (произвольные единицы)
2000
Vigasin A.A. , Water vapor continuous absorption in various mixtures: possible role of weakly bound complexes, Journal of Quantitative Spectroscopy and Radiative Transfer, 2000 , Volume 64 , Number 1, Pages 25-40.
H2 O
T=∅
P=∅
3a. Hinderling J., et al. (1987). 10P(20)
Температура (К)
Коэффициент поглощения (см⁻¹)
Comparison of temperature dependencies for pure water vapor continua absorptions in infrared range. Experimental data for CO2 laser absorption are from Refs. [15]. The data for the infrared continuum are depicted in arbitrary units.
[15] Hinderling J, Sigrist MW, KneubuK hl FK. Infrared Phys 1987; 27: 63.
1987
Hinderling J., Sigrist M.W., Kneubuhl F.K. , Laser-photoacoustic spectroscopy of water-vapor continuum and line absorption in the 8 to 14-μm atmospheric window, Infrared Physics & Technology, 1987 , Volume 27 , Number 2, Pages 63-120.
Температура (К)
Коэффициент поглощения (см²мбар⁻¹)
2000
Vigasin A.A. , Water vapor continuous absorption in various mixtures: possible role of weakly bound complexes, Journal of Quantitative Spectroscopy and Radiative Transfer, 2000 , Volume 64 , Number 1, Pages 25-40.
H2 O
T=∅
P=∅
3a. Hinderling J., et al. (1987). 10P(24)
Температура (К)
Коэффициент поглощения (см⁻¹)
Comparison of temperature dependencies for pure water vapor continua absorptions in infrared range. Experimental data for CO2 laser absorption are from Refs. [15]. The data for the infrared continuum are depicted in arbitrary units.
[15] Hinderling J., Sigrist M.W., Kneubuhl F.K., Laser-photoacoustic spectroscopy of water-vapor continuum and line absorption in the 8 to 14-μm atmospheric window, Infrared Physics & Technology, 1987 , Volume 27 , no. 2, Pages 63-120, DOI: 10.1016/0020-0891(87)90013-3.
1987
Hinderling J., Sigrist M.W., Kneubuhl F.K. , Laser-photoacoustic spectroscopy of water-vapor continuum and line absorption in the 8 to 14-μm atmospheric window, Infrared Physics & Technology, 1987 , Volume 27 , Number 2, Pages 63-120.
Температура (К)
Коэффициент поглощения (см²мбар⁻¹)
2002
Cormier J.G., Ciurylo R., Drummond J.R. , Cavity ringdown spectroscopy measurements of the infrared water vapor continuum, Journal of Chemical Physics, 2002 , Volume 116 , Issue 3, Pages 1030-1034.
H2 O
T=∅
P=∅
4. Mean of previos measurements
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Comparison of our self-broadened coefficients (*) with the far wing theory of Ma and Tipping (solid line). The mean of four previous measurements (cf. Table II) obtained using CO2 lasers and multipass cells is shown for 944 cm-1 (circle).
1979
Peterson J.C., Thomas M.E., Nordstrom R.J., Damon E.K. Long R.K. , Water vapor - nitrogen absorption at CO2 laser frequencies, Applied Optics, 1979 , Volume 18 , Number 6, Pages 834-841.
H2 O + N2
T=297.5 К
P=1 атм
1A. Cs0 (cm2molec-1atm-1) self-broadening. White Cell
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
2002
Cormier J.G., Ciurylo R., Drummond J.R. , Cavity ringdown spectroscopy measurements of the infrared water vapor continuum, Journal of Chemical Physics, 2002 , Volume 116 , Issue 3, Pages 1030-1034.
H2 O
T=∅
P=∅
4. Q. Ma, et al (1999)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Comparison of our self-broadened coefficients with the far wing theory of Ma and Tipping.
1999
Ma Q., Tipping R.H. , The averaged density matrix in the coordinate representation: Application to the calculation of the far-wing line shapes for H2 O, Journal of Chemical Physics, 1999 , Volume 111 , Number 13, Pages 5909-5921.
H2 O
T=296 К
P=∅
5. Present calculation (300-1100 cm⁻¹)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
The calculated self-broadened absorption coefficient (in units of cm2 molecule-1 atm-1 ) at T=296°K in the 300–1100 cm-1 spectral region is represented by Δ.
2002
Cormier J.G., Ciurylo R., Drummond J.R. , Cavity ringdown spectroscopy measurements of the infrared water vapor continuum, Journal of Chemical Physics, 2002 , Volume 116 , Issue 3, Pages 1030-1034.
H2 O
T=∅
P=∅
4. R. E. Roberts, et al. (1976). RSB model
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Plotted are the RSB empirical model of the water vapor continuum.
1976
Robert E. Roberts, John E. A. Selby, and Lucien M. Biberman , Infrared continuum absorption by atmospheric water vapor in the 8–12-µm window, Applied Optics, 1976 , Volume 15 , Issue 9, Pages 2085-2090.
H2 O
T=296 К
P=1 атм
1. Linear regression to all Burch's recent data
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Water vapor continuum absorption coefficient C (v) at T =296°K as a function of frequency v and wavelength in the 8-12-µm region;
The solid line represents a linear regression (described in text) to all Burch's recent water vapor data for the 8-30-μm region.
2002
Ma Q., Tipping R.H. , The frequency detuning correction and the asymmetry of line shapes: The far wings of H2 O-H2 O, Journal of Chemical Physics, 2002 , Volume 116 , Number 10, Pages 4102 - 4115.
H2 O
T=296 К
P=∅
4. Burch et al. (1979, 1981, 1984) (296K, 300–1100 cm⁻¹)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
The experimental values of Burch et al. are denoted by +.
D. E. Burch, Proc. SPIE 277, 28 (1981); D. E. Burch and D. A. Gryvnak, Report No. AFGL-TR-79-0054, 1979; D. E. Burch and R. L. Alt, Report No. AFGL-TR-84-0128, 1984.
1979
Burch D.E., Gryvnak D.A. , Method of calculating H2 O transmission between 333 and 633 cm -1 , AFB Report No. AFGL-TR-79-0054, Unknown, 1979 ,
H2 O
T=296 К
P=1 атм
2. Continuum data (296K, 300-850 cm⁻¹)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Semi-logarithmic plot of the H2 O continuum coefficient for self broadening at 296°K
2002
Ma Q., Tipping R.H. , The frequency detuning correction and the asymmetry of line shapes: The far wings of H2 O-H2 O, Journal of Chemical Physics, 2002 , Volume 116 , Number 10, Pages 4102 - 4115.
H2 O
T=296 К
P=∅
4. J. G. Cormier, et al. (2002) (296K, 300–1100 cm⁻¹)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
The self-broadened absorption coefficient (in units of cm2 molecule-1 atm-1 ) at T=296 K from Cormier et al. along with their error bars.
J. G. Cormier, R. Ciurylo, and J. R. Drummond, J. Chem. Phys. 116, 1030 (2002).
2002
Cormier J.G., Ciurylo R., Drummond J.R. , Cavity ringdown spectroscopy measurements of the infrared water vapor continuum, Journal of Chemical Physics, 2002 , Volume 116 , Issue 3, Pages 1030-1034.
H2 O
T=∅
P=∅
4. Present experiment
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Comparison of our self-broadened coefficients (square) with the far wing theory of Ma and Tipping.
2003
W.H. Parkinson and K. Yoshino , Absorption cross-section measurements of water in the wavelength region 181-199 nm, Chemical Physics, 2003 , Volume 294 , Issue 1, Pages 31-35.
H2 O
T=295 К
P=1 атм
3. K.Yoshino et al. (1995, 1996)
Длина волны (А)
Сечение поглощения (см²)
Comparison with previous measurements. The small open circles are the longest wavelength end of our previous measurements [11,12].
[11] K. Yoshino, J.R. Esmond, W.H. Parkinson, K. Ito, T.Matsui, Chem. Phys. 211 (1996) 387.
[12] K. Yoshino, J.R. Esmond, W.H. Parkinson, K. Ito, T.Matsui, Chem. Phys. 215 (1997) 429.
1997
K. Yoshino, J.R. Esmond, W.H. Parkinson, K. Ito, and T. Matsui
, Absorption cross section measurements of water vapor in the wavelength region 120 to 188 nm," Chem. Phys. 211, 387-391 (1996) (Erratum)
, Chemical Physics, 1997 , Volume 215 , Issue 3, Pages 429-430.
Длина волны (нм)
Сечение поглощения (см²)
2003
W.H. Parkinson and K. Yoshino , Absorption cross-section measurements of water in the wavelength region 181-199 nm, Chemical Physics, 2003 , Volume 294 , Issue 1, Pages 31-35.
H2 O
T=295 К
P=1 атм
3. W.F. Chan, et al. (1993)
Длина волны (А)
Сечение поглощения (см²)
Comparison with previous measurements. The open squares present the measurements by Chan et al.
W.F. Chan, G. Cooper, C.E. Brion, Chem. Phys. 178 (1993) 387. (The narrow peak at 185 nm is a impurity Hg I line absorption at 184.949 nm.
1993
W.F. Chan, G. Cooper, and C.E. Brion , The electronic spectrum of water in the discrete and continuum regions. Absolute optical oscillator strengths for photoabsorption (6-200 eV), Chemical Physics, 1993 , Volume 178 , Issue 1–3, Pages 387-400.
Длина волны (нм)
Сечение поглощения (см⁻²)
2003
Бузыкин О.Г., Иванов С.В. , Континуальное поглощение водяного пара в колебательно-неравновесных условиях, Оптика атмосферы и океана, 2003 , Volume 16 , Number 3, Pages 235-244.
H2 O
T=296 К
P=1 атм
4. D.A.Gryvnak, et al. (1976)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹)
Современное состояние континуума водяного пара при самоуширении: эксперимент Берча.
Данные взяты с Интернет-сайта www.aer.com.
(D.A.Gryvnak, D.E.Burch, R.L.Alt, and D.K.Zgonc, Infrared absorption by CH4 , H2 O and CO2 , AFGL-TR-76-0246, ADA039380, Final Report, 1976 .)
1976
D.A.Gryvnak, D.E.Burch, R.L.Alt, and D.K.Zgonc , Infrared absorption by CH4 , H2 O and CO2 , AFGL-TR-76-0246, ADA039380, Final Report, 1976 ,
H2 O
T=296 К
P=∅
3. Experiment (296K, 600-1300 cm⁻¹)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Spectral plot of C0 s between 600 cm-1 and 1300 cm-1
2003
Бузыкин О.Г., Иванов С.В. , Континуальное поглощение водяного пара в колебательно-неравновесных условиях, Оптика атмосферы и океана, 2003 , Volume 16 , Number 3, Pages 235-244.
H2 O
T=296 К
P=1 атм
4. Ma, Q., et al. (1991). (296K, 700-1400 cm⁻¹)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹)
Современное состояние континуума водяного пара при самоуширении: Расчет Ма и Типпинга (1991). Данные взяты с Интернет-сайтf www.aer.com.
Ma Q. and R.H.Tipping, A far wing line shape theory and its application to the water continuum. I. J.Chem. Phys. 95, No. 9, 6290-6301 (1991).
1991
Ma Q. , Tipping R.H. , A far wing line shape theory and its application to the water continuum. I., Journal of Chemical Physics, 1991 , Volume 95 , Number 9, Pages 6290-6301.
H2 O
T=296 К
P=∅
4. Theoretical
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
The absorption coefficient α(ω) (in units of cm2 molecule-1 atm-1 ) as a function of frequency ω (in units of cm-1 ) calculated for T = 296°K. Δ corresponds to the theoretical values.
2003
Бузыкин О.Г., Иванов С.В. , Континуальное поглощение водяного пара в колебательно-неравновесных условиях, Оптика атмосферы и океана, 2003 , Volume 16 , Number 3, Pages 235-244.
H2 O
T=296 К
P=1 атм
4. Roberts R.E., et al. (1976). (1100-1350 cm⁻¹)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹)
Современное состояние континуума водяного пара при самоуширении: измерения Робертса и др. (1976). Данные взяты с Интернет-сайтf www.aer.com.
Roberts R.E., Selby J.E.A. and Biberman L.M. Infrared continuum absorption by atmospheric water vapor in the 8 - 12 -μm window. Appl. Opt. 1976. V. 15. No.9. P. 2085 - 2090.
1976
Robert E. Roberts, John E. A. Selby, and Lucien M. Biberman , Infrared continuum absorption by atmospheric water vapor in the 8–12-µm window, Applied Optics, 1976 , Volume 15 , Issue 9, Pages 2085-2090.
H2 O
T=296 К
P=1 атм
1. Unpublished D. E. Burch (1975)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Water vapor continuum absorption coefficient C (v) at T =296°K as a function of frequency v and wavelength in the 8-12-gm region;
[21]. The most recent unpublished data from Burch's laboratory on the H2 O continuum in the 8-12-pm region have been made available to us by D. Gryvnak, private communication (November 1975).
2004
Несмелова Л.И., Родимова О.Б., Творогов С.Д. , Коэффициент поглощения водяного пара при различных температурах , Оптическая спектроскопия и стандарты частоты. Молекулярная спектроскопия , Editor(s) Л.Н.Синица и Е.А.Виноградов , Издательство ИОА СО РАН, 2004 , Pages 413-436.
H2 O
T=338 К
P=1 атм
17. Burch D.E. (1982) (338K, 2300-2800 cm⁻¹)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Результат измеренияв коэффициента поглощения водяного пара при самоуширении в интервале 3.8-4.2 мкм при температуре T=338°K [16].
[16] Burch D.E. Continuum absorption by H2 O, Report AFGL-TR-81-0300 by Ford Aerospace and Communications Corporation, Aeronutronic Division to AFGL, United States Air Force, Hanscom AFB, Massachusetts 01731 (1982), 46 p
1982
Burch D.E. , Continuum absorption by atmospheric H2 O, Report AFGL-TR-81-0300, by Ford Aeronutronic to Air Force Geophys. Lab., Hanscom AFB, Unknown, 1982 , Pages 46.
H2 O
T=338 К
P=∅
2. Experimental points (338K, 2400-2829cm⁻¹)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Spectral plots of C0 s for H2 O at 338K.
2004
Несмелова Л.И., Родимова О.Б., Творогов С.Д. , Коэффициент поглощения водяного пара при различных температурах , Оптическая спектроскопия и стандарты частоты. Молекулярная спектроскопия , Editor(s) Л.Н.Синица и Е.А.Виноградов , Издательство ИОА СО РАН, 2004 , Pages 413-436.
H2 O
T=384 К
P=1 атм
17. Burch D.E. (1982) (384K, 2300-2800 cm⁻¹)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Результат измеренияв коэффициента поглощения водяного пара при самоуширении в интервале 3.8-4.2 мкм при температуре T=384°K [16].
[16] Burch D.E. Continuum absorption by H2 O, Report AFGL-TR-81-0300 by Ford Aerospace and Communications Corporation, Aeronutronic Division to AFGL, United States Air Force, Hanscom AFB, Massachusetts 01731 (1982), 46 p
1982
Burch D.E. , Continuum absorption by atmospheric H2 O, Report AFGL-TR-81-0300, by Ford Aeronutronic to Air Force Geophys. Lab., Hanscom AFB, Unknown, 1982 , Pages 46.
H2 O
T=384 К
P=∅
2. Experimental points (384K, 2400-2829cm⁻¹)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Spectral plots of C0 s for H2 O at 384°K.
2004
Несмелова Л.И., Родимова О.Б., Творогов С.Д. , Коэффициент поглощения водяного пара при различных температурах , Оптическая спектроскопия и стандарты частоты. Молекулярная спектроскопия , Editor(s) Л.Н.Синица и Е.А.Виноградов , Издательство ИОА СО РАН, 2004 , Pages 413-436.
H2 O
T=428 К
P=1 атм
17. Burch D.E. (1982) (428K, 2300-2800 cm⁻¹)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Результат измеренияв коэффициента поглощения водяного пара при самоуширении в интервале 3.8-4.2 мкм при температуре T=428°K [16].
[16] Burch D.E. Continuum absorption by H2 O, Report AFGL-TR-81-0300 by Ford Aerospace and Communications Corporation, Aeronutronic Division to AFGL, United States Air Force, Hanscom AFB, Massachusetts 01731 (1982), 46 p.
1982
Burch D.E. , Continuum absorption by atmospheric H2 O, Report AFGL-TR-81-0300, by Ford Aeronutronic to Air Force Geophys. Lab., Hanscom AFB, Unknown, 1982 , Pages 46.
H2 O
T=428 К
P=∅
2. Experimental points (428K, 2400-2829cm⁻¹)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Spectral plots of C0 s for H2 O at 428°K.
2004
Несмелова Л.И., Родимова О.Б., Творогов С.Д. , Коэффициент поглощения водяного пара при различных температурах , Оптическая спектроскопия и стандарты частоты. Молекулярная спектроскопия , Editor(s) Л.Н.Синица и Е.А.Виноградов , Издательство ИОА СО РАН, 2004 , Pages 413-436.
H2 O
T=296 К
P=1 атм
17. Burch D.E., et al. (1984) (296K, 2350-2800 cm⁻¹)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Результат измеренияв коэффициента поглощения водяного пара при самоуширении в интервале 3.8-4.2 мкм при температуре T=296°K [16].
[16] Burch D.E., Alt R.L.,, Continuum absorption by H2 O in the 700 - 1200 cm-1 and 2400 - 2800 cm-1 windows, Report AFGL-TR-84-0128 by Ford Aerospace and Communications Corporation, Aeronutronic Division to AFGL, United States Air Force, Hanscom AFB, USA, Massachusetts 01731, 1984 , Pages 31.
1984
Burch D.E., Alt R.L. , Continuum absorption by H2 O in the 700 - 1200 cm-1 and 2400 - 2800 cm-1 windows, Report AFGL-TR-84-0128 by Ford Aerospace and Communications Corporation, Aeronutronic Division to AFGL, United States Air Force, Hanscom AFB, Unknown, 1984 , Pages 31.
H2 O
T=296 К
P=∅
6. Experiment (296K, 2400-2640cm⁻¹)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Self-broadening coefficients between 2400 and 2640 cm-1 for 296°K.
2004
Несмелова Л.И., Родимова О.Б., Творогов С.Д. , Коэффициент поглощения водяного пара при различных температурах , Оптическая спектроскопия и стандарты частоты. Молекулярная спектроскопия , Editor(s) Л.Н.Синица и Е.А.Виноградов , Издательство ИОА СО РАН, 2004 , Pages 413-436.
H2 O
T=338 К
P=1 атм
17a. Burch D.E. (1982) (338K, 2300-2800 cm⁻¹)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Результат измерения коэффициента поглощения водяного пара при самоуширении в интервале 3.8-4.2 мкм при температуре T=338°K [16].
[16] Burch D.E. Continuum absorption by H2 O, Report AFGL-TR-81-0300 by Ford Aerospace and Communications Corporation, Aeronutronic Division to AFGL, United States Air Force, Hanscom AFB, Massachusetts 01731 (1982), 46 p.
1982
Burch D.E. , Continuum absorption by atmospheric H2 O, Report AFGL-TR-81-0300, by Ford Aeronutronic to Air Force Geophys. Lab., Hanscom AFB, Unknown, 1982 , Pages 46.
H2 O
T=338 К
P=∅
2. Experimental points (338K, 2400-2829cm⁻¹)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Spectral plots of C0 s for H2 O at 338K.
2004
Несмелова Л.И., Родимова О.Б., Творогов С.Д. , Коэффициент поглощения водяного пара при различных температурах , Оптическая спектроскопия и стандарты частоты. Молекулярная спектроскопия , Editor(s) Л.Н.Синица и Е.А.Виноградов , Издательство ИОА СО РАН, 2004 , Pages 413-436.
H2 O
T=428 К
P=1 атм
17a. Burch D.E. (1982) (428K, 2300-2800 cm⁻¹)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Результат измерения коэффициента поглощения водяного пара при самоуширении в интервале 3.8-4.2 мкм при температуре T=428K [16].
1982
Burch D.E. , Continuum absorption by atmospheric H2 O, Report AFGL-TR-81-0300, by Ford Aeronutronic to Air Force Geophys. Lab., Hanscom AFB, Unknown, 1982 , Pages 46.
H2 O
T=428 К
P=∅
2. Experimental points (428K, 2400-2829cm⁻¹)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Spectral plots of C0 s for H2 O at 428°K.
2004
Несмелова Л.И., Родимова О.Б., Творогов С.Д. , Коэффициент поглощения водяного пара при различных температурах , Оптическая спектроскопия и стандарты частоты. Молекулярная спектроскопия , Editor(s) Л.Н.Синица и Е.А.Виноградов , Издательство ИОА СО РАН, 2004 , Pages 413-436.
H2 O
T=296 К
P=1 атм
17a. Burch D.E., et al. (1984) (296K, 2300-2800 cm⁻¹)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Результат расчета (измерения) коэффициента поглощения водяного пара при самоуширении в интервале 3.8-4.2 мкм при температуре T=296°K [16].
[16] Burch D.E., Alt R.L., Continuum absorption by H2 O in the 700 - 1200 cm-1 and 2400 - 2800 cm-1 windows, Report AFGL-TR-84-0128 by Ford Aerospace and Communications Corporation, Aeronutronic Division to AFGL, United States Air Force, Hanscom AFB, USA, Massachusetts 01731, 1984, Pages 31.
1984
Burch D.E., Alt R.L. , Continuum absorption by H2 O in the 700 - 1200 cm-1 and 2400 - 2800 cm-1 windows, Report AFGL-TR-84-0128 by Ford Aerospace and Communications Corporation, Aeronutronic Division to AFGL, United States Air Force, Hanscom AFB, Unknown, 1984 , Pages 31.
H2 O
T=296 К
P=∅
6. Experiment (296K, 2400-2640cm⁻¹)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Self-broadening coefficients between 2400 and 2640 cm-1 for 296°K.
2004
Несмелова Л.И., Родимова О.Б., Творогов С.Д. , Коэффициент поглощения водяного пара при различных температурах , Оптическая спектроскопия и стандарты частоты. Молекулярная спектроскопия , Editor(s) Л.Н.Синица и Е.А.Виноградов , Издательство ИОА СО РАН, 2004 , Pages 413-436.
H2 O
T=296 К
P=1 атм
17a. Ma Q. et al. (1992) (296K, 2300-2800 cm⁻¹)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Результат расчета коэффициента поглощения водяного пара при самоуширении в интервале 3.8-4.2 мкм при температуре T=296°K, полученные в квазистатическом [58] подходe.
[58] Ma Q. and R.H.Tipping, A far wing line shape theory and its application to the water vibrational bands. II. J.Chem. Phys. 96, No.12, 8655-8663 (1992)
1992
Ma Q. , Tipping R.H. , A far wing line shape theory and its application to the water vibrational bands. II., Journal of Chemical Physics, 1992 , Volume 96 , Number 12, Pages 8655-8663.
H2 O
T=296 К
P=∅
9. Theoretical results for T=296K
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Comparison between the present theory and the laboratory experimental data of Burch (Ref. 18) for three temperatures in the spectral range 2400 cm-1 < ω< 2700 cm-1 . The solid curves are theoretical results for temperature T = 296°K.
2004
Несмелова Л.И., Родимова О.Б., Творогов С.Д. , Коэффициент поглощения водяного пара при различных температурах , Оптическая спектроскопия и стандарты частоты. Молекулярная спектроскопия , Editor(s) Л.Н.Синица и Е.А.Виноградов , Издательство ИОА СО РАН, 2004 , Pages 413-436.
H2 O
T=338 К
P=1 атм
17a. Ma Q. et al. (1992) (338K, 2300-2800 cm⁻¹)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Результат расчета (измерения) коэффициента поглощения водяного пара при самоуширении в интервале 3.8-4.2 мкм при температуре T=338°K, полученные в квазистатическом [58] подходe.
[58] Ma Q. and R.H.Tipping, A far wing line shape theory and its application to the water vibrational bands. II. J.Chem. Phys. 96, No. 12, 8655-8663 (1992)
1992
Ma Q. , Tipping R.H. , A far wing line shape theory and its application to the water vibrational bands. II., Journal of Chemical Physics, 1992 , Volume 96 , Number 12, Pages 8655-8663.
H2 O
T=328 К
P=∅
9. Theoretical results for T=328K
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Comparison between the present theory and the laboratory experimental data of Burch (Ref. 18) for three temperatures in the spectral range 2400 cm-1 < ω< 2700 cm-1 . The solid curves are theoretical results for temperature T = 328°K.
2004
Несмелова Л.И., Родимова О.Б., Творогов С.Д. , Коэффициент поглощения водяного пара при различных температурах , Оптическая спектроскопия и стандарты частоты. Молекулярная спектроскопия , Editor(s) Л.Н.Синица и Е.А.Виноградов , Издательство ИОА СО РАН, 2004 , Pages 413-436.
H2 O
T=428 К
P=1 атм
17a. Ma Q. et al. (1992) (428K, 2300-2800 cm⁻¹)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Результат расчета коэффициента поглощения водяного пара при самоуширении в интервале 3.8-4.2 мкм при температуре T=428°K, полученные в квазистатическом [58] подходe.
1992
Ma Q. , Tipping R.H. , A far wing line shape theory and its application to the water vibrational bands. II., Journal of Chemical Physics, 1992 , Volume 96 , Number 12, Pages 8655-8663.
H2 O
T=428 К
P=∅
9. Theoretical results for T=428K
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Comparison between the present theory and the laboratory experimental data of Burch (Ref. 18) for three temperatures in the spectral range 2400 cm-1 < ω< 2700 cm-1 . The solid curve is theoretical results for temperature T = 428°K.
2004
Несмелова Л.И., Родимова О.Б., Творогов С.Д. , Коэффициент поглощения водяного пара при различных температурах , Оптическая спектроскопия и стандарты частоты. Молекулярная спектроскопия , Editor(s) Л.Н.Синица и Е.А.Виноградов , Издательство ИОА СО РАН, 2004 , Pages 413-436.
H2 O
T=284 К
P=1 атм
18. Burch D.E. (1984) (296K, 700-1200 cm⁻¹)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Коэффициент поглощения водяного пара в интервале 8-12 мкм при температуре 284°К. Экспериментальные данные [18].
[18] Burch D.E. and Alt R.L. Continuum absorption by H2 O in the 700 - 1200 cm-1 and 2400 - 2800 cm-1 windows// Report AFGL-TR-84-0128 by Ford Aerospace and Communications Corporation, Aeronutronic Division to AFGL, United States Air Force, Hanscom AFB, Massachusetts 01731 (1984), 31 p.
1984
Burch D.E., Alt R.L. , Continuum absorption by H2 O in the 700 - 1200 cm-1 and 2400 - 2800 cm-1 windows, Report AFGL-TR-84-0128 by Ford Aerospace and Communications Corporation, Aeronutronic Division to AFGL, United States Air Force, Hanscom AFB, Unknown, 1984 , Pages 31.
H2 O
T=284 К
P=∅
2. Experiment (284K, 700-1100cm⁻¹)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Self-broadening coefficient from 700 cm-1 to 1100 cm-1 at 284°K.
2004
Несмелова Л.И., Родимова О.Б., Творогов С.Д. , Коэффициент поглощения водяного пара при различных температурах , Оптическая спектроскопия и стандарты частоты. Молекулярная спектроскопия , Editor(s) Л.Н.Синица и Е.А.Виноградов , Издательство ИОА СО РАН, 2004 , Pages 413-436.
H2 O
T=284 К
P=1 атм
18. Roberts R.E., et al. (1976) (284K, 700-1200 cm⁻¹)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Коэффициент поглощения водяного пара в интервале 8-12 мкм при температуре 284°К. Экспериментальные данные [18]
[21] Roberts R.E., Selby J.E.A. and Biberman L.M. Infrared continuum absorption by atmospheric water vapor in the 8 - 12 mm window// Appl. Opt. 1976. V.15. No.9. pp.2085 - 2090.
1976
Robert E. Roberts, John E. A. Selby, and Lucien M. Biberman , Infrared continuum absorption by atmospheric water vapor in the 8–12-µm window, Applied Optics, 1976 , Volume 15 , Issue 9, Pages 2085-2090.
H2 O
T=296 К
P=1 атм
1. Linear regression to all Burch's recent data
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Water vapor continuum absorption coefficient C (v) at T =296°K as a function of frequency v and wavelength in the 8-12-µm region;
The solid line represents a linear regression (described in text) to all Burch's recent water vapor data for the 8-30-μm region.
2004
Несмелова Л.И., Родимова О.Б., Творогов С.Д. , Коэффициент поглощения водяного пара при различных температурах , Оптическая спектроскопия и стандарты частоты. Молекулярная спектроскопия , Editor(s) Л.Н.Синица и Е.А.Виноградов , Издательство ИОА СО РАН, 2004 , Pages 413-436.
H2 O
T=284 К
P=1 атм
18. Roberts R.E., et al. (1976). Recomputed. (284K, 700-1200 cm⁻¹)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Коэффициент поглощения водяного пара в интервале 8-12 мкм при температуре 284 К. Пересчитанные данные [21].
[21] Roberts R.E., Selby J.E.A. and Biberman L.M. Infrared continuum absorption by atmospheric water vapor in the 8 - 12 mm window// Appl. Opt. 1976. V.15. No.9. pp.2085 - 2090.
1976
Robert E. Roberts, John E. A. Selby, and Lucien M. Biberman , Infrared continuum absorption by atmospheric water vapor in the 8–12-µm window, Applied Optics, 1976 , Volume 15 , Issue 9, Pages 2085-2090.
H2 O
T=296 К
P=∅
2. Linear regression to the best Burch data
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Water vapor continuum absorption coefficient Co (v) at T=296°K as a function of frequency v and wavelength λ in the 8-30 μm region. The dashed curve represents a linear regression to the best Burch data in the 8-12 μm region (described in text).
2004
Несмелова Л.И., Родимова О.Б., Творогов С.Д. , Коэффициент поглощения водяного пара при различных температурах , Оптическая спектроскопия и стандарты частоты. Молекулярная спектроскопия , Editor(s) Л.Н.Синица и Е.А.Виноградов , Издательство ИОА СО РАН, 2004 , Pages 413-436.
H2 O
T=∅
P=∅
20. Hinderling J., et al. (1987) (244.19 cm⁻¹, 230-340K)
Температура (К)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Экспериментальныйо [60] коэффициент поглощения водяного пара при самоуширении при различных температурах. ω=944.19 cm-1 .
[60] Hinderling J., Sigrist M.W., Kneubuhl F.K. Laser-photoacoustic spectroscopy of water-vapor continuum and line absorption in the 8 to 14-μm atmospheric window, Infrared Phys. 27, No.2, 63-120 (1987)
1987
Hinderling J., Sigrist M.W., Kneubuhl F.K. , Laser-photoacoustic spectroscopy of water-vapor continuum and line absorption in the 8 to 14-μm atmospheric window, Infrared Physics & Technology, 1987 , Volume 27 , Number 2, Pages 63-120.
Температура (К)
Коэффициент поглощения (см²мбар⁻¹)
2004
Несмелова Л.И., Родимова О.Б., Творогов С.Д. , Коэффициент поглощения водяного пара при различных температурах , Оптическая спектроскопия и стандарты частоты. Молекулярная спектроскопия , Editor(s) Л.Н.Синица и Е.А.Виноградов , Издательство ИОА СО РАН, 2004 , Pages 413-436.
H2 O
T=∅
P=∅
20. Hinderling J., et al. (1987) a (244.19 cm⁻¹, 230-340K)
Температура (К)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Экспериментальный [60] коэффициент поглощения водяного пара при самоуширении при различных температурах. ω=944.19 cm-1 .
[60] Hinderling J., Sigrist M.W., Kneubuhl F.K. Laser-photoacoustic spectroscopy of water-vapor continuum and line absorption in the 8 to 14-μm atmospheric window, Infrared Phys. 27, No.2, 63-120 (1987)
1987
Hinderling J., Sigrist M.W., Kneubuhl F.K. , Laser-photoacoustic spectroscopy of water-vapor continuum and line absorption in the 8 to 14-μm atmospheric window, Infrared Physics & Technology, 1987 , Volume 27 , Number 2, Pages 63-120.
Температура (К)
Коэффициент поглощения (см²мбар⁻¹)
2004
Несмелова Л.И., Родимова О.Б., Творогов С.Д. , Коэффициент поглощения водяного пара при различных температурах , Оптическая спектроскопия и стандарты частоты. Молекулярная спектроскопия , Editor(s) Л.Н.Синица и Е.А.Виноградов , Издательство ИОА СО РАН, 2004 , Pages 413-436.
H2 O
T=∅
P=∅
20. Ma Q., et al. (2002) (244.19 cm⁻¹, 230-340K)
Температура (К)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Рассчитанный [59] коэффициент поглощения водяного пара при самоуширении при различных температурах. ω=944.19 cm-1 .
[59] Ma Q., Tipping R.H. The frequency detuning correction and the asymmetry of line shapes: The far wings of H2 O-H2 O, J.Chem.Phys. 116. No.10 , P. 4102 - 4115 (2002)
2002
Ma Q., Tipping R.H. , The frequency detuning correction and the asymmetry of line shapes: The far wings of H2 O-H2 O, Journal of Chemical Physics, 2002 , Volume 116 , Number 10, Pages 4102 - 4115.
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
2004
Несмелова Л.И., Родимова О.Б., Творогов С.Д. , Коэффициент поглощения водяного пара при различных температурах , Оптическая спектроскопия и стандарты частоты. Молекулярная спектроскопия , Editor(s) Л.Н.Синица и Е.А.Виноградов , Издательство ИОА СО РАН, 2004 , Pages 413-436.
H2 O
T=∅
P=∅
21. Burch D.E., et al. (1980) (1000 cm⁻¹, 240-500K)
Температура (К)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Сравнение коэффициентов поглощения Н2 О-Н2 О, измеренных и рассчитанных разными авторами.
[17] Burch D.E., Gryvnak D.A. Continuum absorption by H2 O vapor in the infrared and millimeter regions. In: Deepak A., Wilkerson T.D., Ruhnke L.H. (Editors) Atmospheric water vapor. Academic Press, New York, London, Toronto, Sydney, San Francisco, 1980, pp. 47-76.
1980
Burch D.E., Gryvnak D.A. , Continuum absorption by H2 O vapor in the infrared and millimeter regions., Atmospheric water vapor, Editor(s) Deepak A., Wilkerson T.D., Ruhnke L.H., Academic Press, 1980 , Pages 47-76.
Волновое число (см⁻¹) Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)Ослабление (дБ/км)
2004
Несмелова Л.И., Родимова О.Б., Творогов С.Д. , Коэффициент поглощения водяного пара при различных температурах , Оптическая спектроскопия и стандарты частоты. Молекулярная спектроскопия , Editor(s) Л.Н.Синица и Е.А.Виноградов , Издательство ИОА СО РАН, 2004 , Pages 413-436.
H2 O
T=∅
P=∅
21. Burch D.E., et al. (1980). (1000 cm⁻¹, 240-500K)
Температура (К)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Сравнение коэффициентов поглощения Н2 О-Н2 О, измеренных и рассчитанных разными авторами.
[17] Burch D.E., Gryvnak D.A. Continuum absorption by H2 O vapor in the infrared and millimeter regions. In: Deepak A., Wilkerson T.D., Ruhnke L.H. (Editors) Atmospheric water vapor. Academic Press, New York, London, Toronto, Sydney, San Francisco, 1980, pp. 47-76.
1980
Burch D.E., Gryvnak D.A. , Continuum absorption by H2 O vapor in the infrared and millimeter regions., Atmospheric water vapor, Editor(s) Deepak A., Wilkerson T.D., Ruhnke L.H., Academic Press, 1980 , Pages 47-76.
Волновое число (см⁻¹) Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)Ослабление (дБ/км)
2004
Несмелова Л.И., Родимова О.Б., Творогов С.Д. , Коэффициент поглощения водяного пара при различных температурах , Оптическая спектроскопия и стандарты частоты. Молекулярная спектроскопия , Editor(s) Л.Н.Синица и Е.А.Виноградов , Издательство ИОА СО РАН, 2004 , Pages 413-436.
H2 O
T=∅
P=∅
21. Loper G.L., et al. (1983) (1000 cm⁻¹, 240-500K)
Температура (К)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Сравнение коэффициентов поглощения Н2 О-Н2 О, измеренных и рассчитанных разными авторами.
[63] Loper G.L., O’Neil M.A., Gelbwachs J.A. Water-vapor continuum CO2 laser absorption spectra between 27 C and -10 C, Appl. Optics 22 (23), 3701-3710 (1983).
1983
Loper G.L., O’Neil M.A., Gelbwachs J.A. , Water-vapor continuum CO2 laser absorption spectra between 27°C and -10°C, Applied Optics, 1983 , Volume 22 , Number 23, Pages 3701-3710.
H2 O
T=∅
P=∅
8. Collisional broadening model
Температура (К)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
2004
Несмелова Л.И., Родимова О.Б., Творогов С.Д. , Коэффициент поглощения водяного пара при различных температурах , Оптическая спектроскопия и стандарты частоты. Молекулярная спектроскопия , Editor(s) Л.Н.Синица и Е.А.Виноградов , Издательство ИОА СО РАН, 2004 , Pages 413-436.
H2 O
T=∅
P=∅
21. Montgomery G.P. (1978) (1000 cm⁻¹, 240-500K)
Температура (К)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Сравнение коэффициентов поглощения Н2 О-Н2 О, измеренных и рассчитанных разными авторами.
[30] Montgomery G.P. Temperature dependence of infrared absorption by the water vapor continuum near 1200 cm-1 , Appl. Optics 17, No. 15, 2299-2303 (1978).
1978
G. Paul Montgomery, Jr. , Temperature dependence of infrared absorption by the water vapor continuum near 1200 cm-1 , Applied Optics, 1978 , Volume 17 , Issue 15, Pages 2299-2303.
H2 O
T=∅
P=∅
3. This work (320-470K, 1200 cm⁻¹)
Температура (К)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
2004
Несмелова Л.И., Родимова О.Б., Творогов С.Д. , Коэффициент поглощения водяного пара при различных температурах , Оптическая спектроскопия и стандарты частоты. Молекулярная спектроскопия , Editor(s) Л.Н.Синица и Е.А.Виноградов , Издательство ИОА СО РАН, 2004 , Pages 413-436.
H2 O
T=∅
P=∅
21. Thomas M.E., et al. (1985) (1000 cm⁻¹, 240-500K)
Температура (К)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Сравнение коэффициентов поглощения Н2 О-Н2 О, измеренных и рассчитанных разными авторами.
[57] Thomas M.E. and Nordstrom R.J. Line shape model for describing infrared absorption by water vapor// Appl. Optics 1985. V.24. No.21. pp.3526-3530.
1985
Thomas M.E., Nordstrom R.J. , Line shape model for describing infrared-absorption by water vapor, Applied Optics, 1985 , Volume 24 , Issue 21, Pages 3526-3530.
H2 O
T=∅
P=∅
4. Dimer and local lines
Температура (К)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Temperature dependence of Cs at 1203.0 cm-1 .
2004
Несмелова Л.И., Родимова О.Б., Творогов С.Д. , Коэффициент поглощения водяного пара при различных температурах , Оптическая спектроскопия и стандарты частоты. Молекулярная спектроскопия , Editor(s) Л.Н.Синица и Е.А.Виноградов , Издательство ИОА СО РАН, 2004 , Pages 413-436.
H2 O
T=∅
P=∅
21. Varanasi P., et al. (1987-8) (1000 cm⁻¹, 240-500K)
Температура (К)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Сравнение коэффициентов поглощения Н2 О-Н2 О, измеренных и рассчитанных разными авторами.
[61] Varanasi P., Chudamani S. Self- and N2 -broadened spectra of water vapor between 7.5 and 14.5 μm, J.Quant.Spectrosc.Radiat.Transfer 38, No.6, 407-412 (1987).
[62] Varanasi P. Infrared absorption by water vapor in the atmospheric window, Proc.Photo-Instrum. Eng. 928,213-230 (1988).
1987
P. Varanasi and S. Chudamani , Self- and N2 -broadened spectra of water vapor between 7.5 and 14.5 μm, Journal of Quantitative Spectroscopy and Radiative Transfer, 1987 , Volume 38 , Issue 6, Pages 407-412.
1000/Т (К⁻¹)Волновое число (см⁻¹) Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)Коэффициент пропускания (произвольные единицы) Пропускание (%)
2005
Cormier J.G., Hodges J.T., Drummond J.R. , Infrared water vapor continuum absorption at atmospheric temperatures, Journal of Chemical Physics, 2005 , Volume 122 , Number 11,
H2 O
T=∅
P=∅
6. G. L. Loper, et al. (1983). Photoacoustic measurements
Температура (К)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
The water-water continuum absorption coefficients as a function of temperature. Triangles are used for the results from two previous studies in which photoacoustic spectroscopy was used (Refs. 22,23).
[22]. G. L. Loper, M. A. O’Neill, and J. A. Gelbwachs, Appl. Opt. 22, 3701 (1983).
1983
Loper G.L., O’Neil M.A., Gelbwachs J.A. , Water-vapor continuum CO2 laser absorption spectra between 27°C and -10°C, Applied Optics, 1983 , Volume 22 , Number 23, Pages 3701-3710.
H2 O
T=∅
P=∅
8. Aerospace
Температура (К)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
2005
Cormier J.G., Hodges J.T., Drummond J.R. , Infrared water vapor continuum absorption at atmospheric temperatures, Journal of Chemical Physics, 2005 , Volume 122 , Number 11,
H2 O
T=∅
P=∅
6. J. Hinderling, et al. (1987). Photoacoustic measurements
Температура (К)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
The water-water continuum absorption coefficients as a function of temperature. Triangles are used for the results from two previous studies in which photoacoustic spectroscopy was used (Refs. 22,23).
[23]. J. Hinderling, M. W. Sigrist, and F. K. Kneubühl, Infrared Phys. 27, 63 (1987).
1987
Hinderling J., Sigrist M.W., Kneubuhl F.K. , Laser-photoacoustic spectroscopy of water-vapor continuum and line absorption in the 8 to 14-μm atmospheric window, Infrared Physics & Technology, 1987 , Volume 27 , Number 2, Pages 63-120.
Температура (К)
Коэффициент поглощения (см²мбар⁻¹)
2005
Cormier J.G., Hodges J.T., Drummond J.R. , Infrared water vapor continuum absorption at atmospheric temperatures, Journal of Chemical Physics, 2005 , Volume 122 , Number 11,
H2 O
T=∅
P=∅
6. M. T. Coffey, et al. (1977). Radiometer measurements
Температура (К)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
The water-water continuum absorption coefficients as a function of temperature. The squares are absorption coefficients derived from aircraft radiometer measurements (Ref. 21).
[21]. M. T. Coffey, Q. J. R. Meteorol. Soc. 103, 685 (1977)
1977
Coffey M.T. , Water vapour absorption in the 10-12 micron atmospheric window, Quarterly Journal of Royal Meteorological Society, 1977 , Volume 103 , Issue 438, Pages 685-692.
Волновое число (см⁻¹)
Коэффициент поглощения (г⁻¹см²атм⁻¹)
2007
Yohann Scribano and Claude Leforestier , Contribution of water dimer absorption to the millimeter and far infrared atmospheric water continuum, Journal of Chemical Physics, 2007 , Volume 126 , Issue 23,
H2 O
T=297 К
P=2130 атм
13. V. B. Podobedov, et al. (2005)
Волновое число (см⁻¹)
Коэффициент поглощения (дБ/км)
Comparison of the experimentally defined water continuum absorption by Podobedov et al. (Ref. 42). The physical conditions correspond to pH2O =2.13 kPa and a temperature T=297 K.
[42] V. B. Podobedov, D. F. Plusquellic, and G. T. Fraser, J. Quant. Spectrosc. Radiat. Transf. 91, 287 (2005).
2005
Podobedov V.B., Plusquellic D.F., Fraser G.T. , Investigation of the water-vapor continuum in the THz region using a multipass cell, Journal of Quantitative Spectroscopy and Radiative Transfer, 2005 , Volume 91 , Pages 287-295.
Волновое число (см⁻¹)
Поглощательная способность по базе 10 (единицы поглощения)
2008
Lee M.S., Baletto F., Kanhere D.G., Scandolo S. , Far-infrared absorption of water clusters by first-principles molecular dynamics
, Journal of Chemical Physics, 2008 , Volume 128 , Issue 21,
H2 O
T=296 К
P=∅
5. D.E.Burch (1981) (300-1100 cm⁻¹)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
The triangles show the experimental water vapor absorption coefficient measured by Burch (Ref.21).
[21] D.E.Burch, Proc. SPIE 277, 28 (1981).
1981
Burch D.E. , Continuum absorption by atmospheric H2 O, SPIE Proc. Atmospheric Transmission, V.277, Editor(s) Robert W. Fan, SPIE - The international society for optical engineering, 1981 , Pages 28-39.
H2 O
T=296 К
P=∅
4. Experiment (296K, 300-800 cm⁻¹)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Semi-logarithmic plot of the H2 O continuum coefficient for self broadening at 296°K. The solid squares represent experimental values.
2008
Ma Q., Tipping R.H., Leforestier C. , Temperature dependences of mechanisms responsible for the water-vapor continuum absorption: 1. Far wings of allowed lines, Journal of Chemical Physics, 2008 , Volume 128 ,
H2 O
T=296 К
P=1 атм
10. D.E. Burch, et al. (1979, 1981, 1984) (296K, 800-1150 cm⁻¹)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Seven of Burch’s measurements located in this spectral region at T=296°K.
[11] D. E. Burch and D. A. Gryvnak, Hanscom AFB Report No. AFGL-TR- 79-0054, 1979;
D. E. Burch, Proc. SPIE 277, 28 (1981);
D. E. Burch and R. L. Alt, Hanscom AFB Report No. AFGL-TR-84-0128, 1984.
1984
Burch D.E., Alt R.L. , Continuum absorption by H2 O in the 700 - 1200 cm-1 and 2400 - 2800 cm-1 windows, Report AFGL-TR-84-0128 by Ford Aerospace and Communications Corporation, Aeronutronic Division to AFGL, United States Air Force, Hanscom AFB, Unknown, 1984 , Pages 31.
H2 O
T=296 К
P=∅
1. Our experimental results (296K, 700-1100cm⁻¹)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Self-broadening coefficient from 700 cm-1 to 1100 cm-1 at 296°K.
2008
Ma Q., Tipping R.H., Leforestier C. , Temperature dependences of mechanisms responsible for the water-vapor continuum absorption: 1. Far wings of allowed lines, Journal of Chemical Physics, 2008 , Volume 128 ,
H2 O
T=296 К
P=1 атм
10. J.G. Cormier, et al. (2005) (296K, 800-1150 cm⁻¹)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Two results of Cormier et al. (Ref. 16) at 944.195 cm−1 for T=296° and 310°K are plotted.
[16] J. G. Cormier, J. Hodges, and J. R. Drummond, J. Chem. Phys. 122, 114309 (2005)
2005
Cormier J.G., Hodges J.T., Drummond J.R. , Infrared water vapor continuum absorption at atmospheric temperatures, Journal of Chemical Physics, 2005 , Volume 122 , Number 11,
Температура (К) Температура (К)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)Температурная зависимость нормализованного коэффициента поглощения
2008
Ma Q., Tipping R.H., Leforestier C. , Temperature dependences of mechanisms responsible for the water-vapor continuum absorption: 1. Far wings of allowed lines, Journal of Chemical Physics, 2008 , Volume 128 ,
H2 O
T=310 К
P=1 атм
10. J.G. Cormier, et al. (2005) (310K, 800-1150 cm⁻¹)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Two results of Cormier et al. (Ref. 16) at 944.195 cm−1 for T=296° and 310°K are plotted.
[16] J. G. Cormier, J. Hodges, and J. R. Drummond, J. Chem. Phys. 122, 114309 (2005).
2005
Cormier J.G., Hodges J.T., Drummond J.R. , Infrared water vapor continuum absorption at atmospheric temperatures, Journal of Chemical Physics, 2005 , Volume 122 , Number 11,
Температура (К) Температура (К)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)Температурная зависимость нормализованного коэффициента поглощения
2008
Ma Q., Tipping R.H., Leforestier C. , Temperature dependences of mechanisms responsible for the water-vapor continuum absorption: 1. Far wings of allowed lines, Journal of Chemical Physics, 2008 , Volume 128 ,
H2 O
T=310.8 К
P=1 атм
10. Yu. I. Baranov, et al. (2008) (310.8K, 800-1150 cm⁻¹)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
New measured absorption coefficients by Baranov et al. (Ref. 26) at 27 microwindows within 800–1150 cm−1 for temperatures T=310.8°K.
[26] Yu. I. Baranov, W. J. Lafferty, G. T. Fraser, Q. Ma, and R. H. Tipping, “Water vapor continuum absorption in the 800 cm-1 to 1250 cm-1 spectral region at temperatures from 311 to 363 K,” J. Quant. Spectrosc. Radiat. Transf. 2008. V.109, 2291-2302, doi:10.1016/j.jqsrt.2008.03.004.
2008
Yu.I. Baranov, W.J. Lafferty, Q. Ma and R.H. Tipping , Water-vapor continuum absorption in the 800-1250 cm-1 spectral region at temperatures from 311 to 363 K, Journal of Quantitative Spectroscopy and Radiation Transfer, 2008 , Volume 109 , Issue 12, Pages 2291-2302.
H2 O
T=310.8 К
P=1 атм
2. Present experiment (310.8K, 800-1150 cm⁻¹)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹)
Binary absorption coefficients of the water-vapor continuum derived by direct measurements of absorption in selected microwindows
2008
Ma Q., Tipping R.H., Leforestier C. , Temperature dependences of mechanisms responsible for the water-vapor continuum absorption: 1. Far wings of allowed lines, Journal of Chemical Physics, 2008 , Volume 128 ,
H2 O
T=325.8 К
P=1 атм
10. Yu. I. Baranov, et al. (2008) (325.8K, 800-1150 cm⁻¹)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
New measured absorption coefficients by Baranov et al. (Ref. 26) at 27 microwindows within 800–1150 cm−1 for temperatures T=325.8°K.
[26] Yu. I. Baranov, W. J. Lafferty, G. T. Fraser, Q. Ma, and R. H. Tipping, “Water vapor continuum absorption in the 800 cm-1 to 1250 cm-1 spectral region at temperatures from 311 to 363 K,” J. Quant. Spectrosc. Radiat. Transf. 2008. V.109, 2291-2302, doi:10.1016/j.jqsrt.2008.03.004. .
2008
Yu.I. Baranov, W.J. Lafferty, Q. Ma and R.H. Tipping , Water-vapor continuum absorption in the 800-1250 cm-1 spectral region at temperatures from 311 to 363 K, Journal of Quantitative Spectroscopy and Radiation Transfer, 2008 , Volume 109 , Issue 12, Pages 2291-2302.
H2 O
T=325 К
P=1 атм
2. Present experiment (325K, 800-1150 cm⁻¹)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹)
Binary absorption coefficients of the water-vapor continuum derived by direct measurements of absorption in selected microwindows
2008
Ma Q., Tipping R.H., Leforestier C. , Temperature dependences of mechanisms responsible for the water-vapor continuum absorption: 1. Far wings of allowed lines, Journal of Chemical Physics, 2008 , Volume 128 ,
H2 O
T=363.6 К
P=1 атм
10. Yu. I. Baranov, et al. (2008) (363.6K, 800-1150 cm⁻¹)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
New measured absorption coefficients by Baranov et al. (Ref. 26) at 27 microwindows within 800–1150 cm−1 for temperatures T=363.6°K.
[26] Yu. I. Baranov, W. J. Lafferty, G. T. Fraser, Q. Ma, and R. H. Tipping, “Water vapor continuum absorption in the 800 cm-1 to 1250 cm-1 spectral region at temperatures from 311 to 363 K,” J. Quant. Spectrosc. Radiat. Transf. 2008. V.109, 2291-2302, doi:10.1016/j.jqsrt.2008.03.004.
2008
Yu.I. Baranov, W.J. Lafferty, Q. Ma and R.H. Tipping , Water-vapor continuum absorption in the 800-1250 cm-1 spectral region at temperatures from 311 to 363 K, Journal of Quantitative Spectroscopy and Radiation Transfer, 2008 , Volume 109 , Issue 12, Pages 2291-2302.
H2 O
T=363 К
P=1 атм
2. Present experiment (363K, 800-1150 cm⁻¹)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹)
Binary absorption coefficients of the water-vapor continuum derived by direct measurements of absorption in selected microwindows
2008
Ma Q., Tipping R.H., Leforestier C. , Temperature dependences of mechanisms responsible for the water-vapor continuum absorption: 1. Far wings of allowed lines, Journal of Chemical Physics, 2008 , Volume 128 ,
H2 O
T=296 К
P=1 атм
8. D.E. Burch, et al. (296K, 300-1100 cm⁻¹)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
The experimental values of Burch et al. (Ref. 11) ( (in units of cm2 molecule−1 atm−1 ) at T=296°K in the 300–1100 cm−1 ) are denoted by +.
[11] D. E. Burch and D. A. Gryvnak, Hanscom AFB Report No. AFGL-TR- 79-0054, 1979; D. E. Burch, Proc. SPIE 277, 28 (1981); D. E. Burch and R. L. Alt, Hanscom AFB Report No. AFGL-TR-84-0128, 1984.
1984
Burch D.E., Alt R.L. , Continuum absorption by H2 O in the 700 - 1200 cm-1 and 2400 - 2800 cm-1 windows, Report AFGL-TR-84-0128 by Ford Aerospace and Communications Corporation, Aeronutronic Division to AFGL, United States Air Force, Hanscom AFB, Unknown, 1984 , Pages 31.
H2 O
T=296 К
P=∅
1. Our experimental results (296K, 700-1100cm⁻¹)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Self-broadening coefficient from 700 cm-1 to 1100 cm-1 at 296°K.
2008
Ma Q., Tipping R.H., Leforestier C. , Temperature dependences of mechanisms responsible for the water-vapor continuum absorption: 1. Far wings of allowed lines, Journal of Chemical Physics, 2008 , Volume 128 ,
H2 O
T=∅
P=∅
9. G. L. Loper, et al. (1983). (944.195 cm⁻¹, 250-345K)
Температура (К)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Laboratory measurements of Loper et al. (Ref. 34) at 283 and 300 K.
[34] G. L. Loper, M. A. O’Neill, and J. A. Gelbwachs, Appl. Opt. 22, 3701 (1983)
1983
Loper G.L., O’Neil M.A., Gelbwachs J.A. , Water-vapor continuum CO2 laser absorption spectra between 27°C and -10°C, Applied Optics, 1983 , Volume 22 , Number 23, Pages 3701-3710.
H2 O
T=∅
P=∅
8. Aerospace
Температура (К)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
2008
Ma Q., Tipping R.H., Leforestier C. , Temperature dependences of mechanisms responsible for the water-vapor continuum absorption: 1. Far wings of allowed lines, Journal of Chemical Physics, 2008 , Volume 128 ,
H2 O
T=∅
P=∅
9. J. G. Cormier, et al. (2005). (944.195 cm⁻¹, 250-345K)
Температура (К)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Recent results provided by Cormier et al. (Ref. 16) in the temperature range 275–310°K are given by squares.
[16] J. G. Cormier, J. Hodges, and J. R. Drummond, J. Chem. Phys. 122, 114309 (2005)
2005
Cormier J.G., Hodges J.T., Drummond J.R. , Infrared water vapor continuum absorption at atmospheric temperatures, Journal of Chemical Physics, 2005 , Volume 122 , Number 11,
H2 O
T=∅
P=∅
6. Present experiment
Температура (К)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
The water-water continuum absorption coefficients as a function of temperature. Results from the present study are shown as solid circles.
2008
Ma Q., Tipping R.H., Leforestier C. , Temperature dependences of mechanisms responsible for the water-vapor continuum absorption: 1. Far wings of allowed lines, Journal of Chemical Physics, 2008 , Volume 128 ,
H2 O
T=∅
P=∅
9. J. Hinderling, et al. (1987). (944.195 cm⁻¹, 250-345K)
Температура (К)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Laboratory measurements of Hinderling et al. (Ref. 14) at the 10P(20) CO2 laser line frequency (i.e., 944.195 cm−1 ) are presented.
[14] J. Hinderling, M. W. Sigrist, and F. K. Kneubühl, Infrared Phys. 27, 63 (1987)
1987
Hinderling J., Sigrist M.W., Kneubuhl F.K. , Laser-photoacoustic spectroscopy of water-vapor continuum and line absorption in the 8 to 14-μm atmospheric window, Infrared Physics & Technology, 1987 , Volume 27 , Number 2, Pages 63-120.
Температура (К)
Коэффициент поглощения (см²мбар⁻¹)
2008
Ptashnik I. V. , Evidence for the contribution of water dimers to the near-IR water vapour self-continuum, Journal of Quantitative Spectroscopy and Radiative Transfer, 2008 , Volume 109 , Pages 831 – 852.
H2 O
T=∅
P=∅
10. D.E.Burch, et al. (1985) Empirical continuum
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Empirical continuum of Burch [75] (see text for details).
[75] Burch D.E. Absorption by H2 O in narrow windows between 3000 and 4200 cm-1 . US Air Force Geophysics Laboratory report, AFGL-TR-85-0036, Hanscom Air Force Base, MA, 1985.
1985
Burch D.E. , Absorption by H2 O in narrow windows between 3000 - 4200 cm-1 , Report AFGL-TR-85-0036 by Ford Aerospace and Communications Corporation, Aeronutronic Division to AFGL, United States Air Force, Hanscom AFB, Unknown, 1985 , Pages 37.
H2 O
T=∅
P=∅
1. Table 1. Empirical e Cs ⁰
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Coefficients for self-broadening. Experiment.
2008
Yu.I. Baranov, W.J. Lafferty, Q. Ma and R.H. Tipping , Water-vapor continuum absorption in the 800-1250 cm-1 spectral region at temperatures from 311 to 363 K, Journal of Quantitative Spectroscopy and Radiation Transfer, 2008 , Volume 109 , Issue 12, Pages 2291-2302.
H2 O
T=∅
P=∅
6. NIST (2007-2009)
Температура (К)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Temperature dependence of the continuum absorption coefficient around 2460 cm -1 .
2008
Yu.I. Baranov, W.J. Lafferty, Q. Ma and R.H. Tipping , Water-vapor continuum absorption in the 800-1250 cm-1 spectral region at temperatures from 311 to 363 K, Journal of Quantitative Spectroscopy and Radiation Transfer, 2008 , Volume 109 , Issue 12, Pages 2291-2302.
H2 O
T=∅
P=∅
9. NIST, (2006)
Температура (К)
Коэффициент поглощения (см²мол⁻¹)
The water-vapor continuum absorption coefficient at 1203 cm-1 over the temperature range 290–480°K.
2008
Yu.I. Baranov, W.J. Lafferty, Q. Ma and R.H. Tipping , Water-vapor continuum absorption in the 800-1250 cm-1 spectral region at temperatures from 311 to 363 K, Journal of Quantitative Spectroscopy and Radiation Transfer, 2008 , Volume 109 , Issue 12, Pages 2291-2302.
H2 O
T=∅
P=∅
8. Burch D.E. (1982) (295-395K, 944.19 cm⁻¹)
Температура (К)
Коэффициент поглощения (см²мол⁻¹)
The 944.19 cm-1 water-vapor continuum absorption coefficient at different temperatures in which the values obtained by several laboratories are compared.
[11] Burch DE. Continuum absorption by H2 O. Technical report AFGL-TR-81-0300. Air Force Geophysical Laboratory, 1982.
1982
Burch D.E. , Continuum absorption by atmospheric H2 O, Report AFGL-TR-81-0300, by Ford Aeronutronic to Air Force Geophys. Lab., Hanscom AFB, Unknown, 1982 , Pages 46.
Волновое число (см⁻¹) Волновое число (см⁻¹) Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹) Коэффициент поглощения (см²мол⁻¹атм⁻¹)Ослабление (дБ/км)
2008
Yu.I. Baranov, W.J. Lafferty, Q. Ma and R.H. Tipping , Water-vapor continuum absorption in the 800-1250 cm-1 spectral region at temperatures from 311 to 363 K, Journal of Quantitative Spectroscopy and Radiation Transfer, 2008 , Volume 109 , Issue 12, Pages 2291-2302.
H2 O
T=∅
P=∅
8. Cormier J.G., et al. (2005) (270-310 K, 944.19 cm⁻¹)
Температура (К)
Коэффициент поглощения (см²мол⁻¹)
The 944.19 cm-1 water-vapor continuum absorption coefficient at different temperatures in which the values obtained by several laboratories are compared.
[5] Cormier J.G., Hodges J.T., Drummond J.R. Infrared water vapor continuum absorption at atmospheric temperatures. J Chem Phys 2005;122:114309.
2005
Cormier J.G., Hodges J.T., Drummond J.R. , Infrared water vapor continuum absorption at atmospheric temperatures, Journal of Chemical Physics, 2005 , Volume 122 , Number 11,
H2 O
T=∅
P=∅
6. Present experiment
Температура (К)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
The water-water continuum absorption coefficients as a function of temperature. Results from the present study are shown as solid circles.
2008
Yu.I. Baranov, W.J. Lafferty, Q. Ma and R.H. Tipping , Water-vapor continuum absorption in the 800-1250 cm-1 spectral region at temperatures from 311 to 363 K, Journal of Quantitative Spectroscopy and Radiation Transfer, 2008 , Volume 109 , Issue 12, Pages 2291-2302.
H2 O
T=∅
P=∅
8. Dianov-Klokov V.I., et al. (1981) (270-390 K)
Температура (К)
Коэффициент поглощения (см²мол⁻¹)
The 944.19 cm-1 water-vapor continuum absorption coefficient at different temperatures in which the values obtained by several laboratories are compared. Dashed line (2) was obtained using the continuum model developed by Aref’ev [14].
[14] Dianov-Klokov VI, Ivanov VM, Aref’ev VN, Sizov NI. Water vapor continuum absorption at 8–13 μm. JQSRT 1981;25:83–92.
1981
V. I. Dianov-Klokov and V. M. Ivanov, V. N. Aref'ev and N. I. Sizov , Water vapour continuum absorption at 8–13 μ, Journal of Quantitative Spectroscopy and Radiative Transfer, 1981 , Volume 25 , Issue 1, Pages 83-92.
2008
Yu.I. Baranov, W.J. Lafferty, Q. Ma and R.H. Tipping , Water-vapor continuum absorption in the 800-1250 cm-1 spectral region at temperatures from 311 to 363 K, Journal of Quantitative Spectroscopy and Radiation Transfer, 2008 , Volume 109 , Issue 12, Pages 2291-2302.
H2 O
T=∅
P=∅
8. Eng R.S., et al. (1980)
Температура (К)
Коэффициент поглощения (см²мол⁻¹)
The 944.19 cm-1 water-vapor continuum absorption coefficient at different temperatures in which the values obtained by several laboratories are compared.
[21] Eng R.S., Mantz A.W. Tunable diode laser measurements of water vapor continuum and water vapor absorption line shape in the 10 μm atmospheric transmission window region. In: Deepak A, Wilkerson TD, Ruhnke LH, editors. Atmospheric water vapor. New York: Academic Press; 1980. p. 101–11.
1980
Eng R.S., Mantz A.W. , Tunable diode laser measurements of water vapor continuum and water vapor absorption line shape in the 10 micron atmospheric transmission window region, Atmospheric Water Vapor, Editor(s) Deepak A., Wilkerson T.D., Ruhnke L.H., Academic Press, 1980 , Pages 101-117.
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
2008
Yu.I. Baranov, W.J. Lafferty, Q. Ma and R.H. Tipping , Water-vapor continuum absorption in the 800-1250 cm-1 spectral region at temperatures from 311 to 363 K, Journal of Quantitative Spectroscopy and Radiation Transfer, 2008 , Volume 109 , Issue 12, Pages 2291-2302.
H2 O
T=∅
P=∅
8. Hinderling J., et al. (1987) (944.19 cm⁻¹)
Температура (К)
Коэффициент поглощения (см²мол⁻¹)
The 944.19 cm-1 water-vapor continuum absorption coefficient at different temperatures in which the values obtained by several laboratories are compared.
[18] Hinderling J., Sigrist M.W., Kneubuhl F.K. Laser-photoacoustic spectroscopy of water-vapor continuum and line absorption in the 8–14 μm atmospheric window. Infrared Phys 1987;27:63–120.
1987
Hinderling J., Sigrist M.W., Kneubuhl F.K. , Laser-photoacoustic spectroscopy of water-vapor continuum and line absorption in the 8 to 14-μm atmospheric window, Infrared Physics & Technology, 1987 , Volume 27 , Number 2, Pages 63-120.
Температура (К)
Коэффициент поглощения (см²мбар⁻¹)
2008
Yu.I. Baranov, W.J. Lafferty, Q. Ma and R.H. Tipping , Water-vapor continuum absorption in the 800-1250 cm-1 spectral region at temperatures from 311 to 363 K, Journal of Quantitative Spectroscopy and Radiation Transfer, 2008 , Volume 109 , Issue 12, Pages 2291-2302.
H2 O
T=∅
P=∅
8. Loper G.L., et al. (1983) (944.19 cm⁻¹)
Температура (К)
Коэффициент поглощения (см²мол⁻¹)
The 944.19 cm-1 water-vapor continuum absorption coefficient at different temperatures in which the values obtained by several laboratories are compared.
[17] Loper G.L., O’Neill M.A., Gelbwachs J.A. Water-vapor continuum CO2 laser absorption spectra between 27o C and -10o C. Appl Opt 1983;22:3701–10.
1983
Loper G.L., O’Neil M.A., Gelbwachs J.A. , Water-vapor continuum CO2 laser absorption spectra between 27°C and -10°C, Applied Optics, 1983 , Volume 22 , Number 23, Pages 3701-3710.
H2 O
T=∅
P=∅
8. Collisional broadening model
Температура (К)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
2008
Yu.I. Baranov, W.J. Lafferty, Q. Ma and R.H. Tipping , Water-vapor continuum absorption in the 800-1250 cm-1 spectral region at temperatures from 311 to 363 K, Journal of Quantitative Spectroscopy and Radiation Transfer, 2008 , Volume 109 , Issue 12, Pages 2291-2302.
H2 O
T=∅
P=∅
8. Nordstrom R.J., et al. (1978) (944.19 cm⁻¹)
Температура (К)
Коэффициент поглощения (см²мол⁻¹)
The 944.19 cm-1 water-vapor continuum absorption coefficient at different temperatures in which the values obtained by several laboratories are compared.
[13] Nordstrom R.J., Thomas M.E., Peterson J.C., Damon E.K., Long R.K. Effects of oxygen addition on pressure-broadened water vapor absorption in the 10-μm region. Appl Opt 1978; 17:2724–9.
1978
Nordstrom R.J., Thomas M.E., Peterson J.C., Damon E.K., Long R.K. , Effects of oxygen addition on pressure-broadened water vapor absorption in the 10 mm region, Applied Optics, 1978 , Volume 17 , Pages 2724-2729.
2008
Yu.I. Baranov, W.J. Lafferty, Q. Ma and R.H. Tipping , Water-vapor continuum absorption in the 800-1250 cm-1 spectral region at temperatures from 311 to 363 K, Journal of Quantitative Spectroscopy and Radiation Transfer, 2008 , Volume 109 , Issue 12, Pages 2291-2302.
H2 O
T=∅
P=∅
8. Peterson J.C., et al. (1979) (944.19 cm⁻¹)
Температура (К)
Коэффициент поглощения (см²мол⁻¹)
The 944.19 cm-1 water-vapor continuum absorption coefficient at different temperatures in which the values obtained by several laboratories are compared.
[16] Peterson J.C., Thomas M.E., Nordstrom R.J., Damon E.K., Long R.K. Water vapor-nitrogen absorption at CO2 laser frequencies. Appl Opt 1979;18:834–41.
1979
Peterson J.C., Thomas M.E., Nordstrom R.J., Damon E.K. Long R.K. , Water vapor - nitrogen absorption at CO2 laser frequencies, Applied Optics, 1979 , Volume 18 , Number 6, Pages 834-841.
Волновое число (см⁻¹) Волновое число (см⁻¹)
Заданная функция Коэффициент поглощения (см²мол⁻¹атм⁻¹)
2008
Yu.I. Baranov, W.J. Lafferty, Q. Ma and R.H. Tipping , Water-vapor continuum absorption in the 800-1250 cm-1 spectral region at temperatures from 311 to 363 K, Journal of Quantitative Spectroscopy and Radiation Transfer, 2008 , Volume 109 , Issue 12, Pages 2291-2302.
H2 O
T=∅
P=∅
9. Burch, D.E., (1982) (1203 cm⁻¹)
Температура (К)
Коэффициент поглощения (см²мол⁻¹)
The water-vapor continuum absorption coefficient at 1203 cm-1 over the temperature range 290–480°K.
Burch D.E. Continuum absorption by H2 O. Technical report AFGL-TR-81-0300. Air Force Geophysical Laboratory, 1982.
.
1982
Burch D.E. , Continuum absorption by atmospheric H2 O, Report AFGL-TR-81-0300, by Ford Aeronutronic to Air Force Geophys. Lab., Hanscom AFB, Unknown, 1982 , Pages 46.
Волновое число (см⁻¹) Волновое число (см⁻¹) Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹) Коэффициент поглощения (см²мол⁻¹атм⁻¹)Ослабление (дБ/км)
2008
Yu.I. Baranov, W.J. Lafferty, Q. Ma and R.H. Tipping , Water-vapor continuum absorption in the 800-1250 cm-1 spectral region at temperatures from 311 to 363 K, Journal of Quantitative Spectroscopy and Radiation Transfer, 2008 , Volume 109 , Issue 12, Pages 2291-2302.
H2 O
T=∅
P=∅
9. Montgomery Jr G.P. (1978)
Температура (К)
Коэффициент поглощения (см²мол⁻¹)
The water-vapor continuum absorption coefficient at 1203 cm-1 over the temperature range 290–480 K.
[19] Montgomery Jr G.P. Temperature dependence of infrared absorption by the water vapor continuum near 1200 cm-1 . Appl Opt 1978; 17:2299–303.
1978
G. Paul Montgomery, Jr. , Temperature dependence of infrared absorption by the water vapor continuum near 1200 cm-1 , Applied Optics, 1978 , Volume 17 , Issue 15, Pages 2299-2303.
H2 O
T=∅
P=∅
3. This work (320-470K, 1200 cm⁻¹)
Температура (К)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
2009
A. Moudens , R. Georges, M. Goubet, J. Makarewicz, S. E. Lokshtanov, and A. A. Vigasin , Direct absorption spectroscopy of water clusters formed in a continuous slit nozzle expansion , Journal of Chemical Physics, 2009 , Volume 131 , Issue 20,
H2 O
T=∅
P=∅
5a. F. Huisken, et al. (1996). The variation in vibrational frequencies
Размер кластера
Колебательная частота (см⁻¹)
The variation in vibrational frequencies (a) (Ref. 7) as a function of the number of water molecules in small-sized water clusters.
[7]. Friedrich Huisken , Michael Kaloudis, and Axel Kulcke , Infrared spectroscopy of small size-selected water clusters , Journal of Chemical Physics, 1996 , Volume 104 , Issue 1, Pages 17, DOI: 10.1063/1.470871, http://dx.doi.org/10.1063/1.470871
1996
Friedrich Huisken , Michael Kaloudis, and Axel Kulcke , Infrared spectroscopy of small size-selected water clusters , Journal of Chemical Physics, 1996 , Volume 104 , Issue 1, Pages 17.
2009
Paynter D.J., Ptashnik I.V., Shine K.P., Smith K.M., McPheat R.M., Williams R.G. , Laboratory measurements of the water vapor continuum in the 1200-8000 cm-1 region between 293K and 351 K, Journal of Geophysical Research, 2009 , Volume 114 , Pages D21301.
H2 O
T=308 К
P=∅
5. Burch, D. E. (1982) (308K, 1400-1850 cm⁻¹)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
The self-continuum derived from pure water vapor measurements in the LPAC between 1200 and 2000 cm-1 . The previous continuum measurements by Burch [1981].
Burch, D. E. (1982), Continuum absorption by H2 O, AFGL-TR-81–0300, 46 pp., Air Force Geophys. Lab., Hanscom AFB, Mass.
1982
Burch D.E. , Continuum absorption by atmospheric H2 O, Report AFGL-TR-81-0300, by Ford Aeronutronic to Air Force Geophys. Lab., Hanscom AFB, Unknown, 1982 , Pages 46.
H2 O
T=308 К
P=∅
7. Empirical continuum (308K, 1400-1900 cm⁻¹)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Spectral plot of the continuum coefficients for pure H2 O at 308°K. The empirical continuum curve is drawn through the +'s.
2009
Paynter D.J., Ptashnik I.V., Shine K.P., Smith K.M., McPheat R.M., Williams R.G. , Laboratory measurements of the water vapor continuum in the 1200-8000 cm-1 region between 293K and 351 K, Journal of Geophysical Research, 2009 , Volume 114 , Pages D21301.
H2 O
T=296 К
P=∅
5. Tobin, D. C., et al. (1996), (296K, 1300-1950 cm⁻¹)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
The self-continuum derived from pure water vapor measurements in the LPAC between 1200 and 2000 cm-1 . The previous continuum measurements by Tobin et al. [1996].
Tobin, D.C., L.L. Strow, W.J. Lafferty, and W.B. Olson (1996), Experimental investigation of the self and N2 broadened continuum within the ν2 band of water vapor, Appl. Opt., 35, 4724–4734, doi:10.1364/AO.35.004724.
1996
Tobin D.C., Strow L.L., Lafferty W.J., Olson W.B. , Experimental investigation of the self- and N2 -broadened continuum within the ν2 band of water vapor, Applied Optics, 1996 , Volume 35 , Number 24, Pages 4724-4734.
H2 O
T=∅
P=∅
2. Total continuum (experiment minus Clough continuum with plintus)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Individual contributions of the far-wing (beyond 25 cm-1 ), near-wing (within 25 cm-1 ), and basement components to the total continuum absorption based on the use of CKDv0 (see Section 3 and Subsection 4.A).
2009
Paynter D.J., Ptashnik I.V., Shine K.P., Smith K.M., McPheat R.M., Williams R.G. , Laboratory measurements of the water vapor continuum in the 1200-8000 cm-1 region between 293K and 351 K, Journal of Geophysical Research, 2009 , Volume 114 , Pages D21301.
H2 O
T=∅
P=∅
6. Paynter, D. J., et al. (2007) (296K, 3400-4000 cm⁻¹)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
The MT_CKD and CKD models are shown for comparison along with the previous continuum measurements by Paynter et al. [2007].
Paynter, D. J., I. V. Ptashnik, K. P. Shine, and K. M. Smith (2007), Pure water vapor continuum measurements between 3100 and 4400 cm-1 : Evidence for water dimer absorption in near atmospheric conditions, Geophys. Res. Lett., 34, L12808, doi:10.1029/2007GL029259.
2007
D.J. Paynter, I.V. Ptashnik, K.P. Shine, and K.M. Smith , Pure water vapor continuum measurements between 3100 and 14400 cm-1 : Evidence for water dimer absorption in near atmospheric conditions, Geophysical Research Letters, 2007 , Volume 34 , Pages L12808.
2009
Paynter D.J., Ptashnik I.V., Shine K.P., Smith K.M., McPheat R.M., Williams R.G. , Laboratory measurements of the water vapor continuum in the 1200-8000 cm-1 region between 293K and 351 K, Journal of Geophysical Research, 2009 , Volume 114 , Pages D21301.
H2 O
T=296 К
P=1 атм
6. Burch, D.E., (1985), corrected. (296K, 3400-4000 cm⁻¹)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
The previous continuum measurements by Burch [1985].
Burch, D. E., Absorption by H2 O in narrow windows between 3000 – 4200 cm-1 , AFGL-TR-85 – 0036, 37 pp., Air Force Geophys. Lab., Hanscom AFB, Mass. (1985)
1985
Burch D.E. , Absorption by H2 O in narrow windows between 3000 - 4200 cm-1 , Report AFGL-TR-85-0036 by Ford Aerospace and Communications Corporation, Aeronutronic Division to AFGL, United States Air Force, Hanscom AFB, Unknown, 1985 , Pages 37.
H2 O
T=296 К
P=∅
3. Empirical e Cs ⁰ (3000-4400 cm⁻¹)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Spectral plots of the normalized absorption coefficients from 3000 to 4200 cm-1 for self broadening. The triangles represent empirical values derived from the ratio of the experimental transmittance values to the monochromatic values calculated from line parameters and convolved with an instrument slit function (see Eqs. 14, 15). Temperature, 296°K.
2009
Paynter D.J., Ptashnik I.V., Shine K.P., Smith K.M., McPheat R.M., Williams R.G. , Laboratory measurements of the water vapor continuum in the 1200-8000 cm-1 region between 293K and 351 K, Journal of Geophysical Research, 2009 , Volume 114 , Pages D21301.
H2 O
T=299 К
P=∅
7. Ptashnik, I. V., et al. (2004) (299K, 5000-5600 cm⁻¹)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
The previous continuum measurements by Ptashnik et al. [2004].
Ptashnik, I. V., K. M. Smith, K. P. Shine, and D. A. Newnham, Laboratory measurements of water vapour continuum absorption in spectral region 5000–5600 cm-1 : Evidence for water dimers, Q. J. R. Meteorol. Soc., 130, 2391–2408, doi:10.1256/qj.03.178. (2004)
2004
Ptashnik I.V., Smith K.M., Shine K.P., Newnham D.A. , Laboratory measurements of water vapour continuum absorption in spectral region 5000–5600 cm−1 : Evidence for water dimers, Quarterly Journal of Royal Meteorological Society, 2004 , Volume 130 A , Issue 602, Pages 2391–2408.
Волновое число (см⁻¹)
Оптическая глубина
2009
Rowe P.M., Walden V. P. , Improved measurements of the foreign-broadened continuum of water vapor in the 6:3 μ m band at −30 ° C, Applied Optics, 2009 , Volume 48 , Number 17, Pages 1358-1365.
H2 O
T=∅
P=∅
6b. P. M. Rowe, et al. (2006) (1850-1990 cm⁻¹)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹)
Continuum coefficients retrieved from Polar Atmospheric Infrared Radiance Interferometer (PAERI) measurements in (a) the low-wavenumber wing of the ν2 band.
[9] P. M. Rowe, V. P. Walden and S. G. Warren, “Measurements of the foreign-broadened continuum of water vapor in the 6.3-μm band at -30o C,” Appl. Opt. 45, 4366-4382 (2006).
2006
Rowe P.M., Walden V.P., Warren S.G. , Measurements of the foreign-broadened continuum of water vapor in the 6.3 microm band at -30 degrees C, Applied Optics, 2006 , Volume 45 , Issue 18, Pages 4366-4382.
2010
Leforestier C., Tipping, R. H., Ma Q. , Temperature dependences of mechanisms responsible for the water-vapor continuum absorption. II. Dimers and collision-induced absorption
, Journal of Chemical Physics, 2010 , Volume 132 , Issue 16,
H2 O
T=296 К
P=1 атм
7. D.E. Burch, et al (1979, 1982, 1984). Experiment (T=296K, 0-1150 cm⁻¹)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Calculated CIA spectrum in the region from 0 to 1150 cm−1 at several temperatures T=296°K. For reference, measurements of the self-continuum absorption coefficients by Burch et al. (Ref. 29) at different temperatures raging from 296 to 353°K are also presented.
[29] D. E. Burch and D. A. Gryvnak, Hanscom AFB Report No. AFGL-TR- 79–0054, 1979; D. E. Burch, Hanscom AFB Report No. AFGL-TR-81– 0300, 1982; D. E. Burch and R. L. Alt, Hanscom AFB Report AFGLTR- 84–0128, 1984.
1984
Burch D.E., Alt R.L. , Continuum absorption by H2 O in the 700 - 1200 cm-1 and 2400 - 2800 cm-1 windows, Report AFGL-TR-84-0128 by Ford Aerospace and Communications Corporation, Aeronutronic Division to AFGL, United States Air Force, Hanscom AFB, Unknown, 1984 , Pages 31.
H2 O
T=296 К
P=∅
1. Our experimental results (296K, 700-1100cm⁻¹)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Self-broadening coefficient from 700 cm-1 to 1100 cm-1 at 296°K.
2011
I.V. Ptashnik, K.P. Shine, A.A. Vigasin , Water vapour self-continuum and water dimers: 1. Analysis of recent work, Journal of Quantitative Spectroscopy and Radiative Transfer, 2011 , Volume 112 , Issue 8, Pages 1286–1303.
H2 O
T=296 К
P=∅
10a. Burch D. (1982) (296K, 300-1100 cm⁻¹)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
[45] Burch D. Continuum absorption by H2 O, Air Force Geophysics Laboratory report,AFGL-TR-81-0300, Hanscom AFB, MA, 1982.
1982
Burch D.E. , Continuum absorption by atmospheric H2 O, Report AFGL-TR-81-0300, by Ford Aeronutronic to Air Force Geophys. Lab., Hanscom AFB, Unknown, 1982 , Pages 46.
H2 O
T=296 К
P=∅
1. Experiment (296K, 600-1350 cm⁻¹)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Spectral plots of Cs 0 for H2 O at temperature 296°K.
2011
I.V. Ptashnik, K.P. Shine, A.A. Vigasin , Water vapour self-continuum and water dimers: 1. Analysis of recent work, Journal of Quantitative Spectroscopy and Radiative Transfer, 2011 , Volume 112 , Issue 8, Pages 1286–1303.
H2 O
T=297 К
P=∅
10a. Scribano Y., et al. (2007). Water Dimer
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Smoothed spectra of WD absorption cross-section from Scribano and Leforestier (S&L) [12].
[12] Scribano Y., Leforestier C. Contribution of water dimers absorption to the millimeter and far infrared atmospheric water continuum. J. Chem. Phys., 2007;126:234301.
2007
Yohann Scribano and Claude Leforestier , Contribution of water dimer absorption to the millimeter and far infrared atmospheric water continuum, Journal of Chemical Physics, 2007 , Volume 126 , Issue 23,
H2 O-H2 O
T=297 К
P=0.0210215 атм
13. Water Dimer absorption
Волновое число (см⁻¹)
Коэффициент поглощения (дБ/км)
Comparison of the experimentally defined water continuum absorption. The calculated water dimer (WD) absorption in the terahertz region. The physical conditions correspond to pH2O =2.13 kPa and a temperature T=297°K.
2011
I.V. Ptashnik, K.P. Shine, A.A. Vigasin , Water vapour self-continuum and water dimers: 1. Analysis of recent work, Journal of Quantitative Spectroscopy and Radiative Transfer, 2011 , Volume 112 , Issue 8, Pages 1286–1303.
H2 O
T=∅
P=∅
10b. Lee M.-S., et al. (2008)/Burch D. (1982)
Волновое число (см⁻¹)
Отношение коэффициентов поглощения
The line shows ratios of the Lee et al. calculated spectra to the experimental continuum [45] (above 340 cm-1 ).
[13] Lee M.-S., Baletto F., Kanhere D.G., Scandolo S. Far-infrared absorption of water clusters by first-principles molecular dynamics. J Chem Phys 2008; 128:214506.
[45] Burch D. Continuum absorption by H2 O, Air Force Geophysics Laboratory report,AFGL-TR-81-0300, Hanscom AFB, MA,1982.
1982
Burch D.E. , Continuum absorption by atmospheric H2 O, Report AFGL-TR-81-0300, by Ford Aeronutronic to Air Force Geophys. Lab., Hanscom AFB, Unknown, 1982 , Pages 46.
Волновое число (см⁻¹) Волновое число (см⁻¹) Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹) Коэффициент поглощения (см²мол⁻¹атм⁻¹) Ослабление (дБ/км)
2011
I.V. Ptashnik, K.P. Shine, A.A. Vigasin , Water vapour self-continuum and water dimers: 1. Analysis of recent work, Journal of Quantitative Spectroscopy and Radiative Transfer, 2011 , Volume 112 , Issue 8, Pages 1286–1303.
H2 O
T=∅
P=∅
10b. Scribano Y., et al. (2007)/Burch D. (1981)
Волновое число (см⁻¹)
Отношение коэффициентов поглощения
The line shows ratios of the Scribano Y., et al. calculated spectra to the experimental continuum [45] (above 340 cm-1 ).
[12] Scribano Y, Leforestier C. Contribution of water dimers absorption to the millimeter and far infrared atmospheric water continuum. J. Chem. Phys., 2007;126:234301.
[45] Burch D. Continuum absorption by H2 O, Air Force Geophysics Laboratory report, AFGL-TR-81-0300, Hanscom AFB, MA,1982.
1982
Burch D.E. , Continuum absorption by atmospheric H2 O, Report AFGL-TR-81-0300, by Ford Aeronutronic to Air Force Geophys. Lab., Hanscom AFB, Unknown, 1982 , Pages 46.
Волновое число (см⁻¹) Волновое число (см⁻¹) Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹) Коэффициент поглощения (см²мол⁻¹атм⁻¹) Ослабление (дБ/км)
2011
I.V. Ptashnik, K.P. Shine, A.A. Vigasin , Water vapour self-continuum and water dimers: 1. Analysis of recent work, Journal of Quantitative Spectroscopy and Radiative Transfer, 2011 , Volume 112 , Issue 8, Pages 1286–1303.
H2 O
T=295 К
P=∅
5A. Paynter D.J., et al. (2009). Experimental continuum
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
The experimental water vapour self-continuum, derived from measurements made by Paynter et al. [41], in the 1600 cm-1 water vapour band at 295°K.
[41] Paynter D.J., Ptashnik I.V., Shine K.P., Smith K.M., McPheat R., Williams R.G. Laboratory measurements of the water vapor continuum in the 1200–8000 cm-1 region between 293°K and 351°K. J Geophys Res 2009;114:D21301.
2009
Paynter D.J., Ptashnik I.V., Shine K.P., Smith K.M., McPheat R.M., Williams R.G. , Laboratory measurements of the water vapor continuum in the 1200-8000 cm-1 region between 293K and 351 K, Journal of Geophysical Research, 2009 , Volume 114 , Pages D21301.
H2 O
T=295 К
P=0.0175672 атм
5. This work (295 K, 1200-2000 cm⁻¹)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
The self-continuum derived from pure water vapor measurements in the LPAC between 1200 and 2000 cm-1 conducted at 17.8 mbar and 295 K with a 128.75 m path length.
2011
I.V. Ptashnik, K.P. Shine, A.A. Vigasin , Water vapour self-continuum and water dimers: 1. Analysis of recent work, Journal of Quantitative Spectroscopy and Radiative Transfer, 2011 , Volume 112 , Issue 8, Pages 1286–1303.
H2 O
T=295 К
P=∅
5aB. The experimental water vapour self-continuum
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
The experimental water vapour self-continuum, derived from measurements made by Paynter et al. [41], in the 3600 cm-1 water vapour band at 295°K.
[41] Paynter D.J,. Ptashnik I.V., Shine K.P., Smith K.M., McPheat R., Williams R.G. Laboratory measurements of the water vapor continuum in the 1200–8000 cm-1 region between 293 K and 351 K. J Geophys Res 2009;114:D21301.
2009
Paynter D.J., Ptashnik I.V., Shine K.P., Smith K.M., McPheat R.M., Williams R.G. , Laboratory measurements of the water vapor continuum in the 1200-8000 cm-1 region between 293K and 351 K, Journal of Geophysical Research, 2009 , Volume 114 , Pages D21301.
H2 O
T=293 К
P=0.0150999 атм
6. This work (293K, 3400-4000 cm⁻¹)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
The self-continuum derived from a pure water vapor measurement in the LPAC between 3400 and 4000 cm-1 conducted at 15.3 mbar and 293 K with a 512.75 m path length.
2011
I.V. Ptashnik, K.P. Shine, A.A. Vigasin , Water vapour self-continuum and water dimers: 1. Analysis of recent work, Journal of Quantitative Spectroscopy and Radiative Transfer, 2011 , Volume 112 , Issue 8, Pages 1286–1303.
H2 O
T=296 К
P=∅
5c. Averaged spectra of the retrieved self-continuum Cs (296K)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Averaged spectra of the retrieved self-continuum Cs at different temperatures (left-hand axis), illustrating the temperature dependence of the continuum in the 3600 cm-1 water vapour band.
[41] Paynter DJ, Ptashnik IV, Shine KP, Smith KM, McPheat R, Williams RG. Laboratory measurements of the water vapor continuum in the 1200–8000 cm-1 region between 293°K and 351°K. J Geophys Res 2009;114:D21301.
2009
Paynter D.J., Ptashnik I.V., Shine K.P., Smith K.M., McPheat R.M., Williams R.G. , Laboratory measurements of the water vapor continuum in the 1200-8000 cm-1 region between 293K and 351 K, Journal of Geophysical Research, 2009 , Volume 114 , Pages D21301.
H2 O
T=293 К
P=0.0150999 атм
6. This work (293K, 3400-4000 cm⁻¹)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
The self-continuum derived from a pure water vapor measurement in the LPAC between 3400 and 4000 cm-1 conducted at 15.3 mbar and 293 K with a 512.75 m path length.
2011
I.V. Ptashnik, K.P. Shine, A.A. Vigasin , Water vapour self-continuum and water dimers: 1. Analysis of recent work, Journal of Quantitative Spectroscopy and Radiative Transfer, 2011 , Volume 112 , Issue 8, Pages 1286–1303.
H2 O
T=∅
P=∅
6. Bicknell et al. (2006) (298K)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Measurements of the continuum by Bicknell et al. [58].
[58] Bicknell WE, Cecca SD, Griffin MK. Search for low-absorption regions in the 1.6-and 2.1-μm atmospheric windows. J Directed Energy 2006;2:151–61.
2006
Bicknell W.E., Cecca S.D., Griffin M.K., S. D. Swartz, and A. Flusberg , Search for low-absorption regions in the 1.6-and 2.1-μm atmospheric windows, Journal of Directed Energy, 2006 , Volume 2 , Pages 151–161.
Длина волны (мкм)
Коэффициент поглощения (Км⁻¹)
2011
I.V. Ptashnik, K.P. Shine, A.A. Vigasin , Water vapour self-continuum and water dimers: 1. Analysis of recent work, Journal of Quantitative Spectroscopy and Radiative Transfer, 2011 , Volume 112 , Issue 8, Pages 1286–1303.
H2 O
T=∅
P=∅
6. Burch et al. (1984) (296K, 2400-2800 cm⁻¹)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Measurements of the continuum by Burch & Alt [60].
[60] Burch D, Alt R. Continuum absorption by H2 O in the 700–1200 and 2400–2800 cm-1 windows, AFGL-TR-84-0128, Air Force Geophys. Lab., Hanscom AFB, MA,1984.
1984
Burch D.E., Alt R.L. , Continuum absorption by H2 O in the 700 - 1200 cm-1 and 2400 - 2800 cm-1 windows, Report AFGL-TR-84-0128 by Ford Aerospace and Communications Corporation, Aeronutronic Division to AFGL, United States Air Force, Hanscom AFB, Unknown, 1984 , Pages 31.
H2 O
T=296 К
P=∅
7. Present work (296K, 2400-2800 cm⁻¹)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Self-broadening coefficients between 2400 and 2800 cm-1 at various temperatures. The solid curves represent the present work.
2011
I.V. Ptashnik, K.P. Shine, A.A. Vigasin , Water vapour self-continuum and water dimers: 1. Analysis of recent work, Journal of Quantitative Spectroscopy and Radiative Transfer, 2011 , Volume 112 , Issue 8, Pages 1286–1303.
H2 O
T=∅
P=∅
6. Ptashnik et al. (2011) (293K, 1500-5500 cm⁻¹)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Measurements of the continuum by Ptashnik et al. [89].
[89] Ptashnik I.V., McPheat R.A., Shine K.P., Smith K.M., Williams R.G. Water vapor continuum absorption in near-infrared windows derived from laboratory measurements. Geophys Res, 2011, 116, D16305. (doi:10.1029/2011JD015603)
2011
Ptashnik I.V., McPheat R.A., Shine K.P., Smith K.M., Williams R.G. , Water vapor self-continuum absorption in near-infrared windows derived from laboratory experiments, Journal of Geophysical Research, 2011 , Volume D116 , Pages 16305.
H2 O
T=293 К
P=0.0150999 атм
1. CAVIAR (293K, 1600-5800 cm⁻¹)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
2011
I.V. Ptashnik, K.P. Shine, A.A. Vigasin , Water vapour self-continuum and water dimers: 1. Analysis of recent work, Journal of Quantitative Spectroscopy and Radiative Transfer, 2011 , Volume 112 , Issue 8, Pages 1286–1303.
H2 O
T=∅
P=∅
6. Tipping et al. (1995) (296K, 1000-7000 cm⁻¹)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
far-wing continuum model by Tipping & Ma [62].
[62] Tipping R.H., Ma Q. Theory o the water vapor continuum and validations. Atmos Res 1995;36:69–94.
1995
Tipping R.H., Ma Q. , Theory of the water continuum and validations, Atmospheric Research, 1995 , Volume 36 , Number 1-2, Pages 69-94.
H2 O
T=296 К
P=∅
3. The present theory (296K)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
The H2 O+H2 O absorption coefficient α(ω) (in units of cm2 molecule-1 atm -1 ) as a function of frequency ω (in units of cm-1 ) calculated for T= 296°K. The results obtained from the two averaged line shape functions.
2011
I.V. Ptashnik, K.P. Shine, A.A. Vigasin , Water vapour self-continuum and water dimers: 1. Analysis of recent work, Journal of Quantitative Spectroscopy and Radiative Transfer, 2011 , Volume 112 , Issue 8, Pages 1286–1303.
H2 O
T=∅
P=∅
6. Watkins et al. (1979) (298K)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Measurements of the continuum by Watkins et al. [59].
[59] Watkins W.R., White K.O., Bower L.R., Sojka B.Z. Pressure dependence of the water vapor continuum absorption in the 3.5–4.0-μm region. Appl Opt 1979; 18(8):1149–60.
1979
Watkins, Wendell R., White, Kenneth O., Bower, Lanny R., Sojka, Brian Z. , PRESSURE DEPENDENCE OF THE WATER VAPOR CONTINUUM ABSORPTION IN THE 3.5-4.0- μM REGION, Applied Optics, 1979 , Volume 18 , Issue 8, Pages 1149-1160.
Волновое число (см⁻¹)
Коэффициент поглощения (Км⁻¹)
2011
I.V. Ptashnik, K.P. Shine, A.A. Vigasin , Water vapour self-continuum and water dimers: 1. Analysis of recent work, Journal of Quantitative Spectroscopy and Radiative Transfer, 2011 , Volume 112 , Issue 8, Pages 1286–1303.
H2 O
T=311 К
P=∅
7. Baranov et al. (2008) (311K)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
The experimentally derived water vapour self-continuum from Baranov et al. [10] at the temperatures 311 K.
[10] Baranov Yu.I., Lafferty W.J., Fraser G.T., Ma Q., Tipping R.H. Water-vapor continuum absorption in the 800–1250 cm-1 spectral region at temperatures from 311 to 363 K. JQSRT 2008; 109:2291–302.
2008
Yu.I. Baranov, W.J. Lafferty, Q. Ma and R.H. Tipping , Water-vapor continuum absorption in the 800-1250 cm-1 spectral region at temperatures from 311 to 363 K, Journal of Quantitative Spectroscopy and Radiation Transfer, 2008 , Volume 109 , Issue 12, Pages 2291-2302.
H2 O
T=310.8 К
P=1 атм
2. Present experiment (310.8K, 800-1150 cm⁻¹)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹)
Binary absorption coefficients of the water-vapor continuum derived by direct measurements of absorption in selected microwindows
2011
I.V. Ptashnik, K.P. Shine, A.A. Vigasin , Water vapour self-continuum and water dimers: 1. Analysis of recent work, Journal of Quantitative Spectroscopy and Radiative Transfer, 2011 , Volume 112 , Issue 8, Pages 1286–1303.
H2 O
T=326 К
P=∅
7. Baranov et al. (2008) (326K)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
The experimentally derived water vapour self-continuum from Baranov et al. [10] at the temperatures 326°K.
[10] Baranov Yu.I., Lafferty W.J., Fraser G.T., Ma Q., Tipping R.H. Water-vapor continuum absorption in the 800–1250 cm-1 spectral region at temperatures from 311 to 363°K. JQSRT 2008; 109:2291–302.
2008
Yu.I. Baranov, W.J. Lafferty, Q. Ma and R.H. Tipping , Water-vapor continuum absorption in the 800-1250 cm-1 spectral region at temperatures from 311 to 363 K, Journal of Quantitative Spectroscopy and Radiation Transfer, 2008 , Volume 109 , Issue 12, Pages 2291-2302.
H2 O
T=325 К
P=1 атм
2. Present experiment (325K, 800-1150 cm⁻¹)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹)
Binary absorption coefficients of the water-vapor continuum derived by direct measurements of absorption in selected microwindows
2011
I.V. Ptashnik, K.P. Shine, A.A. Vigasin , Water vapour self-continuum and water dimers: 1. Analysis of recent work, Journal of Quantitative Spectroscopy and Radiative Transfer, 2011 , Volume 112 , Issue 8, Pages 1286–1303.
H2 O
T=363 К
P=∅
7. Baranov et al. (2008) (363K)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
The experimentally derived water vapour self-continuum from Baranove tal. [10] at the temperatures 363°K.
[10] Baranov Yu.I., Lafferty W.J., Fraser G.T., Ma Q., Tipping R.H. Water-vapor continuum absorption in the 800–1250 cm-1 spectral region at temperatures from 311 to 363°K. JQSRT 2008; 109:2291–302.
2008
Yu.I. Baranov, W.J. Lafferty, Q. Ma and R.H. Tipping , Water-vapor continuum absorption in the 800-1250 cm-1 spectral region at temperatures from 311 to 363 K, Journal of Quantitative Spectroscopy and Radiation Transfer, 2008 , Volume 109 , Issue 12, Pages 2291-2302.
H2 O
T=363 К
P=1 атм
2. Present experiment (363K, 800-1150 cm⁻¹)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹)
Binary absorption coefficients of the water-vapor continuum derived by direct measurements of absorption in selected microwindows
2011
I.V. Ptashnik, K.P. Shine, A.A. Vigasin , Water vapour self-continuum and water dimers: 1. Analysis of recent work, Journal of Quantitative Spectroscopy and Radiative Transfer, 2011 , Volume 112 , Issue 8, Pages 1286–1303.
H2 O
T=296 К
P=∅
7. Burch et al. (1984) (296K)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
The earlier laboratory data by Burch and Alt [60].
[60] Burch D., Alt R. Continuum absorption by H2 O in the 700–1200 and 2400–2800 cm-1 windows, AFGL-TR-84-0128, Air Force Geophys.Lab., Hanscom AFB, MA,1984.
1984
Burch D.E., Alt R.L. , Continuum absorption by H2 O in the 700 - 1200 cm-1 and 2400 - 2800 cm-1 windows, Report AFGL-TR-84-0128 by Ford Aerospace and Communications Corporation, Aeronutronic Division to AFGL, United States Air Force, Hanscom AFB, Unknown, 1984 , Pages 31.
H2 O
T=296 К
P=∅
1. Our experimental results (296K, 700-1100cm⁻¹)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Self-broadening coefficient from 700 cm-1 to 1100 cm-1 at 296°K.
2011
I.V. Ptashnik, K.P. Shine, A.A. Vigasin , Water vapour self-continuum and water dimers: 1. Analysis of recent work, Journal of Quantitative Spectroscopy and Radiative Transfer, 2011 , Volume 112 , Issue 8, Pages 1286–1303.
H2 O
T=296 К
P=∅
7. Ma et al. (2008) (296K)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Solid line represents the far-wing continuum model of Ma et al. [11].
[11] Ma Q., Tipping R.H., Leforestier C. Temperature dependences of mechanisms responsible for the water-vapor continuum absorption. I. Far wings of allowed lines. J Chem Phys 2008; 128: 124313.
2008
Ma Q., Tipping R.H., Leforestier C. , Temperature dependences of mechanisms responsible for the water-vapor continuum absorption: 1. Far wings of allowed lines, Journal of Chemical Physics, 2008 , Volume 128 ,
H2 O
T=296 К
P=1 атм
8. Present calculation
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
The calculated self-broadened absorption coefficients (in units of cm2 molecule−1 atm−1 ) at T=296°K in the 300–1100 cm−1 spectral region are denoted by Δ.
2011
I.V. Ptashnik, K.P. Shine, A.A. Vigasin , Water vapour self-continuum and water dimers: 1. Analysis of recent work, Journal of Quantitative Spectroscopy and Radiative Transfer, 2011 , Volume 112 , Issue 8, Pages 1286–1303.
H2 O
T=311 К
P=∅
7. Ma et al. (2008) (311K)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Solid line represents the far-wing continuum model of Ma et al. [11].
[11] Ma Q., Tipping R.H., Leforestier C. Temperature dependences of mechanisms responsible for the water-vapor continuum absorption. I. Far wings of allowed lines. J Chem Phys 2008; 128: 124313.
2008
Ma Q., Tipping R.H., Leforestier C. , Temperature dependences of mechanisms responsible for the water-vapor continuum absorption: 1. Far wings of allowed lines, Journal of Chemical Physics, 2008 , Volume 128 ,
H2 O
T=310.8 К
P=1 атм
10. Yu. I. Baranov, et al. (2008) (310.8K, 800-1150 cm⁻¹)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
New measured absorption coefficients by Baranov et al. (Ref. 26) at 27 microwindows within 800–1150 cm−1 for temperatures T=310.8°K.
[26] Yu. I. Baranov, W. J. Lafferty, G. T. Fraser, Q. Ma, and R. H. Tipping, “Water vapor continuum absorption in the 800 cm-1 to 1250 cm-1 spectral region at temperatures from 311 to 363 K,” J. Quant. Spectrosc. Radiat. Transf. 2008. V.109, 2291-2302, doi:10.1016/j.jqsrt.2008.03.004.
2011
I.V. Ptashnik, K.P. Shine, A.A. Vigasin , Water vapour self-continuum and water dimers: 1. Analysis of recent work, Journal of Quantitative Spectroscopy and Radiative Transfer, 2011 , Volume 112 , Issue 8, Pages 1286–1303.
H2 O
T=326 К
P=∅
7. Ma et al. (2008) (326K)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Solid line represents the far-wing continuum model of Ma et al. [11]. [11]. Ma Q., Tipping R.H., Leforestier C. Temperature dependences of mechanisms responsible for the water-vapor continuum absorption. I. Far wings of allowed lines. J Chem Phys 2008; 128: 124313.
2008
Ma Q., Tipping R.H., Leforestier C. , Temperature dependences of mechanisms responsible for the water-vapor continuum absorption: 1. Far wings of allowed lines, Journal of Chemical Physics, 2008 , Volume 128 ,
H2 O
T=325 К
P=1 атм
10. Present calculation (325K, 800-1150 cm⁻¹)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Theoretically calculated absorption coefficients at the 27 microwindows for four temperatures (i.e., 296°K and the three temperatures in the measurements of Baranov et al.) are plotted.
2011
I.V. Ptashnik, K.P. Shine, A.A. Vigasin , Water vapour self-continuum and water dimers: 1. Analysis of recent work, Journal of Quantitative Spectroscopy and Radiative Transfer, 2011 , Volume 112 , Issue 8, Pages 1286–1303.
H2 O
T=363 К
P=∅
7. Ma et al. (2008) (363K)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Solid line represents the far-wing continuum model of Ma et al. [11].
[11] Ma Q., Tipping R.H., Leforestier C. Temperature dependences of mechanisms responsible for the water-vapor continuum absorption. I. Far wings of allowed lines. J. Chem. Phys. 2008; 128: 124313.
2008
Ma Q., Tipping R.H., Leforestier C. , Temperature dependences of mechanisms responsible for the water-vapor continuum absorption: 1. Far wings of allowed lines, Journal of Chemical Physics, 2008 , Volume 128 ,
H2 O
T=363 К
P=1 атм
10. MT-CKD calculation (363K, 800-1150 cm⁻¹)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Predicted MT_CKD values in this spectral region for the temperature 325°K are plotted.
2011
I.V. Ptashnik, K.P. Shine, A.A. Vigasin , Water vapour self-continuum and water dimers: 1. Analysis of recent work, Journal of Quantitative Spectroscopy and Radiative Transfer, 2011 , Volume 112 , Issue 8, Pages 1286–1303.
H2 O
T=∅
P=∅
8. 190 GHz. Bauer A., et al. (1991)
Температура (К)
Коэффициент поглощения (см⁻¹)
Comparison of temperature dependencies for pure water vapour continuum absorption in mm-wave and mid-IR spectral ranges. Experimental data for 190 GHz is from [67].
[67] Bauer A., Godon M. Temperature dependence of water vapor absorption in line wings at 190 GHz. JQSRT 1991; 46:211–20.
1991
A. Bauer and M. Godon , Temperature dependence of water-vapor absorption in linewings at 190 GHz, Journal of Quantitative Spectroscopy and Radiative Transfer, 1991 , Volume 46 , Issue 3, Pages 211-220.
Смещение от центра линии (ГГц)
Коэффициент поглощения (см⁻¹)
2011
I.V. Ptashnik, K.P. Shine, A.A. Vigasin , Water vapour self-continuum and water dimers: 1. Analysis of recent work, Journal of Quantitative Spectroscopy and Radiative Transfer, 2011 , Volume 112 , Issue 8, Pages 1286–1303.
H2 O
T=∅
P=∅
8. 239 GHz. Bauer A., et al. (1995)
Температура (К)
Коэффициент поглощения (см⁻¹)
Comparison of temperature dependencies for pure water vapour continuum absorption in mm-wave and mid-IR spectral ranges. Experimental data for 239 GHz is from [68].
[68] Bauer A., Godon M., Carlier J., Ma Q. Water vapor absorption in the atmospheric window at 239 GHz. JQSRT 1995; 53:411–23.
1995
A. Bauer, M. Godon, J. Carlier and Q. Ma , Water vapor absorption in the atmospheric window at 239 GHz, Journal of Quantitative Spectroscopy and Radiative Transfer, 1995 , Volume 53 , Issue 4, Pages 411-423.
Частота (ГГц)
Коэффициент поглощения (см⁻¹)
2011
I.V. Ptashnik, K.P. Shine, A.A. Vigasin , Water vapour self-continuum and water dimers: 1. Analysis of recent work, Journal of Quantitative Spectroscopy and Radiative Transfer, 2011 , Volume 112 , Issue 8, Pages 1286–1303.
H2 O
T=∅
P=∅
8a. 10P(20). Arefev V.N. (1989)
Температура (К)
Поглощение (произвольные единицы)
Comparison of temperature dependencies for pure water vapour continuum absorption in mm-wave and mid-IR spectral ranges. The data for infrared continuum (right axis) are shown in arbitrary units.
[69] Aref’ev V.N. Molecular absorption of radiation by water vapour in the relative transparency window of the atmosphere at 8–13 μm. Opt Atmos 1989; 2:1034 (in Russian).
1989
Арефьев В.Н. , Молекулярное поглощение водяным паром излучения в окне относительной прозрачности атмосферы 8 - 13 мкм, Оптика атмосферы, 1989 , Volume 2 , Number 10, Pages 1034-1054.
Длина волны (мкм) Температура (К)
Поглощение (произвольные единицы) Поглощение (произвольные единицы)
2011
Ptashnik I.V., McPheat R.A., Shine K.P., Smith K.M., Williams R.G. , Water vapor self-continuum absorption in near-infrared windows derived from laboratory experiments, Journal of Geophysical Research, 2011 , Volume D116 , Pages 16305.
H2 O
T=311 К
P=∅
1. Baranov, Yu. I. et al. (2008) (311K, 1800-3500 cm⁻¹)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Baranov, Y. I., W. J. Lafferty, G. T. Fraser, Q. Ma, and R. H. Tipping (2008), Water‐vapor continuum absorption in the 800–1250 cm−1 spectral region at temperatures from 311 to 363 K, J. Quant. Spectrosc. Radiat. Transfer, 109, 2291–2302, doi:10.1016/j.jqsrt.2008.03.004.
2008
Yu.I. Baranov, W.J. Lafferty, Q. Ma and R.H. Tipping , Water-vapor continuum absorption in the 800-1250 cm-1 spectral region at temperatures from 311 to 363 K, Journal of Quantitative Spectroscopy and Radiation Transfer, 2008 , Volume 109 , Issue 12, Pages 2291-2302.
Волновое число (см⁻¹)Температура (К) Температура (К)
Коэффициент поглощения (см²мол⁻¹) Коэффициент поглощения (см²мол⁻¹) Коэффициент поглощения (см²мол⁻¹атм⁻¹)
2011
Ptashnik I.V., McPheat R.A., Shine K.P., Smith K.M., Williams R.G. , Water vapor self-continuum absorption in near-infrared windows derived from laboratory experiments, Journal of Geophysical Research, 2011 , Volume D116 , Pages 16305.
H2 O
T=298 К
P=∅
1. Bicknell, W. E. et al. (2006) (298K, 6110-6190 cm⁻¹)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Bicknell, W. E., S. D. Cecca, and M. K. Griffin (2006), Search for low‐absorption regions in the 1.6‐ and 2.1‐μm atmospheric windows, J. Dir. Energy, 2, 151–161.
2006
Bicknell W.E., Cecca S.D., Griffin M.K., S. D. Swartz, and A. Flusberg , Search for low-absorption regions in the 1.6-and 2.1-μm atmospheric windows, Journal of Directed Energy, 2006 , Volume 2 , Pages 151–161.
H2 O
T=∅
P=∅
7. Measurement
Длина волны (мкм)
Коэффициент поглощения (Км⁻¹)
1.6-μm H2 O vapor measurement
2011
Ptashnik I.V., McPheat R.A., Shine K.P., Smith K.M., Williams R.G. , Water vapor self-continuum absorption in near-infrared windows derived from laboratory experiments, Journal of Geophysical Research, 2011 , Volume D116 , Pages 16305.
H2 O
T=296 К
P=∅
1. Burch, D. E., et al. (1984) (296K, 2380-2900 cm⁻¹)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Burch, D. E., and R. L. Alt (1984), Continuum absorption by H2 O in the 700–1200 cm−1 and 2400–2800 cm−1 windows, Sci. Rep., AFGL‐TR‐ 84–0128, Air Force Geophys. Lab., Hanscom Air Force Base, Mass.
1984
Burch D.E., Alt R.L. , Continuum absorption by H2 O in the 700 - 1200 cm-1 and 2400 - 2800 cm-1 windows, Report AFGL-TR-84-0128 by Ford Aerospace and Communications Corporation, Aeronutronic Division to AFGL, United States Air Force, Hanscom AFB, Unknown, 1984 , Pages 31.
H2 O
T=296 К
P=∅
6. Fitting (296K) (2400-2640cm⁻¹)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Self-broadening coefficients between 2400 and 2640 cm-1 for 296°K.
2011
Ptashnik I.V., McPheat R.A., Shine K.P., Smith K.M., Williams R.G. , Water vapor self-continuum absorption in near-infrared windows derived from laboratory experiments, Journal of Geophysical Research, 2011 , Volume D116 , Pages 16305.
H2 O
T=296 К
P=∅
1. Tipping, R. H., et al. (1995)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Far-wing [Tipping and Ma, 1995] continuum models.
Tipping, R. H., and Q. Ma (1995), Theory of the water vapor continuum and validations, Atmos. Res., 36, 69–94, doi:10.1016/0169-8095(94) 00028-C. 296 K.
1995
Tipping R.H., Ma Q. , Theory of the water continuum and validations, Atmospheric Research, 1995 , Volume 36 , Number 1-2, Pages 69-94.
H2 O
T=296 К
P=∅
3. The present theory (296K)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
The H2 O+H2 O absorption coefficient α(ω) (in units of cm2 molecule-1 atm -1 ) as a function of frequency ω (in units of cm-1 ) calculated for T= 296°K. The results obtained from the two averaged line shape functions.
2011
Ptashnik I.V., McPheat R.A., Shine K.P., Smith K.M., Williams R.G. , Water vapor self-continuum absorption in near-infrared windows derived from laboratory experiments, Journal of Geophysical Research, 2011 , Volume D116 , Pages 16305.
H2 O
T=296 К
P=0.0188158 атм
1. Watkins, W. R. et al. (1979) (296K, 2450-2850 cm⁻¹)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Watkins, W. R., K. O. White, L. R. Bower, and B. Z. Sojka (1979), Pressure dependence of the water vapor continuum absorption in the 3.5–4.0‐μm region, Appl. Opt., 18, 1149–1160, doi:10.1364/AO.18.001149.
1979
Watkins, Wendell R., White, Kenneth O., Bower, Lanny R., Sojka, Brian Z. , PRESSURE DEPENDENCE OF THE WATER VAPOR CONTINUUM ABSORPTION IN THE 3.5-4.0- μM REGION, Applied Optics, 1979 , Volume 18 , Issue 8, Pages 1149-1160.
H2 O
T=298 К
P=0.0188158 атм
3. Present data
Волновое число (см⁻¹)
Коэффициент поглощения (Км⁻¹)
Comparison of measured water vapor continuum at 25°C to Burch extrapolation for 14.3-Torr water vapor with no air-broadening.
2011
Ptashnik I.V., McPheat R.A., Shine K.P., Smith K.M., Williams R.G. , Water vapor self-continuum absorption in near-infrared windows derived from laboratory experiments, Journal of Geophysical Research, 2011 , Volume D116 , Pages 16305.
H2 O
T=352 К
P=∅
7.Baranov, Yu.I., et al. (2011) (352K)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Baranov, Y. I., and W. J. Lafferty (2011), The water‐vapor continuum and selective absorption in the 3 to 5 μm spectral region at temperatures from 311 to 363K, J. Quant. Spectrosc. Radiat. Transfer, 112, 1304–1313, doi:10.1016/j.jqsrt.2011.01.024.
2011
Yu.I. Baranov, W.J. Lafferty , The water-vapor continuum and selective absorption in the 3–5 μm spectral region at temperatures from 311 to 363 K, Journal of Quantitative Spectroscopy and Radiative Transfer, 2011 , Volume 112 , Issue 8, Pages 1304-1313.
H2 O
T=351.6 К
P=∅
5. NIST (351.6K)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Water-vapor self-broadened continuum at temperature: 351.6 K
2011
Ptashnik I.V., McPheat R.A., Shine K.P., Smith K.M., Williams R.G. , Water vapor self-continuum absorption in near-infrared windows derived from laboratory experiments, Journal of Geophysical Research, 2011 , Volume D116 , Pages 16305.
H2 O
T=338 К
P=∅
7.Burch D.E. et al. (1984) (338K, 2400–2800 cm⁻¹)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Burch, D. E., and R. L. Alt (1984), Continuum absorption by H2 O in the 700–1200 cm−1 and 2400–2800 cm−1 windows, Sci. Rep., AFGL‐TR‐ 84–0128, Air Force Geophys. Lab., Hanscom Air Force Base, Mass.
1984
Burch D.E., Alt R.L. , Continuum absorption by H2 O in the 700 - 1200 cm-1 and 2400 - 2800 cm-1 windows, Report AFGL-TR-84-0128 by Ford Aerospace and Communications Corporation, Aeronutronic Division to AFGL, United States Air Force, Hanscom AFB, Unknown, 1984 , Pages 31.
H2 O
T=328 К
P=∅
6. Experiment (328K, 2400-2640cm⁻¹)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Self-broadening coefficients between 2400 and 2640 cm-1 for 328°K.
2011
Ptashnik I.V., McPheat R.A., Shine K.P., Smith K.M., Williams R.G. , Water vapor self-continuum absorption in near-infrared windows derived from laboratory experiments, Journal of Geophysical Research, 2011 , Volume D116 , Pages 16305.
H2 O
T=384 К
P=∅
7.Burch D.E. et al. (1984) (384K, 2400–2800 cm⁻¹)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Burch, D. E., and R. L. Alt (1984), Continuum absorption by H2 O in the 700–1200 cm−1 and 2400–2800 cm−1 windows, Sci. Rep., AFGL‐TR‐ 84–0128, Air Force Geophys. Lab., Hanscom Air Force Base, Mass.
1980
Burch D.E., Gryvnak D.A. , Continuum absorption by H2 O vapor in the infrared and millimeter regions., Atmospheric water vapor, Editor(s) Deepak A., Wilkerson T.D., Ruhnke L.H., Academic Press, 1980 , Pages 47-76.
H2 O
T=384 К
P=∅
2. Experimental points (384K, 2400-2800cm⁻¹)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Spectral plots of C0 s for H2 O at 384°K.
2011
Ptashnik I.V., McPheat R.A., Shine K.P., Smith K.M., Williams R.G. , Water vapor self-continuum absorption in near-infrared windows derived from laboratory experiments, Journal of Geophysical Research, 2011 , Volume D116 , Pages 16305.
H2 O
T=428 К
P=∅
7.Burch D.E. et al.t (1984) (428K, 2400-2800cm⁻¹)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Burch, D. E., and R. L. Alt (1984), Continuum absorption by H2 O in the 700–1200 cm−1 and 2400–2800 cm−1 windows, Sci. Rep., AFGL‐TR‐ 84–0128, Air Force Geophys. Lab., Hanscom Air Force Base, Mass.
1980
Burch D.E., Gryvnak D.A. , Continuum absorption by H2 O vapor in the infrared and millimeter regions., Atmospheric water vapor, Editor(s) Deepak A., Wilkerson T.D., Ruhnke L.H., Academic Press, 1980 , Pages 47-76.
H2 O
T=428 К
P=∅
2. Experimental points (428K, 2400-2800cm⁻¹)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Spectral plots of C0 s for H2 O at 428°K.
2011
Ptashnik I.V., McPheat R.A., Shine K.P., Smith K.M., Williams R.G. , Water vapor self-continuum absorption in near-infrared windows derived from laboratory experiments, Journal of Geophysical Research, 2011 , Volume D116 , Pages 16305.
H2 O
T=575 К
P=∅
7.Hartmann et al. (1993) (575K)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Hartmann, J. M., M. Y. Perrin, Q. Ma, and R. H. Tipping (1993), The infrared continuum of pure water vapor: Calculations and high‐temperature measurements, J. Quant. Spectrosc. Radiat. Transfer, 49, 675–691, doi:10.1016/0022-4073(93)90010-F.
1993
J.M. Hartmann, M.Y. Perrin, Q. Ma and R.H. Tipping , The infrared continuum of pure water vapor: calculations and high temperature measurements, Journal of Quantitative Spectroscopy and Radiative Transfer, 1993 , Volume 49 , Issue 6, Pages 675-691.
H2 O
T=686 К
P=24.15 атм
14. Calculation. Khee=1 (4100-6000 cm⁻¹)
Волновое число (см⁻¹)
Коэффициент поглощения (см⁻¹)
Pure H2 O absorption coefficients for the temperature of 686°K and the pressure 24.15 atm: values calculated from Eq. (15) with: χ = 1 and lines centered in the 4100-6000 cm-1 range.
2011
Ptashnik I.V., McPheat R.A., Shine K.P., Smith K.M., Williams R.G. , Water vapor self-continuum absorption in near-infrared windows derived from laboratory experiments, Journal of Geophysical Research, 2011 , Volume D116 , Pages 16305.
H2 O
T=351 К
P=∅
7.Paynter et al. (2009) (351K)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Paynter, D. J., I. V. Ptashnik, K. P. Shine, K. M. Smith, R. McPheat, and R. G. Williams (2009), Laboratory measurements of the water vapor continuum in the 1200–8000 cm−1 region between 293°K and 351°K, J. Geophys. Res., 114, D21301, doi:10.1029/2008JD011355.
2009
Paynter D.J., Ptashnik I.V., Shine K.P., Smith K.M., McPheat R.M., Williams R.G. , Laboratory measurements of the water vapor continuum in the 1200-8000 cm-1 region between 293K and 351 K, Journal of Geophysical Research, 2009 , Volume 114 , Pages D21301.
H2 O
T=293 К
P=0.0153 атм
8. This work (LPAC) (293K, 6900-7500 cm⁻¹)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
The self continuum derived from a pure water vapor LPAC measurement conducted at 15.3 mb and 293°K with a 512.75 m path length.
2011
Ptashnik I.V., McPheat R.A., Shine K.P., Smith K.M., Williams R.G. , Water vapor self-continuum absorption in near-infrared windows derived from laboratory experiments, Journal of Geophysical Research, 2011 , Volume D116 , Pages 16305.
H2 O
T=∅
P=∅
9. Baranov et al. (2011) (2400 cm⁻¹)
1000/Т (К⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Temperature dependence of the retrieved self-continuum at selected wavenumbers.
Baranov, Y. I., and W. J. Lafferty (2011), The water‐vapor continuum and selective absorption in the 3 to 5 μm spectral region at temperatures from 311° to 363°K, J. Quant. Spectrosc. Radiat. Transfer, 112, 1304–1313, doi:10.1016/j.jqsrt.2011.01.024.
2011
Yu.I. Baranov, W.J. Lafferty , The water-vapor continuum and selective absorption in the 3–5 μm spectral region at temperatures from 311 to 363 K, Journal of Quantitative Spectroscopy and Radiative Transfer, 2011 , Volume 112 , Issue 8, Pages 1304-1313.
H2 O
T=∅
P=∅
6. NIST (2007-2009)
Температура (К)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Temperature dependence of the continuum absorption coefficient around 2460 cm -1 .
2011
Ptashnik I.V., McPheat R.A., Shine K.P., Smith K.M., Williams R.G. , Water vapor self-continuum absorption in near-infrared windows derived from laboratory experiments, Journal of Geophysical Research, 2011 , Volume D116 , Pages 16305.
H2 O
T=∅
P=∅
9. Baranov et al. (2011) (2500 cm⁻¹)
1000/Т (К⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Temperature dependence of the retrieved self-continuum at selected wavenumbers.
Baranov, Y. I., and W. J. Lafferty (2011), The water‐vapor continuum and selective absorption in the 3 to 5 μm spectral region at temperatures from 311° to 363°K, J. Quant. Spectrosc. Radiat. Transfer, 112, 1304–1313, doi:10.1016/j.jqsrt.2011.01.024.
2011
Yu.I. Baranov, W.J. Lafferty , The water-vapor continuum and selective absorption in the 3–5 μm spectral region at temperatures from 311 to 363 K, Journal of Quantitative Spectroscopy and Radiative Transfer, 2011 , Volume 112 , Issue 8, Pages 1304-1313.
H2 O
T=∅
P=∅
6. NIST (2007-2009)
Температура (К)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Temperature dependence of the continuum absorption coefficient around 2460 cm -1 .
2011
Ptashnik I.V., McPheat R.A., Shine K.P., Smith K.M., Williams R.G. , Water vapor self-continuum absorption in near-infrared windows derived from laboratory experiments, Journal of Geophysical Research, 2011 , Volume D116 , Pages 16305.
H2 O
T=∅
P=∅
9. Baranov et al. (2011) (2600 cm⁻¹)
1000/Т (К⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Temperature dependence of the retrieved self-continuum at selected wavenumbers.
Baranov, Y. I., and W. J. Lafferty (2011), The water‐vapor continuum and selective absorption in the 3 to 5 μm spectral region at temperatures from 311° to 363°K, J. Quant. Spectrosc. Radiat. Transfer, 112, 1304–1313, doi:10.1016/j.jqsrt.2011.01.024.
2011
Yu.I. Baranov, W.J. Lafferty , The water-vapor continuum and selective absorption in the 3–5 μm spectral region at temperatures from 311 to 363 K, Journal of Quantitative Spectroscopy and Radiative Transfer, 2011 , Volume 112 , Issue 8, Pages 1304-1313.
H2 O
T=∅
P=∅
6. NIST (2007-2009)
Температура (К)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Temperature dependence of the continuum absorption coefficient around 2460 cm -1 .
2011
Ptashnik I.V., McPheat R.A., Shine K.P., Smith K.M., Williams R.G. , Water vapor self-continuum absorption in near-infrared windows derived from laboratory experiments, Journal of Geophysical Research, 2011 , Volume D116 , Pages 16305.
H2 O
T=∅
P=∅
9. Bicknell et al. (2006) (6100 cm⁻¹)
1000/Т (К⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Temperature dependence of the retrieved self-continuum at selected wavenumbers.
Bicknell, W. E., S. D. Cecca, and M. K. Griffin (2006), Search for low‐absorption regions in the 1.6‐ and 2.1‐μm atmospheric windows, J. Dir. Energy, 2, 151–161.
2006
Bicknell W.E., Cecca S.D., Griffin M.K., S. D. Swartz, and A. Flusberg , Search for low-absorption regions in the 1.6-and 2.1-μm atmospheric windows, Journal of Directed Energy, 2006 , Volume 2 , Pages 151–161.
Длина волны (мкм)
Коэффициент поглощения (Км⁻¹)
2011
Ptashnik I.V., McPheat R.A., Shine K.P., Smith K.M., Williams R.G. , Water vapor self-continuum absorption in near-infrared windows derived from laboratory experiments, Journal of Geophysical Research, 2011 , Volume D116 , Pages 16305.
H2 O
T=∅
P=∅
9. Bicknell, W.E., et al. (2006) (6200 cm⁻¹)
1000/Т (К⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Temperature dependence of the retrieved self-continuum at selected wavenumbers.
Bicknell, W. E., S. D. Cecca, and M. K. Griffin (2006), Search for low‐absorption regions in the 1.6‐ and 2.1‐μm atmospheric windows, J. Dir. Energy, 2, 151–161.
2006
Bicknell W.E., Cecca S.D., Griffin M.K., S. D. Swartz, and A. Flusberg , Search for low-absorption regions in the 1.6-and 2.1-μm atmospheric windows, Journal of Directed Energy, 2006 , Volume 2 , Pages 151–161.
Длина волны (мкм)
Коэффициент поглощения (Км⁻¹)
2011
Ptashnik I.V., McPheat R.A., Shine K.P., Smith K.M., Williams R.G. , Water vapor self-continuum absorption in near-infrared windows derived from laboratory experiments, Journal of Geophysical Research, 2011 , Volume D116 , Pages 16305.
H2 O
T=∅
P=∅
9. Burch et al. (1984) (2600 cm⁻¹)
1000/Т (К⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Temperature dependence of the retrieved self-continuum at selected wavenumbers.
Burch, D.E., and R.L. Alt (1984), Continuum absorption by H2 O in the 700–1200 cm−1 and 2400–2800 cm−1 windows, Sci. Rep., AFGL‐TR‐ 84–0128, Air Force Geophys. Lab., Hanscom Air Force Base, Mass.
1984
Burch D.E., Alt R.L. , Continuum absorption by H2 O in the 700 - 1200 cm-1 and 2400 - 2800 cm-1 windows, Report AFGL-TR-84-0128 by Ford Aerospace and Communications Corporation, Aeronutronic Division to AFGL, United States Air Force, Hanscom AFB, Unknown, 1984 , Pages 31.
H2 O
T=∅
P=∅
8. Wavenumber 2600 cm⁻¹. Temperature dependence. Experiment
1000/Т (К⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Plots of the self-broadening coefficients at 2600 cm-1 versus the reciprocal of temperature. Experiment.
2011
Ptashnik I.V., McPheat R.A., Shine K.P., Smith K.M., Williams R.G. , Water vapor self-continuum absorption in near-infrared windows derived from laboratory experiments, Journal of Geophysical Research, 2011 , Volume D116 , Pages 16305.
H2 O
T=∅
P=∅
9. Burch, D.E., et al. (1984) (2400 cm⁻¹)
1000/Т (К⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Temperature dependence of the retrieved self-continuum at selected wavenumbers.
Burch, D. E., and R. L. Alt (1984), Continuum absorption by H2 O in the 700–1200 cm−1 and 2400–2800 cm−1 windows, Sci. Rep., AFGL‐TR‐ 84–0128, Air Force Geophys. Lab., Hanscom Air Force Base, Mass.
1984
Burch D.E., Alt R.L. , Continuum absorption by H2 O in the 700 - 1200 cm-1 and 2400 - 2800 cm-1 windows, Report AFGL-TR-84-0128 by Ford Aerospace and Communications Corporation, Aeronutronic Division to AFGL, United States Air Force, Hanscom AFB, Unknown, 1984 , Pages 31.
H2 O
T=∅
P=∅
8. Wavenumber 2400 cm⁻¹. Temperature dependence. Experiment
1000/Т (К⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Plots of the self-broadening coefficients at 2400 cm-1 versus the reciprocal of temperature. Experiment
2011
Ptashnik I.V., McPheat R.A., Shine K.P., Smith K.M., Williams R.G. , Water vapor self-continuum absorption in near-infrared windows derived from laboratory experiments, Journal of Geophysical Research, 2011 , Volume D116 , Pages 16305.
H2 O
T=∅
P=∅
9. Burch, D.E., et al. (1984) (2500 cm⁻¹)
1000/Т (К⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Temperature dependence of the retrieved self-continuum at selected wavenumbers.
Burch, D.E., and R.L. Alt (1984), Continuum absorption by H2 O in the 700–1200 cm−1 and 2400–2800 cm− 1 windows, Sci. Rep., AFGL‐TR‐ 84–0128, Air Force Geophys. Lab., Hanscom Air Force Base, Mass.
1984
Burch D.E., Alt R.L. , Continuum absorption by H2 O in the 700 - 1200 cm-1 and 2400 - 2800 cm-1 windows, Report AFGL-TR-84-0128 by Ford Aerospace and Communications Corporation, Aeronutronic Division to AFGL, United States Air Force, Hanscom AFB, Unknown, 1984 , Pages 31.
H2 O
T=∅
P=∅
8. Wavenumber 2500 cm⁻¹. Temperature dependence. Experiment
1000/Т (К⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Plots of the self-broadening coefficients at 2500 cm-1 versus the reciprocal of temperature. Experiment.
2011
Ptashnik I.V., McPheat R.A., Shine K.P., Smith K.M., Williams R.G. , Water vapor self-continuum absorption in near-infrared windows derived from laboratory experiments, Journal of Geophysical Research, 2011 , Volume D116 , Pages 16305.
H2 O
T=∅
P=∅
9. Hartmann, J.M., et al. (1993) (2400 cm⁻¹)
1000/Т (К⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Temperature dependence of the retrieved self-continuum at selected wavenumbers.
Hartmann, J. M., M. Y. Perrin, Q. Ma, and R. H. Tipping (1993), The infrared continuum of pure water vapor: Calculations and high‐temperature measurements, J. Quant. Spectrosc. Radiat. Transfer, 49, 675–691, doi:10.1016/0022-4073(93)90010-F.
1993
J.M. Hartmann, M.Y. Perrin, Q. Ma and R.H. Tipping , The infrared continuum of pure water vapor: calculations and high temperature measurements, Journal of Quantitative Spectroscopy and Radiative Transfer, 1993 , Volume 49 , Issue 6, Pages 675-691.
H2 O
T=∅
P=∅
3. H₂O continuum absorption coefficient (2500 cm⁻¹, Burch, et al. (1984,1985))
1000/Т (К⁻¹)
Коэффициент поглощения (см⁻¹Амага⁻²)
Measured pure H2 O continuum absorption coefficients vs temperature for the following wavenumbers: 2500 cm-1 ; Ref. 30.
[30] D. E. Burch, Report AFGL-TR-85 (1985);
D.E. Burch and R.L. Alt, Report AFGL-TR-0128 (1984).
2011
Ptashnik I.V., McPheat R.A., Shine K.P., Smith K.M., Williams R.G. , Water vapor self-continuum absorption in near-infrared windows derived from laboratory experiments, Journal of Geophysical Research, 2011 , Volume D116 , Pages 16305.
H2 O
T=∅
P=∅
9. Hartmann, J.M., et al. (1993) (2500 cm⁻¹)
1000/Т (К⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Temperature dependence of the retrieved self-continuum at selected wavenumbers.
Hartmann, J. M., M. Y. Perrin, Q. Ma, and R. H. Tipping (1993), The infrared continuum of pure water vapor: Calculations and high‐temperature measurements, J. Quant. Spectrosc. Radiat. Transfer, 49, 675–691, doi:10.1016/0022-4073(93)90010-F.
1993
J.M. Hartmann, M.Y. Perrin, Q. Ma and R.H. Tipping , The infrared continuum of pure water vapor: calculations and high temperature measurements, Journal of Quantitative Spectroscopy and Radiative Transfer, 1993 , Volume 49 , Issue 6, Pages 675-691.
H2 O
T=∅
P=∅
3. H₂O continuum absorption coefficient (2500 cm⁻¹, Burch, et al. (1984,1985))
1000/Т (К⁻¹)
Коэффициент поглощения (см⁻¹Амага⁻²)
Measured pure H2 O continuum absorption coefficients vs temperature for the following wavenumbers: 2500 cm-1 ; Ref. 30.
[30] D. E. Burch, Report AFGL-TR-85 (1985);
D.E. Burch and R.L. Alt, Report AFGL-TR-0128 (1984).
2011
Ptashnik I.V., McPheat R.A., Shine K.P., Smith K.M., Williams R.G. , Water vapor self-continuum absorption in near-infrared windows derived from laboratory experiments, Journal of Geophysical Research, 2011 , Volume D116 , Pages 16305.
H2 O
T=∅
P=∅
9. Hartmann, J.M., et al. (1993) (2600 cm⁻¹)
1000/Т (К⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Temperature dependence of the retrieved self-continuum at selected wavenumbers.
Hartmann, J. M., M. Y. Perrin, Q. Ma, and R. H. Tipping (1993), The infrared continuum of pure water vapor: Calculations and high‐temperature measurements, J. Quant. Spectrosc. Radiat. Transfer, 49, 675–691, doi:10.1016/0022-4073(93)90010-F.
1993
J.M. Hartmann, M.Y. Perrin, Q. Ma and R.H. Tipping , The infrared continuum of pure water vapor: calculations and high temperature measurements, Journal of Quantitative Spectroscopy and Radiative Transfer, 1993 , Volume 49 , Issue 6, Pages 675-691.
H2 O
T=∅
P=∅
3. H₂O continuum absorption coefficient (2500 cm⁻¹, Burch, et al. (1984,1985))
1000/Т (К⁻¹)
Коэффициент поглощения (см⁻¹Амага⁻²)
Measured pure H2 O continuum absorption coefficients vs temperature for the following wavenumbers: 2500 cm-1 ; Ref. 30.
[30] D. E. Burch, Report AFGL-TR-85 (1985);
D.E. Burch and R.L. Alt, Report AFGL-TR-0128 (1984).
2011
Ptashnik I.V., McPheat R.A., Shine K.P., Smith K.M., Williams R.G. , Water vapor self-continuum absorption in near-infrared windows derived from laboratory experiments, Journal of Geophysical Research, 2011 , Volume D116 , Pages 16305.
H2 O
T=∅
P=∅
9. Hartmann, J.M., et al. (1993) (4190 cm⁻¹)
1000/Т (К⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Hartmann, J. M., M. Y. Perrin, Q. Ma, and R. H. Tipping (1993), The infrared continuum of pure water vapor: Calculations and high‐temperature measurements, J. Quant. Spectrosc. Radiat. Transfer, 49, 675–691, doi:10.1016/0022-4073(93)90010-F.
1993
J.M. Hartmann, M.Y. Perrin, Q. Ma and R.H. Tipping , The infrared continuum of pure water vapor: calculations and high temperature measurements, Journal of Quantitative Spectroscopy and Radiative Transfer, 1993 , Volume 49 , Issue 6, Pages 675-691.
H2 O
T=∅
P=∅
3. H₂O continuum absorption coefficient (2500 cm⁻¹, Burch, et al. (1984,1985))
1000/Т (К⁻¹)
Коэффициент поглощения (см⁻¹Амага⁻²)
Measured pure H2 O continuum absorption coefficients vs temperature for the following wavenumbers: 2500 cm-1 ; Ref. 30.
[30] D. E. Burch, Report AFGL-TR-85 (1985);
D.E. Burch and R.L. Alt, Report AFGL-TR-0128 (1984).
2011
Ptashnik I.V., McPheat R.A., Shine K.P., Smith K.M., Williams R.G. , Water vapor self-continuum absorption in near-infrared windows derived from laboratory experiments, Journal of Geophysical Research, 2011 , Volume D116 , Pages 16305.
H2 O
T=∅
P=∅
9. Hartmann, J.M., et al. (1993) (4310 cm⁻¹)
1000/Т (К⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Temperature dependence of the retrieved self-continuum at selected wavenumbers.
Hartmann, J. M., M. Y. Perrin, Q. Ma, and R. H. Tipping (1993), The infrared continuum of pure water vapor: Calculations and high‐temperature measurements, J. Quant. Spectrosc. Radiat. Transfer, 49, 675–691, doi:10.1016/0022-4073(93)90010-F.
1993
J.M. Hartmann, M.Y. Perrin, Q. Ma and R.H. Tipping , The infrared continuum of pure water vapor: calculations and high temperature measurements, Journal of Quantitative Spectroscopy and Radiative Transfer, 1993 , Volume 49 , Issue 6, Pages 675-691.
H2 O
T=∅
P=∅
3. H₂O continuum absorption coefficient (2500 cm⁻¹, Burch, et al. (1984,1985))
1000/Т (К⁻¹)
Коэффициент поглощения (см⁻¹Амага⁻²)
Measured pure H2 O continuum absorption coefficients vs temperature for the following wavenumbers: 2500 cm-1 ; Ref. 30.
[30] D. E. Burch, Report AFGL-TR-85 (1985);
D.E. Burch and R.L. Alt, Report AFGL-TR-0128 (1984).
2011
Ptashnik I.V., McPheat R.A., Shine K.P., Smith K.M., Williams R.G. , Water vapor self-continuum absorption in near-infrared windows derived from laboratory experiments, Journal of Geophysical Research, 2011 , Volume D116 , Pages 16305.
H2 O
T=∅
P=∅
9. Hartmann, J.M., et al. (1993) (4400 cm⁻¹)
1000/Т (К⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Temperature dependence of the retrieved self-continuum at selected wavenumbers.
Hartmann, J. M., M. Y. Perrin, Q. Ma, and R. H. Tipping (1993), The infrared continuum of pure water vapor: Calculations and high‐temperature measurements, J. Quant. Spectrosc. Radiat. Transfer, 49, 675–691, doi:10.1016/0022-4073(93)90010-F.
1993
J.M. Hartmann, M.Y. Perrin, Q. Ma and R.H. Tipping , The infrared continuum of pure water vapor: calculations and high temperature measurements, Journal of Quantitative Spectroscopy and Radiative Transfer, 1993 , Volume 49 , Issue 6, Pages 675-691.
H2 O
T=∅
P=∅
3. H₂O continuum absorption coefficient (2500 cm⁻¹, Burch, et al. (1984,1985))
1000/Т (К⁻¹)
Коэффициент поглощения (см⁻¹Амага⁻²)
Measured pure H2 O continuum absorption coefficients vs temperature for the following wavenumbers: 2500 cm-1 ; Ref. 30.
[30] D. E. Burch, Report AFGL-TR-85 (1985);
D.E. Burch and R.L. Alt, Report AFGL-TR-0128 (1984).
2011
Ptashnik I.V., McPheat R.A., Shine K.P., Smith K.M., Williams R.G. , Water vapor self-continuum absorption in near-infrared windows derived from laboratory experiments, Journal of Geophysical Research, 2011 , Volume D116 , Pages 16305.
H2 O
T=∅
P=∅
9. Hartmann, J.M., et al. (1993) (4490 cm⁻¹)
1000/Т (К⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Temperature dependence of the retrieved self-continuum at selected wavenumbers.
Hartmann, J. M., M. Y. Perrin, Q. Ma, and R. H. Tipping (1993), The infrared continuum of pure water vapor: Calculations and high‐temperature measurements, J. Quant. Spectrosc. Radiat. Transfer, 49, 675–691, doi:10.1016/0022-4073(93)90010-F.
1993
J.M. Hartmann, M.Y. Perrin, Q. Ma and R.H. Tipping , The infrared continuum of pure water vapor: calculations and high temperature measurements, Journal of Quantitative Spectroscopy and Radiative Transfer, 1993 , Volume 49 , Issue 6, Pages 675-691.
H2 O
T=∅
P=∅
3. H₂O continuum absorption coefficient (2500 cm⁻¹, Burch, et al. (1984,1985))
1000/Т (К⁻¹)
Коэффициент поглощения (см⁻¹Амага⁻²)
Measured pure H2 O continuum absorption coefficients vs temperature for the following wavenumbers: 2500 cm-1 ; Ref. 30.
[30] D. E. Burch, Report AFGL-TR-85 (1985);
D.E. Burch and R.L. Alt, Report AFGL-TR-0128 (1984).
2011
Yu.I. Baranov, W.J. Lafferty , The water-vapor continuum and selective absorption in the 3–5 μm spectral region at temperatures from 311 to 363 K, Journal of Quantitative Spectroscopy and Radiative Transfer, 2011 , Volume 112 , Issue 8, Pages 1304-1313.
H2 O
T=328 К
P=∅
5. Burch D. E., et al. (1979)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Water-vapor self-broadened continuum.
[19] Burch D. E., Alt R.L.Continuum absorption by H2 O in the 700–1200 cm-1 and 2400–2800 cm-1 windows. AFGL-TR-84-0128 Scientific ReportNo1,1984.
1984
Burch D.E., Alt R.L. , Continuum absorption by H2 O in the 700 - 1200 cm-1 and 2400 - 2800 cm-1 windows, Report AFGL-TR-84-0128 by Ford Aerospace and Communications Corporation, Aeronutronic Division to AFGL, United States Air Force, Hanscom AFB, Unknown, 1984 , Pages 31.
H2 O
T=328 К
P=∅
6. Experiment (328K, 2400-2640cm⁻¹)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Self-broadening coefficients between 2400 and 2640 cm-1 for 328°K.
2011
Yu.I. Baranov, W.J. Lafferty , The water-vapor continuum and selective absorption in the 3–5 μm spectral region at temperatures from 311 to 363 K, Journal of Quantitative Spectroscopy and Radiative Transfer, 2011 , Volume 112 , Issue 8, Pages 1304-1313.
H2 O
T=∅
P=∅
5. Watkins W.R., et al. (1979)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Water-vapor self-broadened continuum.
[18]. Watkins W.R., White K.O., Bower L.R., Sojka B.Z., Pressure dependence of the water vapor continuum absorption in the 3.5–4.0 μm region. Appl Opt 1979; 18: 1149–60.
1979
Watkins, Wendell R., White, Kenneth O., Bower, Lanny R., Sojka, Brian Z. , PRESSURE DEPENDENCE OF THE WATER VAPOR CONTINUUM ABSORPTION IN THE 3.5-4.0- μM REGION, Applied Optics, 1979 , Volume 18 , Issue 8, Pages 1149-1160.
H2 O
T=298 К
P=0.0188158 атм
3. Present data
Волновое число (см⁻¹)
Коэффициент поглощения (Км⁻¹)
Comparison of measured water vapor continuum at 25°C to Burch extrapolation for 14.3-Torr water vapor with no air-broadening.
2011
Yu.I. Baranov, W.J. Lafferty , The water-vapor continuum and selective absorption in the 3–5 μm spectral region at temperatures from 311 to 363 K, Journal of Quantitative Spectroscopy and Radiative Transfer, 2011 , Volume 112 , Issue 8, Pages 1304-1313.
H2 O
T=∅
P=∅
6. Bignell K.J. (1970)
Температура (К)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Temperature dependence of the continuum absorption coefficient around 2460 cm−1.
[14 ]K. J. Bignell, The water-vapour infra-red continuum, Quarterly Journal of Royal Meteorological Society, 1970, Volume 96, Issue 409, Pages 390 - 403.
1970
K. J. Bignell , The water-vapour infra-red continuum, Quarterly Journal of Royal Meteorological Society, 1970 , Volume 96 , Issue 409, Pages 390 - 403.
Волновое число (см⁻¹) Волновое число (см⁻¹)
Коэффициент поглощения (г⁻¹см²) Коэффициент поглощения (см⁻¹атм⁻¹)
2011
Yu.I. Baranov, W.J. Lafferty , The water-vapor continuum and selective absorption in the 3–5 μm spectral region at temperatures from 311 to 363 K, Journal of Quantitative Spectroscopy and Radiative Transfer, 2011 , Volume 112 , Issue 8, Pages 1304-1313.
H2 O
T=∅
P=∅
6. Burch D.E., et al. (1971) (2460 cm⁻¹)
Температура (К)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Temperature dependence of the continuum absorption coefficient around 2460 cm−1 .
[15] Burch D.E., Gryvnak D.A., Pembrook J.D., Investigation of the absorption of infrared radiation by atmospheric gases: water, nitrogen, nitrous oxide, AFCRL-71-0124 U-4897, 1971 .
1971
Burch D.E., Gryvnak D.A., Pembrook J.D. , Investigation of the absorption of infrared radiation by atmospheric gases: water, nitrogen, nitrous oxide, Aeronutronic, Rep. U4897, Contract F19628-69-C-0263, Philco-Ford Corp., Unknown, 1971 ,
H2 O
T=∅
P=∅
1. 2450 cm⁻¹. Original data
1/Т (К⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Semi-logarithm plots of C0 S,w vs 1/T for wavenumber 2450 cm-1 . Original.
2011
Yu.I. Baranov, W.J. Lafferty , The water-vapor continuum and selective absorption in the 3–5 μm spectral region at temperatures from 311 to 363 K, Journal of Quantitative Spectroscopy and Radiative Transfer, 2011 , Volume 112 , Issue 8, Pages 1304-1313.
H2 O
T=∅
P=∅
6. Burch D.E., etal. (1984)
Температура (К)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Temperature dependence of the continuum absorption coefficient around 2460 cm−1 .
[19] Burch D. E., Alt R.L.Continuum absorption by H2 O in the 700–1200 cm-1 and 2400–2800 cm-1 windows. AFGL-TR-84-0128 Scientific ReportNo1, 1984.
1984
Burch D.E., Alt R.L. , Continuum absorption by H2 O in the 700 - 1200 cm-1 and 2400 - 2800 cm-1 windows, Report AFGL-TR-84-0128 by Ford Aerospace and Communications Corporation, Aeronutronic Division to AFGL, United States Air Force, Hanscom AFB, Unknown, 1984 , Pages 31.
H2 O
T=∅
P=∅
8. Wavenumber 2600 cm⁻¹. Temperature dependence. Approximation
1000/Т (К⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Plots of the self-broadening coefficients at 2600 cm-1 versus the reciprocal of temperature. Approximation.
2011
Yu.I. Baranov, W.J. Lafferty , The water-vapor continuum and selective absorption in the 3–5 μm spectral region at temperatures from 311 to 363 K, Journal of Quantitative Spectroscopy and Radiative Transfer, 2011 , Volume 112 , Issue 8, Pages 1304-1313.
H2 O
T=296 К
P=∅
6. Watkins W.R., et al. (1979) (296K, 2460 cm⁻¹)
Температура (К)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Temperature dependence of the continuum absorption coefficient around 2460 cm−1 .
[18]. Watkins W.R., White K.O., Bower L.R., Sojka B.Z. Pressure dependence of the water vapor continuum absorption in the 3.5–4.0 μm region. Appl Opt 1979 ;18: 1149–60.
1979
Watkins, Wendell R., White, Kenneth O., Bower, Lanny R., Sojka, Brian Z. , PRESSURE DEPENDENCE OF THE WATER VAPOR CONTINUUM ABSORPTION IN THE 3.5-4.0- μM REGION, Applied Optics, 1979 , Volume 18 , Issue 8, Pages 1149-1160.
Волновое число (см⁻¹)
Коэффициент поглощения (Км⁻¹)
2012
Ptashnik I.V., McPheat R.A., Shine K.P. , Smith K.M., Williams R.G. , Water vapour foreign-continuum absorption in near-infrared windows from laboratory measurements , Philosophical Transactions of the Royal Society of London Series A: Physical Sciences and Engineering, 2012 , Volume 370 , Pages 2557-2577.
H2 O
T=296 К
P=∅
5. Tipping, R.H. et al. (1995), far wings
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
The Tipping & Ma [8] H2 O+N2 far-wing model (296 K).
[8] Tipping, R. H. & Ma, Q. (1995) Theory of the water vapour continuum and validations. Atmos. Res. 36, 69–94. (doi:10.1016/0169-8095(94)00028-C).
1995
Tipping R.H., Ma Q. , Theory of the water continuum and validations, Atmospheric Research, 1995 , Volume 36 , Number 1-2, Pages 69-94.
H2 O
T=296 К
P=∅
3. The present theory (296K)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
The H2 O+H2 O absorption coefficient α(ω) (in units of cm2 molecule-1 atm -1 ) as a function of frequency ω (in units of cm-1 ) calculated for T= 296°K. The results obtained from the two averaged line shape functions.
2012
Baranov Yu. I., Lafferty W. J. , The water vapour self- and water–nitrogen continuum absorption in the 1000 and 2500 cm−1 atmospheric windows, Philosophical Transactions of the Royal Society of London Series A: Physical Sciences and Engineering, 2012 , Volume 370 , Pages 2578-2589.
H2 O
T=310.8 К
P=∅
3. Baranov, Yu.I., et al. (2008) (310.8K)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
The results from Baranov et al. [11].
[11] Baranov, Yu. I., Lafferty, W. J., Ma, Q. & Tipping, R. H. Water vapor continuum absorption in the 800–1250 cm−1 spectral region at temperatures from 311° to 363°K. J. Quant. Spectrosc. Radiat. Transfer. 109, 2291–2302. 2008 (doi:10.1016/j.jqsrt.2008.03.004).
2008
Yu.I. Baranov, W.J. Lafferty, Q. Ma and R.H. Tipping , Water-vapor continuum absorption in the 800-1250 cm-1 spectral region at temperatures from 311 to 363 K, Journal of Quantitative Spectroscopy and Radiation Transfer, 2008 , Volume 109 , Issue 12, Pages 2291-2302.
H2 O
T=310.8 К
P=1 атм
2. Present experiment (310.8K, 800-1150 cm⁻¹)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹)
Binary absorption coefficients of the water-vapor continuum derived by direct measurements of absorption in selected microwindows
2012
Baranov Yu. I., Lafferty W. J. , The water vapour self- and water–nitrogen continuum absorption in the 1000 and 2500 cm−1 atmospheric windows, Philosophical Transactions of the Royal Society of London Series A: Physical Sciences and Engineering, 2012 , Volume 370 , Pages 2578-2589.
H2 O
T=325.8 К
P=∅
3. Baranov, Yu.I., et al. (2008) (325.8K)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
The results from Baranov et al. [11].
[11] Baranov, Yu. I., Lafferty, W. J., Ma, Q. & Tipping, R. H. 2008 Water vapor continuum absorption in the 800–1250 cm−1 spectral region at temperatures from 311° to 363°K. J. Quant. Spectrosc. Radiat. Transfer. 109, 2291–2302. (doi:10.1016/j.jqsrt.2008.03.004).
2008
Yu.I. Baranov, W.J. Lafferty, Q. Ma and R.H. Tipping , Water-vapor continuum absorption in the 800-1250 cm-1 spectral region at temperatures from 311 to 363 K, Journal of Quantitative Spectroscopy and Radiation Transfer, 2008 , Volume 109 , Issue 12, Pages 2291-2302.
H2 O
T=325 К
P=1 атм
2. Present experiment (325K, 800-1150 cm⁻¹)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹)
Binary absorption coefficients of the water-vapor continuum derived by direct measurements of absorption in selected microwindows
2012
Baranov Yu. I., Lafferty W. J. , The water vapour self- and water–nitrogen continuum absorption in the 1000 and 2500 cm−1 atmospheric windows, Philosophical Transactions of the Royal Society of London Series A: Physical Sciences and Engineering, 2012 , Volume 370 , Pages 2578-2589.
H2 O
T=351.9 К
P=∅
3. Baranov, Yu.I., et al. (2008) (351.9K)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
The results from Baranov et al. [11].
[11] Baranov, Yu. I., Lafferty, W. J., Ma, Q. & Tipping, R. H. 2008 Water vapor continuum absorption in the 800–1250 cm−1 spectral region at temperatures from 311° to 363°K. J. Quant. Spectrosc. Radiat. Transfer. 109, 2291–2302. (doi:10.1016/j.jqsrt.2008.03.004).
2008
Yu.I. Baranov, W.J. Lafferty, Q. Ma and R.H. Tipping , Water-vapor continuum absorption in the 800-1250 cm-1 spectral region at temperatures from 311 to 363 K, Journal of Quantitative Spectroscopy and Radiation Transfer, 2008 , Volume 109 , Issue 12, Pages 2291-2302.
H2 O
T=351 К
P=1 атм
2. Present experiment (351K, 800-1150 cm⁻¹)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹)
Binary absorption coefficients of the water-vapor continuum derived by direct measurements of absorption in selected microwindows
2012
Baranov Yu. I., Lafferty W. J. , The water vapour self- and water–nitrogen continuum absorption in the 1000 and 2500 cm−1 atmospheric windows, Philosophical Transactions of the Royal Society of London Series A: Physical Sciences and Engineering, 2012 , Volume 370 , Pages 2578-2589.
H2 O
T=310.8 К
P=∅
3. Baranov, Yu.I., et al. (2011) (310.8K)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
The results from Baranov and Lafferty [12].
[12] Baranov, Yu. I. & Lafferty, W. J. 2011 The water-vapor continuum and selective absorption in the 3–5 mm spectral region at temperatures from 311° to 363°K. J. Quant. Spectrosc. Radiat. Transfer. 112, 1304–1313. (doi:10.1016/j.jqsrt.2011.01.024).
2008
Yu.I. Baranov, W.J. Lafferty, Q. Ma and R.H. Tipping , Water-vapor continuum absorption in the 800-1250 cm-1 spectral region at temperatures from 311 to 363 K, Journal of Quantitative Spectroscopy and Radiation Transfer, 2008 , Volume 109 , Issue 12, Pages 2291-2302.
H2 O
T=310.8 К
P=1 атм
2. Present experiment (310.8K, 800-1150 cm⁻¹)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹)
Binary absorption coefficients of the water-vapor continuum derived by direct measurements of absorption in selected microwindows
2012
Baranov Yu. I., Lafferty W. J. , The water vapour self- and water–nitrogen continuum absorption in the 1000 and 2500 cm−1 atmospheric windows, Philosophical Transactions of the Royal Society of London Series A: Physical Sciences and Engineering, 2012 , Volume 370 , Pages 2578-2589.
H2 O
T=325.8 К
P=∅
3. Baranov, Yu.I., et al. (2011) (325.8K)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
The results from Baranov and Lafferty [12].
[12] Baranov, Yu. I. & Lafferty, W. J. 2011 The water-vapor continuum and selective absorption in the 3–5 mm spectral region at temperatures from 311° to 363°K. J. Quant. Spectrosc. Radiat. Transfer. 112, 1304–1313. (doi:10.1016/j.jqsrt.2011.01.024).
2011
Yu.I. Baranov, W.J. Lafferty , The water-vapor continuum and selective absorption in the 3–5 μm spectral region at temperatures from 311 to 363 K, Journal of Quantitative Spectroscopy and Radiative Transfer, 2011 , Volume 112 , Issue 8, Pages 1304-1313.
H2 O
T=325.5 К
P=∅
5. MTCKD 2.5 (325.5K)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Water-vapor self-broadened continuum at three temperatures: 325.5°K.
2012
Baranov Yu. I., Lafferty W. J. , The water vapour self- and water–nitrogen continuum absorption in the 1000 and 2500 cm−1 atmospheric windows, Philosophical Transactions of the Royal Society of London Series A: Physical Sciences and Engineering, 2012 , Volume 370 , Pages 2578-2589.
H2 O
T=351.9 К
P=∅
3. Baranov, Yu.I., et al. (2011) (351.9K)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
The results from Baranov and Lafferty [12].
[12] Baranov, Yu. I. & Lafferty, W. J. 2011 The water-vapor continuum and selective absorption in the 3–5 mm spectral region at temperatures from 311° to 363°K. J. Quant. Spectrosc. Radiat. Transfer. 112, 1304–1313. (doi:10.1016/j.jqsrt.2011.01.024).
2011
Yu.I. Baranov, W.J. Lafferty , The water-vapor continuum and selective absorption in the 3–5 μm spectral region at temperatures from 311 to 363 K, Journal of Quantitative Spectroscopy and Radiative Transfer, 2011 , Volume 112 , Issue 8, Pages 1304-1313.
H2 O
T=351.6 К
P=∅
5. NIST (351.6K)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Water-vapor self-broadened continuum at temperature: 351.6 K
2012
Baranov Yu. I., Lafferty W. J. , The water vapour self- and water–nitrogen continuum absorption in the 1000 and 2500 cm−1 atmospheric windows, Philosophical Transactions of the Royal Society of London Series A: Physical Sciences and Engineering, 2012 , Volume 370 , Pages 2578-2589.
H2 O
T=296 К
P=∅
3. Burch, D.E., et al. (1984) (296K, 2200-2700 cm⁻¹)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
The results from Burch and Alt [22], 296°K.
[22] Burch, D.E. & Alt, R.L. 1984 Continuum absorption by H2 O in the 700–1200 cm−1 and 2400–2800 cm−1 windows. US Air Force Geophysics Laboratory report AFGL-TR-84–0128, Hanscom Air Force Base, MA, USA.
1984
Burch D.E., Alt R.L. , Continuum absorption by H2 O in the 700 - 1200 cm-1 and 2400 - 2800 cm-1 windows, Report AFGL-TR-84-0128 by Ford Aerospace and Communications Corporation, Aeronutronic Division to AFGL, United States Air Force, Hanscom AFB, Unknown, 1984 , Pages 31.
H2 O
T=296 К
P=∅
6. Experiment (296K, 2400-2640cm⁻¹)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Self-broadening coefficients between 2400 and 2640 cm-1 for 296°K.
2012
Baranov Yu. I., Lafferty W. J. , The water vapour self- and water–nitrogen continuum absorption in the 1000 and 2500 cm−1 atmospheric windows, Philosophical Transactions of the Royal Society of London Series A: Physical Sciences and Engineering, 2012 , Volume 370 , Pages 2578-2589.
H2 O
T=338 К
P=∅
3. Burch, D.E., et al. (1984) (328K)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
The results from Burch & Alt [22], 328°K.
[22] Burch, D.E. & Alt, R.L. 1984 Continuum absorption by H2 O in the 700–1200 cm−1 and 2400–2800 cm−1 windows. US Air Force Geophysics Laboratory report AFGL-TR-84–0128, Hanscom Air Force Base, MA, USA.
1984
Burch D.E., Alt R.L. , Continuum absorption by H2 O in the 700 - 1200 cm-1 and 2400 - 2800 cm-1 windows, Report AFGL-TR-84-0128 by Ford Aerospace and Communications Corporation, Aeronutronic Division to AFGL, United States Air Force, Hanscom AFB, Unknown, 1984 , Pages 31.
H2 O
T=328 К
P=∅
6. Experiment (328K, 2400-2640cm⁻¹)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Self-broadening coefficients between 2400 and 2640 cm-1 for 328°K.
2012
Baranov Yu. I., Lafferty W. J. , The water vapour self- and water–nitrogen continuum absorption in the 1000 and 2500 cm−1 atmospheric windows, Philosophical Transactions of the Royal Society of London Series A: Physical Sciences and Engineering, 2012 , Volume 370 , Pages 2578-2589.
H2 O
T=293 К
P=∅
3. Ptashnik et al. (2011) (293K)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
The results from Ptashnik et al. [25], 293°K.
[25] Ptashnik, I. V., McPheat, R. A., Shine, K. P., Smith, K. M. & Williams, R. G. 2011 Water vapor self-continuum absorption in near-infrared windows derived from laboratory measurements.J. Geophys. Res. 116, D16305. (doi:10.1029/2011JD015603).
2011
Ptashnik I.V., McPheat R.A., Shine K.P., Smith K.M., Williams R.G. , Water vapor self-continuum absorption in near-infrared windows derived from laboratory experiments, Journal of Geophysical Research, 2011 , Volume D116 , Pages 16305.
H2 O
T=293 К
P=0.0150999 атм
1. CAVIAR (293K, 1600-5800 cm⁻¹)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
2012
Baranov Yu. I., Lafferty W. J. , The water vapour self- and water–nitrogen continuum absorption in the 1000 and 2500 cm−1 atmospheric windows, Philosophical Transactions of the Royal Society of London Series A: Physical Sciences and Engineering, 2012 , Volume 370 , Pages 2578-2589.
H2 O
T=300 К
P=∅
3. Ptashnik et al. (2011) (350K)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
The results from Ptashnik et al. [25], 350°K.
[25] Ptashnik, I. V., McPheat, R. A., Shine, K. P., Smith, K. M. & Williams, R. G. 2011 Water vapor self-continuum absorption in near-infrared windows derived from laboratory measurements.J. Geophys. Res. 116, D16305. (doi:10.1029/2011JD015603).
2011
Ptashnik I.V., McPheat R.A., Shine K.P., Smith K.M., Williams R.G. , Water vapor self-continuum absorption in near-infrared windows derived from laboratory experiments, Journal of Geophysical Research, 2011 , Volume D116 , Pages 16305.
H2 O
T=350 К
P=∅
7. CAVIAR (350K)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
2012
Baranov Yu. I., Lafferty W. J. , The water vapour self- and water–nitrogen continuum absorption in the 1000 and 2500 cm−1 atmospheric windows, Philosophical Transactions of the Royal Society of London Series A: Physical Sciences and Engineering, 2012 , Volume 370 , Pages 2578-2589.
H2 O
T=298 К
P=∅
3. Watkins et al. (1979) (298K)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
The results from Watkins et al. [24], 298°K.
[24] Watkins, W. R., White, K. O., Bower, L. R. & Sojka, B. Z. 1979 Pressure dependence of the water vapor continuum absorption in the 3.5–4.0 mm region. Appl. Opt. 18, 1149–1160. (doi:10.1364/AO.18.001149).
1979
Watkins, Wendell R., White, Kenneth O., Bower, Lanny R., Sojka, Brian Z. , PRESSURE DEPENDENCE OF THE WATER VAPOR CONTINUUM ABSORPTION IN THE 3.5-4.0- μM REGION, Applied Optics, 1979 , Volume 18 , Issue 8, Pages 1149-1160.
H2 O
T=298 К
P=0.0188158 атм
3. Present data
Волновое число (см⁻¹)
Коэффициент поглощения (Км⁻¹)
Comparison of measured water vapor continuum at 25°C to Burch extrapolation for 14.3-Torr water vapor with no air-broadening.
2012
Klimeshina T.E., Bogdanova Yu.V., Rodimova O.B. , Water vapor continuum absorption in the 8–12 and 3–5 μm atmospheric transparency windows, Atmospheric and Oceanic Optics, 2012 , Volume 24 , Pages 71-76.
H2 O
T=338 К
P=1 атм
2. D.E. Burch (1982). Absorption coefficient (2400–2700 cm–1, 338K)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Absorption coefficient in an interval of 2400–2700 cm–1 at 338°K [21].
[21] D. E. Burch, Continuum absorption by H2 O. Report AFGL_TR_81_0300 (1982), 46 pp.
1982
Burch D.E. , Continuum absorption by atmospheric H2 O, Report AFGL-TR-81-0300, by Ford Aeronutronic to Air Force Geophys. Lab., Hanscom AFB, Unknown, 1982 , Pages 46.
H2 O
T=338 К
P=∅
2. Experimental points (338K, 2400-2829cm⁻¹)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Spectral plots of C0 s for H2 O at 338K.
2012
Klimeshina T.E., Bogdanova Yu.V., Rodimova O.B. , Water vapor continuum absorption in the 8–12 and 3–5 μm atmospheric transparency windows, Atmospheric and Oceanic Optics, 2012 , Volume 24 , Pages 71-76.
H2 O
T=384 К
P=1 атм
2. D.E. Burch (1982). Absorption coefficient (2400–2700 cm–1, 384K)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Absorption coefficient in an interval of 2400–2700 cm–1 at 384°K [21].
[21] D. E. Burch, Continuum absorption by H2 O. Report AFGL_TR_81_0300 (1982), 46 pp.
1982
Burch D.E. , Continuum absorption by atmospheric H2 O, Report AFGL-TR-81-0300, by Ford Aeronutronic to Air Force Geophys. Lab., Hanscom AFB, Unknown, 1982 , Pages 46.
H2 O
T=384 К
P=∅
2. Experimental points (384K, 2400-2829cm⁻¹)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Spectral plots of C0 s for H2 O at 384°K.
2012
Klimeshina T.E., Bogdanova Yu.V., Rodimova O.B. , Water vapor continuum absorption in the 8–12 and 3–5 μm atmospheric transparency windows, Atmospheric and Oceanic Optics, 2012 , Volume 24 , Pages 71-76.
H2 O
T=428 К
P=1 атм
2. D.E. Burch (1982). Absorption coefficient (2400–2700 cm–1, 428K)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Absorption coefficient in an interval of 2400–2700 cm–1 at 428°K [21].
[21] D. E. Burch, Continuum absorption by H2 O. Report AFGL_TR_81_0300 (1982), 46 pp.
1982
Burch D.E. , Continuum absorption by atmospheric H2 O, Report AFGL-TR-81-0300, by Ford Aeronutronic to Air Force Geophys. Lab., Hanscom AFB, Unknown, 1982 , Pages 46.
H2 O
T=428 К
P=∅
2. Experimental points (428K, 2400-2829cm⁻¹)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Spectral plots of C0 s for H2 O at 428°K.
2012
Klimeshina T.E., Bogdanova Yu.V., Rodimova O.B. , Water vapor continuum absorption in the 8–12 and 3–5 μm atmospheric transparency windows, Atmospheric and Oceanic Optics, 2012 , Volume 24 , Pages 71-76.
H2 O
T=296 К
P=1 атм
2. D.E. Burch, et al. (1984). Absorption coefficient (2400–2700 cm–1, 296K)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Absorption coefficient in an interval of 2400–2700 cm–1 at 296°K [20].
[20] D.E. Burch and R. L. Alt, Continuum absorption by H2 O in the 700–1200 cm–1 and 2400–2800 cm–1 windows. Report AFGL_TR_84_0128 (1984), 31 pp.
1984
Burch D.E., Alt R.L. , Continuum absorption by H2 O in the 700 - 1200 cm-1 and 2400 - 2800 cm-1 windows, Report AFGL-TR-84-0128 by Ford Aerospace and Communications Corporation, Aeronutronic Division to AFGL, United States Air Force, Hanscom AFB, Unknown, 1984 , Pages 31.
H2 O
T=296 К
P=∅
6. Experiment (296K, 2400-2640cm⁻¹)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Self-broadening coefficients between 2400 and 2640 cm-1 for 296°K.
2012
Klimeshina T.E., Bogdanova Yu.V., Rodimova O.B. , Water vapor continuum absorption in the 8–12 and 3–5 μm atmospheric transparency windows, Atmospheric and Oceanic Optics, 2012 , Volume 24 , Pages 71-76.
H2 O
T=328 К
P=1 атм
2. D.E. Burch, et al. (1984). Absorption coefficient (2400–2700 cm–1, 328K)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Absorption coefficient in an interval of 2400–2700 cm–1 at 328°K [20].
[20] D.E. Burch and R. L. Alt, Continuum absorption by H2 O in the 700–1200 cm–1 and 2400–2800 cm–1 windows. Report AFGL_TR_84_0128 (1984), 31 pp.
1984
Burch D.E., Alt R.L. , Continuum absorption by H2 O in the 700 - 1200 cm-1 and 2400 - 2800 cm-1 windows, Report AFGL-TR-84-0128 by Ford Aerospace and Communications Corporation, Aeronutronic Division to AFGL, United States Air Force, Hanscom AFB, Unknown, 1984 , Pages 31.
H2 O
T=328 К
P=∅
6. Experiment (328K, 2400-2640cm⁻¹)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Self-broadening coefficients between 2400 and 2640 cm-1 for 328°K.
2013
Климешина Т.Е., Родимова О.Б. , Изменение контура линии в крыле от полосы к полосе в случае Н2 О и СО2 , Оптика атмосферы и океана, 2013 , Volume 26 , Number 1, Pages 18-23.
H2 O
T=296 К
P=∅
2. Ptashnik I.V., et al. (2011). H2O 2-2.5 mkm band. T=296 K
Смещение от центра линии (см⁻¹)
χ-функция
Спектральная зависимость отклонения от лорентцевского контура для 2-2.5 μm полосы Н2 О, (самоуширение, Т=296 К). Экспериментальные данные для интервала 2-2.5 мкм взяты из [11],
Spectral dependence of the deviation from the Lorentz contour for three H2 O 2-2.5 μm band (self-broadening, T = 296 K). Experimental data for the intervals of 2-2.5 microns were taken from [11].
[11] Ptashnik I.V., McPheat R.A., Shine K.P., Smith K.M., Williams R.G. Water vapor self-continuum absorption in near-infrared windows derived from laboratory experiments // J. Geophys. Res. D. 2011. V. 116. 16305. 16 p.
2011
Ptashnik I.V., McPheat R.A., Shine K.P., Smith K.M., Williams R.G. , Water vapor self-continuum absorption in near-infrared windows derived from laboratory experiments, Journal of Geophysical Research, 2011 , Volume D116 , Pages 16305.
1000/Т (К⁻¹) Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹) Коэффициент поглощения (см²мол⁻¹атм⁻¹)
2013
Климешина Т.Е., Родимова О.Б. , Изменение контура линии в крыле от полосы к полосе в случае Н2 О и СО2 , Оптика атмосферы и океана, 2013 , Volume 26 , Number 1, Pages 18-23.
H2 O
T=296 К
P=∅
2. Ptashnik I.V., et al. (2011). H2O 3-5 mkm band. T=296 K
Смещение от центра линии (см⁻¹)
χ-функция
Спектральная зависимость отклонения от лорентцевского контура для 3 - 5 μm полосы Н2 О, (самоуширение, Т=296 К). Экспериментальные данные для интервалов 3-5 взяты из [11].
Spectral dependence of the deviation from the Lorentz contour for three H2 O 3 - 5 μm band (self-broadening, T = 296 K). Experimental data for the intervals of 3-5 microns were taken from [11].
[11] Ptashnik I.V., McPheat R.A., Shine K.P., Smith K.M., Williams R.G. Water vapor self-continuum absorption in near-infrared windows derived from laboratory experiments // J. Geophys. Res. D. 2011. V. 116. 16305. 16 p.
2011
Ptashnik I.V., McPheat R.A., Shine K.P., Smith K.M., Williams R.G. , Water vapor self-continuum absorption in near-infrared windows derived from laboratory experiments, Journal of Geophysical Research, 2011 , Volume D116 , Pages 16305.
1000/Т (К⁻¹) Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹) Коэффициент поглощения (см²мол⁻¹атм⁻¹)
2013
Климешина Т.Е., Родимова О.Б. , Изменение контура линии в крыле от полосы к полосе в случае Н2 О и СО2 , Оптика атмосферы и океана, 2013 , Volume 26 , Number 1, Pages 18-23.
H2 O
T=∅
P=∅
3. Burch D.E., et al. (1974, 1984) (300-1200 cm⁻¹)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Континуальное поглощение водяного пара в интервале 50-6000 см-1 . Кружками показаны экспериментальные данные [12,13] в области 500-1100 см-1 .
[12] Burch D.E., Gryvnak D.A., Gates F.J. Continuum absorption by H2 O between 330 and 825 cm–1 . Final Report for Period 16 October 1973–30 September 1974. Aeronutronic Division. Philco Ford Corporation, AFCRL-TR-74-0377 (September 1974).
[13] Burch D.E., Alt R.L. Continuum absorption by H2 O in the 700–1200 cm–1 and 2400–2800 cm–1 windows. Report AFGL-TR-84-0128 by Ford Aerospace and Communications Corporation, Aeronutronic Division to AFGL. United States Air Force. Hanscom AFB, Massachusetts 01731 (1984). 31 p.
1984
Burch D.E., Alt R.L. , Continuum absorption by H2 O in the 700 - 1200 cm-1 and 2400 - 2800 cm-1 windows, Report AFGL-TR-84-0128 by Ford Aerospace and Communications Corporation, Aeronutronic Division to AFGL, United States Air Force, Hanscom AFB, Unknown, 1984 , Pages 31.
H2 O
T=296 К
P=∅
1. Our experimental results (296K, 700-1100cm⁻¹)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Self-broadening coefficient from 700 cm-1 to 1100 cm-1 at 296°K.
2013
Климешина Т.Е., Родимова О.Б. , Изменение контура линии в крыле от полосы к полосе в случае Н2 О и СО2 , Оптика атмосферы и океана, 2013 , Volume 26 , Number 1, Pages 18-23.
H2 O
T=∅
P=∅
3. Ptashnik I.V., et al. (2011). (2000-6000 cm⁻¹)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Континуальное поглощение водяного пара в интервале 50-6000 см-1 . Кружками показаны экспериментальные данные [11] в области более 2000 см-1 .
[11] Ptashnik I.V., McPheat R.A., Shine K.P., Smith K.M., Williams R.G. Water vapor self-continuum absorption in near-infrared windows derived from laboratory experiments // J. Geophys. Res. D. 2011. V. 116. 16305. 16 p.
2011
Ptashnik I.V., McPheat R.A., Shine K.P., Smith K.M., Williams R.G. , Water vapor self-continuum absorption in near-infrared windows derived from laboratory experiments, Journal of Geophysical Research, 2011 , Volume D116 , Pages 16305.
H2 O
T=293 К
P=0.0150999 атм
1. CAVIAR (293K, 1600-5800 cm⁻¹)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
2013
D. Mondelain, A.Aradj, S.Kassi, A.Campargue , The water vapour self-continuum by CRDS at room temperature in the 1.6 μm transparency window, Journal of Quantitative Spectroscopy and Radiative Transfer, 2013 , Volume 130 , Pages 381-391.
H2 O
T=296 К
P=1 атм
10. Bicknell et al. (2006)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Spectral dependence of the self-continuum cross-section, Cs , at room temperature derived from Bicknell et al. [18].
[18] Bicknell W.E., Cecca S.D., Griffin M.K. Search for low-absorption regions in the 1.6- and 2.1-μm atmospheric windows. J Directed Energy 2006; 2:151–61.
2006
Bicknell W.E., Cecca S.D., Griffin M.K., S. D. Swartz, and A. Flusberg , Search for low-absorption regions in the 1.6-and 2.1-μm atmospheric windows, Journal of Directed Energy, 2006 , Volume 2 , Pages 151–161.
H2 O
T=∅
P=∅
7. Measurement
Длина волны (мкм)
Коэффициент поглощения (Км⁻¹)
1.6-μm H2 O vapor measurement
2013
D. Mondelain, A.Aradj, S.Kassi, A.Campargue , The water vapour self-continuum by CRDS at room temperature in the 1.6 μm transparency window, Journal of Quantitative Spectroscopy and Radiative Transfer, 2013 , Volume 130 , Pages 381-391.
H2 O
T=289 К
P=∅
10. Ptashnik et al. (2013, 289K, 5800-6600 cm⁻¹)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Spectral dependence of the self-continuum cross-section, Cs , at room temperature measured by Ptashnik et al. [19].
[19] Ptashnik I.V., Petrova T.M., Ponomarev Y.N., Shine K.P., Solodov A.A., Solodov A.M. Near-infrared water vapour self-continuum at close to room temperature. J Quant Spectrosc Radiat Transfer 2013;120:23–35.
2013
I.V. Ptashnik, T.M. Petrova, Yu.N. Ponomarev, K.P. Shine, A.A. Solodov, A.M. Solodov
, Near-infrared water vapour self-continuum at close to room temperature , Journal of Quantitative Spectroscopy and Radiative Transfer, 2013 , Volume 120 , Pages 23-35.
H2 O
T=289 К
P=1 атм
1. The total error of the retrieval Cs + DCs
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
The total error of the retrieval, including experimental errors and uncertainty in spectral line parameters, is presented by ΔCs
2013
T.E. Klimeshina, O.B. Rodimova , Temperature dependence of the water vapor continuum absorption in the 3–5 μm spectral region, Journal of Quantitative Spectroscopy and Radiative Transfer, 2013 , Volume 119 , Pages 77-83.
H2 O
T=338 К
P=1 атм
2. Burch D.E., (1982). (338K, 2400-2650 cm⁻¹)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Water vapor self-continuum in the 2400–2700cm-1 region at different temperatures. T=338°K.
[27] Burch DE. Continuum absorption by H2 O. Report AFGL-TR-81-0300 ;1982.
1982
Burch D.E. , Continuum absorption by atmospheric H2 O, Report AFGL-TR-81-0300, by Ford Aeronutronic to Air Force Geophys. Lab., Hanscom AFB, Unknown, 1982 , Pages 46.
H2 O
T=338 К
P=∅
2. Experimental points (338K, 2400-2829cm⁻¹)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Spectral plots of C0 s for H2 O at 338K.
2013
T.E. Klimeshina, O.B. Rodimova , Temperature dependence of the water vapor continuum absorption in the 3–5 μm spectral region, Journal of Quantitative Spectroscopy and Radiative Transfer, 2013 , Volume 119 , Pages 77-83.
H2 O
T=428 К
P=1 атм
2. Burch D.E., (1982). (428K, 2400-2700 cm⁻¹)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Water vapor self-continuum in the 2400–2700 cm-1 region at different temperatures. Points are the measured data: 428°K
[27] Burch DE. Continuum absorption by H2 O. Report AFGL-TR-81-0300 ;1982.
1982
Burch D.E. , Continuum absorption by atmospheric H2 O, Report AFGL-TR-81-0300, by Ford Aeronutronic to Air Force Geophys. Lab., Hanscom AFB, Unknown, 1982 , Pages 46.
H2 O
T=428 К
P=∅
2. Experimental points (428K, 2400-2829cm⁻¹)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Spectral plots of C0 s for H2 O at 428°K.
2013
T.E. Klimeshina, O.B. Rodimova , Temperature dependence of the water vapor continuum absorption in the 3–5 μm spectral region, Journal of Quantitative Spectroscopy and Radiative Transfer, 2013 , Volume 119 , Pages 77-83.
H2 O
T=384 К
P=1 атм
2. Burch D.E., (1984). (384K, 2400-2700 cm⁻¹)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Water vapor self-continuum in the 2400–2700cm-1 region at different temperatures. Points are the measured data: T=384°K.
[6] Burch DE, Alt RL.Continuum absorption by H2 O in the 700– 1200 cm-1 and 2400–2800cm-1 windows. Report AFGL-TR-84- 0128 ;1984.
1982
Burch D.E. , Continuum absorption by atmospheric H2 O, Report AFGL-TR-81-0300, by Ford Aeronutronic to Air Force Geophys. Lab., Hanscom AFB, Unknown, 1982 , Pages 46.
H2 O
T=384 К
P=∅
2. Experimental points (384K, 2400-2829cm⁻¹)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Spectral plots of C0 s for H2 O at 384°K.
2013
T.E. Klimeshina, O.B. Rodimova , Temperature dependence of the water vapor continuum absorption in the 3–5 μm spectral region, Journal of Quantitative Spectroscopy and Radiative Transfer, 2013 , Volume 119 , Pages 77-83.
H2 O
T=296 К
P=1 атм
2. Burch D.E., et al. (1984). (296K, 2400-2650 cm⁻¹)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Water vapor self-continuum in the 2400–2700cm-1 region at different temperatures. Points are the measured data: 296°K.
[6] Burch DE, Alt RL.Continuum absorption by H2 O in the 700– 1200 cm-1 and 2400–2800cm-1 windows. Report AFGL-TR-84- 0128 ;1984.
1984
Burch D.E., Alt R.L. , Continuum absorption by H2 O in the 700 - 1200 cm-1 and 2400 - 2800 cm-1 windows, Report AFGL-TR-84-0128 by Ford Aerospace and Communications Corporation, Aeronutronic Division to AFGL, United States Air Force, Hanscom AFB, Unknown, 1984 , Pages 31.
H2 O
T=296 К
P=∅
6. Experiment (296K, 2400-2640cm⁻¹)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Self-broadening coefficients between 2400 and 2640 cm-1 for 296°K.
2013
T.E. Klimeshina, O.B. Rodimova , Temperature dependence of the water vapor continuum absorption in the 3–5 μm spectral region, Journal of Quantitative Spectroscopy and Radiative Transfer, 2013 , Volume 119 , Pages 77-83.
H2 O
T=∅
P=∅
2. Burch D.E., et al. (1984). (328K, 2400-2650 cm⁻¹)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Water vapor self-continuum in the 2400–2700cm-1 region at different temperatures. T=328°K [6].
[6] Burch DE, Alt RL.Continuum absorption by H2 O in the 700– 1200 cm-1 and 2400–2800cm-1 windows. Report AFGL-TR-84- 0128 ;1984.
1984
Burch D.E., Alt R.L. , Continuum absorption by H2 O in the 700 - 1200 cm-1 and 2400 - 2800 cm-1 windows, Report AFGL-TR-84-0128 by Ford Aerospace and Communications Corporation, Aeronutronic Division to AFGL, United States Air Force, Hanscom AFB, Unknown, 1984 , Pages 31.
H2 O
T=328 К
P=∅
6. Experiment (328K, 2400-2640cm⁻¹)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Self-broadening coefficients between 2400 and 2640 cm-1 for 328°K.
2013
T.E. Klimeshina, O.B. Rodimova , Temperature dependence of the water vapor continuum absorption in the 3–5 μm spectral region, Journal of Quantitative Spectroscopy and Radiative Transfer, 2013 , Volume 119 , Pages 77-83.
H2 O
T=296 К
P=1 атм
2. Klimeshina T.E., et al. (2011). (296K, 2400-2700 cm⁻¹)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Water vapor self-continuum in the 2400–2700cm-1 region at different temperatures. 296°K. The curves present calculations [22].
[22] Klimeshina T.E., Bogdanova Yu.V., Rodimova O.B. Water vapor continuum absorption in the 8–12 and 3–5 μm atmospheric transparency windows. Atmos Ocean Optics 2011; 24:765–9
2012
Klimeshina T.E., Bogdanova Yu.V., Rodimova O.B. , Water vapor continuum absorption in the 8–12 and 3–5 μm atmospheric transparency windows, Atmospheric and Oceanic Optics, 2012 , Volume 24 , Pages 71-76.
H2 O
T=296 К
P=1 атм
2. Absorption coefficient (2400–2700 cm–1, 296K)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Absorption coefficient in an interval of 2400–2700 cm–1 at 296°K. Original calculation.
2013
T.E. Klimeshina, O.B. Rodimova , Temperature dependence of the water vapor continuum absorption in the 3–5 μm spectral region, Journal of Quantitative Spectroscopy and Radiative Transfer, 2013 , Volume 119 , Pages 77-83.
H2 O
T=328 К
P=1 атм
2. Klimeshina T.E., et al. (2011). (328K, 2400-2700 cm⁻¹)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Water vapor self-continuum in the 2400–2700cm-1 region at different temperatures. 328°K. The curves present calculations [22].
[22] Klimeshina T.E., Bogdanova Yu.V., Rodimova O.B. Water vapor continuum absorption in the 8–12 and 3–5 μm atmospheric transparency windows. Atmos Ocean Optics 2011; 24:765–9
2012
Klimeshina T.E., Bogdanova Yu.V., Rodimova O.B. , Water vapor continuum absorption in the 8–12 and 3–5 μm atmospheric transparency windows, Atmospheric and Oceanic Optics, 2012 , Volume 24 , Pages 71-76.
H2 O
T=328 К
P=1 атм
2. Absorption coefficient (2400–2700 cm–1, 328K)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Absorption coefficient in an interval of 2400–2700 cm–1 at 328°K. Original calculation.
2013
T.E. Klimeshina, O.B. Rodimova , Temperature dependence of the water vapor continuum absorption in the 3–5 μm spectral region, Journal of Quantitative Spectroscopy and Radiative Transfer, 2013 , Volume 119 , Pages 77-83.
H2 O
T=338 К
P=1 атм
2. Klimeshina T.E., et al. (2011). (338K, 2400-2700 cm⁻¹)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Water vapor self-continuum in the 2400–2700cm-1 region at different temperatures. Points are the measured data: T=338°K. The curve present calculations [22].
[22] Klimeshina TE, Bogdanova V, Rodimova OB. Water vapor continuum absorption in the 8–12 and 3–5 μm atmospheric transparency windows. Atmos Ocean Optics 2011; 24:765–9
2012
Klimeshina T.E., Bogdanova Yu.V., Rodimova O.B. , Water vapor continuum absorption in the 8–12 and 3–5 μm atmospheric transparency windows, Atmospheric and Oceanic Optics, 2012 , Volume 24 , Pages 71-76.
H2 O
T=328 К
P=1 атм
2. Absorption coefficient (2400–2700 cm–1, 328K)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Absorption coefficient in an interval of 2400–2700 cm–1 at 328°K. Original calculation.
2013
T.E. Klimeshina, O.B. Rodimova , Temperature dependence of the water vapor continuum absorption in the 3–5 μm spectral region, Journal of Quantitative Spectroscopy and Radiative Transfer, 2013 , Volume 119 , Pages 77-83.
H2 O
T=384 К
P=1 атм
2. Klimeshina T.E., et al. (2011). (384K, 2400-2700 cm⁻¹)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Water vapor self-continuum in the 2400–2700cm-1 region at different temperatures. Points are the measured data: T=384°K. The curve presents calculations [22].
[22] Klimeshina TE, Bogdanova V, Rodimova OB. Water vapor continuum absorption in the 8–12 and 3–5 μm atmospheric transparency windows. Atmos Ocean Optics 2011; 24:765–9
2012
Klimeshina T.E., Bogdanova Yu.V., Rodimova O.B. , Water vapor continuum absorption in the 8–12 and 3–5 μm atmospheric transparency windows, Atmospheric and Oceanic Optics, 2012 , Volume 24 , Pages 71-76.
H2 O
T=384 К
P=1 атм
2. Absorption coefficient (2400–2700 cm–1, 384K)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Absorption coefficient in an interval of 2400–2700 cm–1 at 384°K. Original calculation.
2013
T.E. Klimeshina, O.B. Rodimova , Temperature dependence of the water vapor continuum absorption in the 3–5 μm spectral region, Journal of Quantitative Spectroscopy and Radiative Transfer, 2013 , Volume 119 , Pages 77-83.
H2 O
T=428 К
P=1 атм
2. Klimeshina T.E., et al. (2011). (428K, 2400-2700 cm⁻¹)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Water vapor self-continuum in the 2400–2700cm-1 region at different temperatures. Points are the measured data: 428°K [27]. The curves present calculations [22].
[22] Klimeshina T.E., Bogdanova Yu.V., Rodimova OB. Water vapor continuum absorption in the 8–12 and 3–5 μm atmospheric transparency windows. Atmos Ocean Optics 2011; 24:765–9.
2012
Klimeshina T.E., Bogdanova Yu.V., Rodimova O.B. , Water vapor continuum absorption in the 8–12 and 3–5 μm atmospheric transparency windows, Atmospheric and Oceanic Optics, 2012 , Volume 24 , Pages 71-76.
H2 O
T=428 К
P=1 атм
2. Absorption coefficient (2400–2700 cm–1, 428K)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Absorption coefficient in an interval of 2400–2700 cm–1 at 428°K. Original calculation.
2013
T.E. Klimeshina, O.B. Rodimova , Temperature dependence of the water vapor continuum absorption in the 3–5 μm spectral region, Journal of Quantitative Spectroscopy and Radiative Transfer, 2013 , Volume 119 , Pages 77-83.
H2 O
T=350 К
P=1 атм
6. Lower error bound (350K, 2000-3500 cm⁻¹)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Temperature dependence of the water vapor self-continuum in the 2000–3500cm-1 spectral region. Dashed line indicates the accuracy of the experiment.
[8] Ptashnik I.V., McPheat R.A., Shine K.P., Smith K.M., Williams R.G. Water vapor self-continuum absorption in near-infrared windows derived from laboratory experiments. J Geophys Res 2011;116:D16305.
2011
Ptashnik I.V., McPheat R.A., Shine K.P., Smith K.M., Williams R.G. , Water vapor self-continuum absorption in near-infrared windows derived from laboratory experiments, Journal of Geophysical Research, 2011 , Volume D116 , Pages 16305.
H2 O
T=350 К
P=∅
7. CAVIAR (350K)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
2013
T.E. Klimeshina, O.B. Rodimova , Temperature dependence of the water vapor continuum absorption in the 3–5 μm spectral region, Journal of Quantitative Spectroscopy and Radiative Transfer, 2013 , Volume 119 , Pages 77-83.
H2 O
T=293 К
P=1 атм
6. Ptashnik I.V., et al. (2011) (293K, 2000-3500 cm⁻¹)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Temperature dependence of the water vapor self-continuum in the 2000–3500cm-1 spectral region. Points are the experimental data [8], grey color indicates the accuracy of the experiment and black curves are the present calculation.
[8] Ptashnik I.V., McPheat R.A., Shine K.P., Smith K.M., Williams R.G. Water vapor self-continuum absorption in near-infrared windows derived from laboratory experiments. J Geophys Res 2011;116:D16305
2011
Ptashnik I.V., McPheat R.A., Shine K.P., Smith K.M., Williams R.G. , Water vapor self-continuum absorption in near-infrared windows derived from laboratory experiments, Journal of Geophysical Research, 2011 , Volume D116 , Pages 16305.
H2 O
T=293 К
P=0.0150999 атм
1. CAVIAR (293K, 1600-5800 cm⁻¹)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
2013
T.E. Klimeshina, O.B. Rodimova , Temperature dependence of the water vapor continuum absorption in the 3–5 μm spectral region, Journal of Quantitative Spectroscopy and Radiative Transfer, 2013 , Volume 119 , Pages 77-83.
H2 O
T=350 К
P=1 атм
6. Ptashnik I.V., et al. (2011) (350K, 2000-3500 cm⁻¹)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Temperature dependence of the water vapor self-continuum in the 2000–3500cm-1 spectral region. Points are the experimental data [8], grey color indicates the accuracy of the experiment and black curves are the present calculation.
[8] Ptashnik IV, McPheat RA, Shine KP, Smith KM, Williams RG. Water vapor self-continuum absorption in near-infrared windows derived from laboratory experiments. J Geophys Res 2011;116:D16305
2011
Ptashnik I.V., McPheat R.A., Shine K.P., Smith K.M., Williams R.G. , Water vapor self-continuum absorption in near-infrared windows derived from laboratory experiments, Journal of Geophysical Research, 2011 , Volume D116 , Pages 16305.
H2 O
T=350 К
P=∅
7. CAVIAR (350K)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
2013
T.E. Klimeshina, O.B. Rodimova , Temperature dependence of the water vapor continuum absorption in the 3–5 μm spectral region, Journal of Quantitative Spectroscopy and Radiative Transfer, 2013 , Volume 119 , Pages 77-83.
H2 O
T=472 К
P=1 атм
6. Ptashnik I.V., et al. (2011) (472K, 2000-3500 cm⁻¹)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Temperature dependence of the water vapor self-continuum in the 2000–3500cm-1 spectral region. Points are the experimental data [8].
[8] Ptashnik I.V., McPheat R.A., Shine K.P., Smith K.M., Williams R.G. Water vapor self-continuum absorption in near-infrared windows derived from laboratory experiments. J Geophys Res 2011;116:D16305.
2011
Ptashnik I.V., McPheat R.A., Shine K.P., Smith K.M., Williams R.G. , Water vapor self-continuum absorption in near-infrared windows derived from laboratory experiments, Journal of Geophysical Research, 2011 , Volume D116 , Pages 16305.
H2 O
T=472 К
P=∅
7. CAVIAR (472K)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
2013
T.E. Klimeshina, O.B. Rodimova , Temperature dependence of the water vapor continuum absorption in the 3–5 μm spectral region, Journal of Quantitative Spectroscopy and Radiative Transfer, 2013 , Volume 119 , Pages 77-83.
H2 O
T=472 К
P=1 атм
6. Ptashnik I.V., et al. (2011). Upper error bound (472K, 2000-3500 cm⁻¹)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Temperature dependence of the water vapor self-continuum in the 2000–3500cm-1 spectral region. Dashed line indicates the accuracy of the experiment.
[8] Ptashnik I.V., McPheat R.A., Shine K.P., Smith K.M., Williams R.G. Water vapor self-continuum absorption in near-infrared windows derived from laboratory experiments. J Geophys Res 2011;116:D16305.
2011
Ptashnik I.V., McPheat R.A., Shine K.P., Smith K.M., Williams R.G. , Water vapor self-continuum absorption in near-infrared windows derived from laboratory experiments, Journal of Geophysical Research, 2011 , Volume D116 , Pages 16305.
1000/Т (К⁻¹) Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹) Коэффициент поглощения (см²мол⁻¹атм⁻¹)
2013
T.E. Klimeshina, O.B. Rodimova , Temperature dependence of the water vapor continuum absorption in the 3–5 μm spectral region, Journal of Quantitative Spectroscopy and Radiative Transfer, 2013 , Volume 119 , Pages 77-83.
H2 O
T=325.5 К
P=1 атм
7. Baranov I., et al. (2011). (325.5K, 2000-3500 cm⁻¹)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Temperature dependence of the water vapor self-continuum in the 2000–3500 cm-1 spectral region. Points are the experimental data [10].
[10] Baranov I., Lafferty W.J. The water-vapor continuum and selective absorption in the 3–5 mm spectral region at temperatures from 311° to 363°K. J Quant Spectrosc Radiat Transfer 2011;112:1304–13.
2011
Yu.I. Baranov, W.J. Lafferty , The water-vapor continuum and selective absorption in the 3–5 μm spectral region at temperatures from 311 to 363 K, Journal of Quantitative Spectroscopy and Radiative Transfer, 2011 , Volume 112 , Issue 8, Pages 1304-1313.
H2 O
T=325.5 К
P=∅
5. NIST (325.5K)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Water-vapor self-broadened continuum at temperature: 325.5K.
2013
T.E. Klimeshina, O.B. Rodimova , Temperature dependence of the water vapor continuum absorption in the 3–5 μm spectral region, Journal of Quantitative Spectroscopy and Radiative Transfer, 2013 , Volume 119 , Pages 77-83.
H2 O
T=363.3 К
P=1 атм
7. Baranov I., et al. (2011). (363.3K, 2000-3500 cm⁻¹)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Temperature dependence of the water vapor self-continuum in the 2000–3500 cm-1 spectral region. Points are the experimental data [10].
[10] Baranov I., Lafferty W.J. The water-vapor continuum and selective absorption in the 3–5 mm spectral region at temperatures from 311° to 363°K. J Quant Spectrosc Radiat Transfer 2011;112:1304–13.
2011
Yu.I. Baranov, W.J. Lafferty , The water-vapor continuum and selective absorption in the 3–5 μm spectral region at temperatures from 311 to 363 K, Journal of Quantitative Spectroscopy and Radiative Transfer, 2011 , Volume 112 , Issue 8, Pages 1304-1313.
H2 O
T=∅
P=∅
5. This work (T=357K)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Water-vapor self-broadened continuum.
2013
T.E. Klimeshina, O.B. Rodimova , Temperature dependence of the water vapor continuum absorption in the 3–5 μm spectral region, Journal of Quantitative Spectroscopy and Radiative Transfer, 2013 , Volume 119 , Pages 77-83.
H2 O
T=310.9 К
P=1 атм
7. Baranov I., et al. (2011). Lower error bound (310.9K, 2000-3500 cm⁻¹)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Temperature dependence of the water vapor self-continuum in the 2000–3500 cm-1 spectral region. Dashed line indicates the experimental accuracy.
[10] Baranov I., Lafferty W.J. The water-vapor continuum and selective absorption in the 3–5 mm spectral region at temperatures from 311° to 363°K. J Quant Spectrosc Radiat Transfer 2011;112:1304–13.
2011
Yu.I. Baranov, W.J. Lafferty , The water-vapor continuum and selective absorption in the 3–5 μm spectral region at temperatures from 311 to 363 K, Journal of Quantitative Spectroscopy and Radiative Transfer, 2011 , Volume 112 , Issue 8, Pages 1304-1313.
H2 O
T=310.9 К
P=∅
5. NIST (310.9K)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Water-vapor self-broadened continuum at temperature:310.9K.
2013
T.E. Klimeshina, O.B. Rodimova , Temperature dependence of the water vapor continuum absorption in the 3–5 μm spectral region, Journal of Quantitative Spectroscopy and Radiative Transfer, 2013 , Volume 119 , Pages 77-83.
H2 O
T=325.5 К
P=1 атм
7. Baranov I., et al. (2011). Lower error bound (325.5K, 2000-3500 cm⁻¹)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Temperature dependence of the water vapor self-continuum in the 2000–3500 cm-1 spectral region. Dotted curve indicates the experimental accuracy.
[10] Baranov I., Lafferty W.J. The water-vapor continuum and selective absorption in the 3–5 mm spectral region at temperatures from 311° to 363°K. J Quant Spectrosc Radiat Transfer 2011;112:1304–13.
2011
Yu.I. Baranov, W.J. Lafferty , The water-vapor continuum and selective absorption in the 3–5 μm spectral region at temperatures from 311 to 363 K, Journal of Quantitative Spectroscopy and Radiative Transfer, 2011 , Volume 112 , Issue 8, Pages 1304-1313.
H2 O
T=325.5 К
P=∅
5. NIST (325.5K)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Water-vapor self-broadened continuum at temperature: 325.5K.
2013
T.E. Klimeshina, O.B. Rodimova , Temperature dependence of the water vapor continuum absorption in the 3–5 μm spectral region, Journal of Quantitative Spectroscopy and Radiative Transfer, 2013 , Volume 119 , Pages 77-83.
H2 O
T=363.3 К
P=1 атм
7. Baranov I., et al. (2011). Lower error bound (363.3K, 2000-3500 cm⁻¹)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Temperature dependence of the water vapor self-continuum in the 2000–3500 cm-1 spectral region. Points are the experimental data [10], grey color indicates the experimental accuracy, and black curves are the present calculation.
[10] Baranov I., Lafferty W.J. The water-vapor continuum and selective absorption in the 3–5 mm spectral region at temperatures from 311° to 363°K. J Quant Spectrosc Radiat Transfer 2011;112:1304–13.
2011
Yu.I. Baranov, W.J. Lafferty , The water-vapor continuum and selective absorption in the 3–5 μm spectral region at temperatures from 311 to 363 K, Journal of Quantitative Spectroscopy and Radiative Transfer, 2011 , Volume 112 , Issue 8, Pages 1304-1313.
H2 O
T=∅
P=∅
5. This work (T=357K)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Water-vapor self-broadened continuum.
2013
T.E. Klimeshina, O.B. Rodimova , Temperature dependence of the water vapor continuum absorption in the 3–5 μm spectral region, Journal of Quantitative Spectroscopy and Radiative Transfer, 2013 , Volume 119 , Pages 77-83.
H2 O
T=∅
P=∅
8. Baranov Yu.I., et al. (2008). (1000 cm⁻¹)
1000/Т (К⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Temperature dependence of the water vapor self-continuum in the 2000–3500 cm-1 spectral region. Points are the experimental data [10], grey color indicates the experimental accuracy, and black curves are the present calculation.
[5] Baranov Yu.I., Lafferty W.J., Ma Q., Tipping R.H. Water-vapor continuum absorption in the 800–1250 cm-1 spectral region at temperatures from 311° to 363°K. J Quant Spectrosc Radiat Transfer 2008;109: 2291–302.
2008
Yu.I. Baranov, W.J. Lafferty, Q. Ma and R.H. Tipping , Water-vapor continuum absorption in the 800-1250 cm-1 spectral region at temperatures from 311 to 363 K, Journal of Quantitative Spectroscopy and Radiation Transfer, 2008 , Volume 109 , Issue 12, Pages 2291-2302.
H2 O
T=∅
P=∅
9. NIST, (2006)
Температура (К)
Коэффициент поглощения (см²мол⁻¹)
The water-vapor continuum absorption coefficient at 1203 cm-1 over the temperature range 290–480°K.
2013
T.E. Klimeshina, O.B. Rodimova , Temperature dependence of the water vapor continuum absorption in the 3–5 μm spectral region, Journal of Quantitative Spectroscopy and Radiative Transfer, 2013 , Volume 119 , Pages 77-83.
H2 O
T=∅
P=∅
8. Baranov Yu.I., et al. (2008). (1100 cm⁻¹)
1000/Т (К⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Fig. 8. Temperature dependence of the water vapor self-continuum. The 8–12 μm interval, for 900, 1000, and 1100 cm-1 . The 3–5 μm interval, for 2400, 2500, and 2600 cm-1 .
[5] Baranov Yu.I., Lafferty W.J., Ma Q., Tipping R.H. Water-vapor continuum absorption in the 800–1250 cm-1 spectral region at temperatures from 311° to 363°K. J Quant Spectrosc Radiat Transfer 2008;109: 2291–302.
2008
Yu.I. Baranov, W.J. Lafferty, Q. Ma and R.H. Tipping , Water-vapor continuum absorption in the 800-1250 cm-1 spectral region at temperatures from 311 to 363 K, Journal of Quantitative Spectroscopy and Radiation Transfer, 2008 , Volume 109 , Issue 12, Pages 2291-2302.
H2 O
T=∅
P=∅
9. NIST, (2006)
Температура (К)
Коэффициент поглощения (см²мол⁻¹)
The water-vapor continuum absorption coefficient at 1203 cm-1 over the temperature range 290–480°K.
2013
T.E. Klimeshina, O.B. Rodimova , Temperature dependence of the water vapor continuum absorption in the 3–5 μm spectral region, Journal of Quantitative Spectroscopy and Radiative Transfer, 2013 , Volume 119 , Pages 77-83.
H2 O
T=∅
P=∅
8. Baranov Yu.I., et al. (2008). (900 cm⁻¹)
1000/Т (К⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Temperature dependence of the water vapor self-continuum. The 8–12 μm interval, for 900 cm-1 .
[5] Baranov Yu.I., Lafferty W.J., Ma Q., Tipping R.H. Water-vapor continuum absorption in the 800–1250 cm-1 spectral region at temperatures from 311° to 363°K. J Quant Spectrosc Radiat Transfer 2008;109: 2291–302.
2008
Yu.I. Baranov, W.J. Lafferty, Q. Ma and R.H. Tipping , Water-vapor continuum absorption in the 800-1250 cm-1 spectral region at temperatures from 311 to 363 K, Journal of Quantitative Spectroscopy and Radiation Transfer, 2008 , Volume 109 , Issue 12, Pages 2291-2302.
H2 O
T=∅
P=∅
8. NIST 2006, (spectrometer, White cell)
Температура (К)
Коэффициент поглощения (см²мол⁻¹)
The 944.19 cm-1 water-vapor continuum absorption coefficient at different temperatures in which the values obtained by several laboratories are compared.
[23] NIST Chemistry WEB BOOK at www.webbook.nist.gov/chemistry/S.
2013
T.E. Klimeshina, O.B. Rodimova , Temperature dependence of the water vapor continuum absorption in the 3–5 μm spectral region, Journal of Quantitative Spectroscopy and Radiative Transfer, 2013 , Volume 119 , Pages 77-83.
H2 O
T=∅
P=∅
8. Bogdanova Yu.V, et al. (2010). (1000 cm⁻¹)
1000/Т (К⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Temperature dependence of the water vapor self-continuum in the 2000–3500 cm-1 spectral region. Points are the experimental data [10], grey color indicates the experimental accuracy, and black curves are the present calculation.
[14] Bogdanova Yu.V., Rodimova O.B. , Line shape in far wings and water vapor absorption in a broad temperature interval, Journal of Quantitative Spectroscopy and Radiative Transfer, 2010, Volume 111, Pages 2298–307, DOI: 10.1016/j.jqsrt.2010.05.005, https://doi.org/10.1016/j.jqsrt.2010.05.005.
2010
Bogdanova Yu.V., Rodimova O.B. , Line shape in far wings and water vapor absorption in a broad temperature interval, Journal of Quantitative Spectroscopy and Radiative Transfer, 2010 , Volume 111 , Pages 2298–307.
2013
T.E. Klimeshina, O.B. Rodimova , Temperature dependence of the water vapor continuum absorption in the 3–5 μm spectral region, Journal of Quantitative Spectroscopy and Radiative Transfer, 2013 , Volume 119 , Pages 77-83.
H2 O
T=∅
P=∅
8. Bogdanova Yu.V, et al. (2010). (1100 cm⁻¹)
1000/Т (К⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Temperature dependence of the water vapor self-continuum. The 8–12 μm interval, for 1100 cm-1 .
[14] Bogdanova Yu.V., Rodimova O.B. , Line shape in far wings and water vapor absorption in a broad temperature interval, Journal of Quantitative Spectroscopy and Radiative Transfer, 2010, Volume 111, Pages 2298–307, DOI: 10.1016/j.jqsrt.2010.05.005, https://doi.org/10.1016/j.jqsrt.2010.05.005.
2010
Bogdanova Yu.V., Rodimova O.B. , Line shape in far wings and water vapor absorption in a broad temperature interval, Journal of Quantitative Spectroscopy and Radiative Transfer, 2010 , Volume 111 , Pages 2298–307.
2013
T.E. Klimeshina, O.B. Rodimova , Temperature dependence of the water vapor continuum absorption in the 3–5 μm spectral region, Journal of Quantitative Spectroscopy and Radiative Transfer, 2013 , Volume 119 , Pages 77-83.
H2 O
T=∅
P=∅
8. Burch D.E., et al. (1982, 1984). (1000 cm⁻¹)
1000/Т (К⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Temperature dependence of the water vapor self-continuum in the 2000–3500 cm-1 spectral region. Points are the experimental data [10], grey color indicates the experimental accuracy, and black curves are the present calculation.
[[6] Burch D.E., Alt R.L.Continuum absorption by H2 O in the 700– 1200 cm-1 and 2400–2800cm-1 windows. Report AFGL-TR-84- 0128 ;1984.
[27] Burch D.E. Continuum absorption by H2 O. Report AFGL-TR-81-0300 ;1982.
1984
Burch D.E., Alt R.L. , Continuum absorption by H2 O in the 700 - 1200 cm-1 and 2400 - 2800 cm-1 windows, Report AFGL-TR-84-0128 by Ford Aerospace and Communications Corporation, Aeronutronic Division to AFGL, United States Air Force, Hanscom AFB, Unknown, 1984 , Pages 31.
H2 O
T=∅
P=∅
3. This work (1000 cm⁻¹)
1000/Т (К⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
2013
T.E. Klimeshina, O.B. Rodimova , Temperature dependence of the water vapor continuum absorption in the 3–5 μm spectral region, Journal of Quantitative Spectroscopy and Radiative Transfer, 2013 , Volume 119 , Pages 77-83.
H2 O
T=∅
P=∅
8. Burch D.E., et al. (1982, 1984). (1100 cm⁻¹)
1000/Т (К⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Temperature dependence of the water vapor self-continuum in the 2000–3500 cm-1 spectral region. Points are the experimental data [10], grey color indicates the experimental accuracy, and black curves are the present calculation.
[6] Burch D.E, Alt R.L.Continuum absorption by H2 O in the 700– 1200 cm-1 and 2400–2800cm-1 windows. Report AFGL-TR-84- 0128 ;1984.
[27] Burch D.E. Continuum absorption by H2 O. Report AFGL-TR-81-0300 ;1982.
1984
Burch D.E., Alt R.L. , Continuum absorption by H2 O in the 700 - 1200 cm-1 and 2400 - 2800 cm-1 windows, Report AFGL-TR-84-0128 by Ford Aerospace and Communications Corporation, Aeronutronic Division to AFGL, United States Air Force, Hanscom AFB, Unknown, 1984 , Pages 31.
H2 O
T=∅
P=∅
3. This work (1000 cm⁻¹)
1000/Т (К⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
2013
T.E. Klimeshina, O.B. Rodimova , Temperature dependence of the water vapor continuum absorption in the 3–5 μm spectral region, Journal of Quantitative Spectroscopy and Radiative Transfer, 2013 , Volume 119 , Pages 77-83.
H2 O
T=∅
P=∅
8. Burch D.E., et al. (1982, 1984). (2400 cm⁻¹)
1000/Т (К⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Temperature dependence of the water vapor self-continuum. The 3–5 μm interval, for 2400 cm-1 .
[6] Burch DE, Alt RL.Continuum absorption by H2 O in the 700– 1200 cm-1 and 2400–2800cm-1 windows. Report AFGL-TR-84- 0128 ;1984.
[27] Burch DE. Continuum absorption by H2 O. Report AFGL-TR-81-0300 ;1982.
1984
Burch D.E., Alt R.L. , Continuum absorption by H2 O in the 700 - 1200 cm-1 and 2400 - 2800 cm-1 windows, Report AFGL-TR-84-0128 by Ford Aerospace and Communications Corporation, Aeronutronic Division to AFGL, United States Air Force, Hanscom AFB, Unknown, 1984 , Pages 31.
H2 O
T=∅
P=∅
8. Wavenumber 2400 cm⁻¹. Temperature dependence. Approximation
1000/Т (К⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Plots of the self-broadening coefficients at 2400 cm-1 versus the reciprocal of temperature. Approximation,
2013
T.E. Klimeshina, O.B. Rodimova , Temperature dependence of the water vapor continuum absorption in the 3–5 μm spectral region, Journal of Quantitative Spectroscopy and Radiative Transfer, 2013 , Volume 119 , Pages 77-83.
H2 O
T=∅
P=∅
8. Burch D.E., et al. (1982, 1984). (2500 cm⁻¹)
1000/Т (К⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Temperature dependence of the water vapor self-continuum. The 3–5 μm interval, for 2500 cm-1 .
[6] Burch D.E., Alt R.L.Continuum absorption by H2 O in the 700– 1200 cm-1 and 2400–2800cm-1 windows. Report AFGL-TR-84- 0128 ;1984.
[27] Burch D.E. Continuum absorption by H2 O. Report AFGL-TR-81-0300 ;1982.
1984
Burch D.E., Alt R.L. , Continuum absorption by H2 O in the 700 - 1200 cm-1 and 2400 - 2800 cm-1 windows, Report AFGL-TR-84-0128 by Ford Aerospace and Communications Corporation, Aeronutronic Division to AFGL, United States Air Force, Hanscom AFB, Unknown, 1984 , Pages 31.
H2 O
T=∅
P=∅
8. Wavenumber 2500 cm⁻¹. Temperature dependence. Approximation
1000/Т (К⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Plots of the self-broadening coefficients at 2500 cm-1 versus the reciprocal of temperature. Approximation.
2013
T.E. Klimeshina, O.B. Rodimova , Temperature dependence of the water vapor continuum absorption in the 3–5 μm spectral region, Journal of Quantitative Spectroscopy and Radiative Transfer, 2013 , Volume 119 , Pages 77-83.
H2 O
T=∅
P=∅
8. Burch D.E., et al. (1982, 1984). (2600 cm⁻¹)
1000/Т (К⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Temperature dependence of the water vapor self-continuum. The 3–5 μm interval, for 2600 cm-1 .
[6] Burch D.E., Alt R.L.Continuum absorption by H2 O in the 700– 1200 cm-1 and 2400–2800 cm-1 windows. Report AFGL-TR-84- 0128 ;1984.
[27] Burch D.E. Continuum absorption by H2 O. Report AFGL-TR-81-0300 ;1982.
1984
Burch D.E., Alt R.L. , Continuum absorption by H2 O in the 700 - 1200 cm-1 and 2400 - 2800 cm-1 windows, Report AFGL-TR-84-0128 by Ford Aerospace and Communications Corporation, Aeronutronic Division to AFGL, United States Air Force, Hanscom AFB, Unknown, 1984 , Pages 31.
H2 O
T=∅
P=∅
8. Wavenumber 2600 cm⁻¹. Temperature dependence. Experiment
1000/Т (К⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Plots of the self-broadening coefficients at 2600 cm-1 versus the reciprocal of temperature. Experiment.
2013
T.E. Klimeshina, O.B. Rodimova , Temperature dependence of the water vapor continuum absorption in the 3–5 μm spectral region, Journal of Quantitative Spectroscopy and Radiative Transfer, 2013 , Volume 119 , Pages 77-83.
H2 O
T=∅
P=∅
8. Burch D.E., et al. (1982, 1984). (900 cm⁻¹)
1000/Т (К⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Temperature dependence of the water vapor self-continuum. The 8–12 μm interval, for 900 cm-1 .
[6] Burch D.E., Alt R.L.Continuum absorption by H2 O in the 700– 1200 cm-1 and 2400–2800cm-1 windows. Report AFGL-TR-84- 0128 ;1984.
[27] Burch D.E. Continuum absorption by H2 O. Report AFGL-TR-81-0300 ;1982.
1984
Burch D.E., Alt R.L. , Continuum absorption by H2 O in the 700 - 1200 cm-1 and 2400 - 2800 cm-1 windows, Report AFGL-TR-84-0128 by Ford Aerospace and Communications Corporation, Aeronutronic Division to AFGL, United States Air Force, Hanscom AFB, Unknown, 1984 , Pages 31.
H2 O
T=∅
P=∅
3. This work (1000 cm⁻¹)
1000/Т (К⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
2013
T.E. Klimeshina, O.B. Rodimova , Temperature dependence of the water vapor continuum absorption in the 3–5 μm spectral region, Journal of Quantitative Spectroscopy and Radiative Transfer, 2013 , Volume 119 , Pages 77-83.
H2 O
T=∅
P=∅
8. Ptashnik I.V., et al. (2011). (2400 cm⁻¹)
1000/Т (К⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Temperature dependence of the water vapor self-continuum. The 3–5 μm interval, for 2400 cm-1 .
[8] Ptashnik I.V., McPheat R.A., Shine K.P., Smith K.M., Williams R.G. Water vapor self-continuum absorption in near-infrared windows derived from laboratory experiments. J Geophys Res 2011;116:D16305.
2011
Ptashnik I.V., McPheat R.A., Shine K.P., Smith K.M., Williams R.G. , Water vapor self-continuum absorption in near-infrared windows derived from laboratory experiments, Journal of Geophysical Research, 2011 , Volume D116 , Pages 16305.
H2 O
T=∅
P=∅
9. RAL 2400 cm⁻¹
1000/Т (К⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Temperature dependence of the retrieved self-continuum at selected wavenumbers.
2013
T.E. Klimeshina, O.B. Rodimova , Temperature dependence of the water vapor continuum absorption in the 3–5 μm spectral region, Journal of Quantitative Spectroscopy and Radiative Transfer, 2013 , Volume 119 , Pages 77-83.
H2 O
T=∅
P=∅
8. Ptashnik I.V., et al. (2011). (2500 cm⁻¹)
1000/Т (К⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Temperature dependence of the water vapor self-continuum. The 3–5 μm interval, for 2500 cm-1 .
[8] Ptashnik I.V., McPheat R.A., Shine K.P., Smith K.M., Williams R.G. Water vapor self-continuum absorption in near-infrared windows derived from laboratory experiments. J Geophys Res 2011;116:D16305.
2011
Ptashnik I.V., McPheat R.A., Shine K.P., Smith K.M., Williams R.G. , Water vapor self-continuum absorption in near-infrared windows derived from laboratory experiments, Journal of Geophysical Research, 2011 , Volume D116 , Pages 16305.
H2 O
T=∅
P=∅
9. RAL 2500 cm⁻¹
1000/Т (К⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Temperature dependence of the retrieved self-continuum at selected wavenumbers.
2013
T.E. Klimeshina, O.B. Rodimova , Temperature dependence of the water vapor continuum absorption in the 3–5 μm spectral region, Journal of Quantitative Spectroscopy and Radiative Transfer, 2013 , Volume 119 , Pages 77-83.
H2 O
T=∅
P=∅
8. Ptashnik I.V., et al. (2011). (2600 cm⁻¹
1000/Т (К⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Temperature dependence of the water vapor self-continuum. The 3–5 μm interval, for 2600 cm-1 .
[8] Ptashnik I.V., McPheat R.A., Shine K.P., Smith K.M., Williams R.G. Water vapor self-continuum absorption in near-infrared windows derived from laboratory experiments. J Geophys Res 2011;116:D16305.
2011
Ptashnik I.V., McPheat R.A., Shine K.P., Smith K.M., Williams R.G. , Water vapor self-continuum absorption in near-infrared windows derived from laboratory experiments, Journal of Geophysical Research, 2011 , Volume D116 , Pages 16305.
H2 O
T=∅
P=∅
9. RAL 2600 cm⁻¹
1000/Т (К⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Temperature dependence of the retrieved self-continuum at selected wavenumbers.
2014
Пташник И.В., Петрова Т.М., Пономарев Ю.Н., Солодов А.А., Солодов А.М. , Континуальное поглощение водяного пара в окнах прозрачности ближнего ИК-диапазона , Оптика атмосферы и океана, 2014 , Volume 27 , Number 11, Pages 970-975.
H2 O
T=298 К
P=1 атм
4. Bicknell, W.E., et al. (2006). (298K, 6100-6200 cm⁻¹)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Результат ранних измерений : Bicknell et al. [21].
[21] Bicknell W.E., Cecca S.D., Griffin M.K., Swartz S.D., Flusberg A. Search for Low-Absorption Regions in the 1.6- and 2.1-μm Atmospheric Windows // J. Directed Energy. 2006. V. 2, N 2. Ð. 151–161.
2006
Bicknell W.E., Cecca S.D., Griffin M.K., S. D. Swartz, and A. Flusberg , Search for low-absorption regions in the 1.6-and 2.1-μm atmospheric windows, Journal of Directed Energy, 2006 , Volume 2 , Pages 151–161.
Длина волны (мкм)
Коэффициент поглощения (Км⁻¹)
2014
Пташник И.В., Петрова Т.М., Пономарев Ю.Н., Солодов А.А., Солодов А.М. , Континуальное поглощение водяного пара в окнах прозрачности ближнего ИК-диапазона , Оптика атмосферы и океана, 2014 , Volume 27 , Number 11, Pages 970-975.
H2 O
T=296 К
P=1 атм
4. Mondeline, B., et al. (2013). (296K, 5800-6600 cm⁻¹)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Результат ранних измерений : Mondeline et al. [22].
[22] Mondelain D., Aradj A., Kassi S., Campargue A. The water vapour self-continuum by CRDS at room temperature in the 1.6 μm transparency window // J. Quant. Spectrosc. Radiat. Transfer. 2013. V. 130. Ð. 381–391.
2013
D. Mondelain, A.Aradj, S.Kassi, A.Campargue , The water vapour self-continuum by CRDS at room temperature in the 1.6 μm transparency window, Journal of Quantitative Spectroscopy and Radiative Transfer, 2013 , Volume 130 , Pages 381-391.
H2 O
T=296 К
P=0.0131579 атм
10. This work
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Spectral dependence of the self-continuum cross-section, Cs , at room temperature derived in this work.
2014
Пташник И.В., Петрова Т.М., Пономарев Ю.Н., Солодов А.А., Солодов А.М. , Континуальное поглощение водяного пара в окнах прозрачности ближнего ИК-диапазона , Оптика атмосферы и океана, 2014 , Volume 27 , Number 11, Pages 970-975.
H2 O
T=289.5 К
P=1 атм
4. Ptashnik, I.V., et al. (2013). (289.5K, 2000-8000 cm⁻¹)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Результат ранних измерений : Ptashnik et al. [20].
[20] Ptashnik I.V., Petrova T.M., Ponomarev Yu.N., Shine K.P., Solodov A.A., Solodov A.M. Near-infrared water vapour self-continuum at close to room temperature // J. Quant. Spectrosc. Radiat. Transfer. 2013. V. 120. Ð. 23–35.
2013
I.V. Ptashnik, T.M. Petrova, Yu.N. Ponomarev, K.P. Shine, A.A. Solodov, A.M. Solodov
, Near-infrared water vapour self-continuum at close to room temperature , Journal of Quantitative Spectroscopy and Radiative Transfer, 2013 , Volume 120 , Pages 23-35.
H2 O
T=289 К
P=1 атм
1. The total error of the retrieval Cs + DCs
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
The total error of the retrieval, including experimental errors and uncertainty in spectral line parameters, is presented by ΔCs
2014
D. Mondelain, S. Manigand, S. Kassi, A. Campargue , Temperature dependence of the water vapor self-continuum by cavity ring down spectroscopy in the 1.6 µm transparency window, Journal of Geophysical Research: Atmospheres, 2014 , Volume 119 , Issue 9, Pages 5625–5639.
H2 O
T=298 К
P=1 атм
6. Bicknell, W.E., et al. (2006). (298K, 6100-6250 cm⁻¹)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Spectral dependence of the self-continuum cross section, Cs , measured near room temperature in Bicknell et al. [2006]. Note that the values provided by Bicknell et al. include a foreign continuum contribution and should be divided by 2 for the consistency of the comparison (see text).
Bicknell, W. E., S. D. Cecca, and M. K. Griffin (2006), Search for low-absorption regions in the 1.6- and 2.1- m atmospheric windows, J. Dir. Energy, 2, 151–161.
2006
Bicknell W.E., Cecca S.D., Griffin M.K., S. D. Swartz, and A. Flusberg , Search for low-absorption regions in the 1.6-and 2.1-μm atmospheric windows, Journal of Directed Energy, 2006 , Volume 2 , Pages 151–161.
Длина волны (мкм)
Коэффициент поглощения (Км⁻¹)
2014
D. Mondelain, S. Manigand, S. Kassi, A. Campargue , Temperature dependence of the water vapor self-continuum by cavity ring down spectroscopy in the 1.6 µm transparency window, Journal of Geophysical Research: Atmospheres, 2014 , Volume 119 , Issue 9, Pages 5625–5639.
H2 O
T=296 К
P=1 атм
6. Mondeline, D., et al. (2013). (296K, 5500-7500 cm⁻¹)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Spectral dependence of the self-continuum cross section, Cs , measured near room temperature in our previous work [Mondelain et al., 2013].
Mondelain, D., A. Aradj, S. Kassi, and A. Campargue (2013), The water vapor self-continuum by CRDS at room temperature in the 1.6 μm transparency window, J. Quant. Spectrosc. Radiat. Transfer, 130, 381–391, oi:10.1016/j.jqsrt.2013.07.006.
2013
D. Mondelain, A.Aradj, S.Kassi, A.Campargue , The water vapour self-continuum by CRDS at room temperature in the 1.6 μm transparency window, Journal of Quantitative Spectroscopy and Radiative Transfer, 2013 , Volume 130 , Pages 381-391.
H2 O
T=296 К
P=0.0131579 атм
10. This work
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Spectral dependence of the self-continuum cross-section, Cs , at room temperature derived in this work.
2014
D. Mondelain, S. Manigand, S. Kassi, A. Campargue , Temperature dependence of the water vapor self-continuum by cavity ring down spectroscopy in the 1.6 µm transparency window, Journal of Geophysical Research: Atmospheres, 2014 , Volume 119 , Issue 9, Pages 5625–5639.
H2 O
T=293 К
P=1 атм
6. Ptashnik, I. V., et al. (2011). (293, 5500-5600 cm⁻¹)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Spectral dependence of the self-continuum cross section, Cs , measured near room temperature by the CAVIAR consortium [Ptashnik et al., 2011].
Ptashnik, I. V., R. A. McPheat, K. P. Shine, K. M. Smith, and R. G. Williams (2011), Water vapor self-continuum absorption in near-infrared windows derived from laboratory measurements, J. Geophys. Res., 116, D16305, doi:10.1029/2011JD015603.
2011
Ptashnik I.V., McPheat R.A., Shine K.P., Smith K.M., Williams R.G. , Water vapor self-continuum absorption in near-infrared windows derived from laboratory experiments, Journal of Geophysical Research, 2011 , Volume D116 , Pages 16305.
H2 O
T=293 К
P=0.0150999 атм
1. CAVIAR (293K, 1600-5800 cm⁻¹)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
2014
D. Mondelain, S. Manigand, S. Kassi, A. Campargue , Temperature dependence of the water vapor self-continuum by cavity ring down spectroscopy in the 1.6 µm transparency window, Journal of Geophysical Research: Atmospheres, 2014 , Volume 119 , Issue 9, Pages 5625–5639.
H2 O
T=289 К
P=1 атм
6. Ptashnik, I. V., et al. (2013). (289K, 5500-7500 cm⁻¹)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Spectral dependence of the self-continuum cross section, Cs , measured near room temperature in Ptashnik et al. [2013].
Ptashnik, I. V., T. M. Petrova, Y. N. Ponomarev, K. P. Shine, A. A. Solodov, and A. M. Solodov (2013), Near-infrared water vapour self-continuum at close to room temperature, J. Quant. Spectrosc. Radiat. Transfer, 120, 23–35, doi:10.1016/j.jqsrt.2013.02.016.
2013
I.V. Ptashnik, T.M. Petrova, Yu.N. Ponomarev, K.P. Shine, A.A. Solodov, A.M. Solodov
, Near-infrared water vapour self-continuum at close to room temperature , Journal of Quantitative Spectroscopy and Radiative Transfer, 2013 , Volume 120 , Pages 23-35.
H2 O
T=289 К
P=1 атм
1. The total error of the retrieval Cs + DCs
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
The total error of the retrieval, including experimental errors and uncertainty in spectral line parameters, is presented by ΔCs
2014
D. Mondelain, S. Manigand, S. Kassi, A. Campargue , Temperature dependence of the water vapor self-continuum by cavity ring down spectroscopy in the 1.6 µm transparency window, Journal of Geophysical Research: Atmospheres, 2014 , Volume 119 , Issue 9, Pages 5625–5639.
H2 O
T=350 К
P=∅
7. Ptashnik et al. (2011, 350 K)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Spectral dependence of the self-continuum cross section, Cs , measured by the CAVIAR consortium [Ptashnik et al., 2011a] (solid lines). T=350°K
[2011a] Ptashnik, I. V., R. A. McPheat, K. P. Shine, K. M. Smith, and R. G. Williams, Water vapor self-continuum absorption in near-infrared windows derived from laboratory measurements, J. Geophys. Res., 116, D16305, (2011a) doi:10.1029/2011JD015603.
2011
Ptashnik I.V., McPheat R.A., Shine K.P., Smith K.M., Williams R.G. , Water vapor self-continuum absorption in near-infrared windows derived from laboratory experiments, Journal of Geophysical Research, 2011 , Volume D116 , Pages 16305.
H2 O
T=350 К
P=∅
7. CAVIAR (350K)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
2014
D. Mondelain, S. Manigand, S. Kassi, A. Campargue , Temperature dependence of the water vapor self-continuum by cavity ring down spectroscopy in the 1.6 µm transparency window, Journal of Geophysical Research: Atmospheres, 2014 , Volume 119 , Issue 9, Pages 5625–5639.
H2 O
T=374 К
P=∅
7. Ptashnik et al. (2011, 374 K)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Spectral dependence of the self-continuum cross section, Cs , measured by the CAVIAR consortium [Ptashnik et al., 2011a] (solid lines). T=374°K
[2011a] Ptashnik, I. V., R.A. McPheat, K.P. Shine, K.M. Smith, and R. G. Williams, Water vapor self-continuum absorption in near-infrared windows derived from laboratory measurements, J. Geophys. Res., 116, D16305, (2011) doi:10.1029/2011JD015603.
2011
Ptashnik I.V., McPheat R.A., Shine K.P., Smith K.M., Williams R.G. , Water vapor self-continuum absorption in near-infrared windows derived from laboratory experiments, Journal of Geophysical Research, 2011 , Volume D116 , Pages 16305.
H2 O
T=375 К
P=∅
7. CAVIAR (375K)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
2014
D. Mondelain, S. Manigand, S. Kassi, A. Campargue , Temperature dependence of the water vapor self-continuum by cavity ring down spectroscopy in the 1.6 µm transparency window, Journal of Geophysical Research: Atmospheres, 2014 , Volume 119 , Issue 9, Pages 5625–5639.
H2 O
T=402 К
P=∅
7. Ptashnik et al. (2011, 402 K)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Spectral dependence of the self-continuum cross section, Cs, measured by the CAVIAR consortium [Ptashnik et al., 2011a] (solid lines). T=402°K
[2011a] Ptashnik, I. V., R. A. McPheat, K. P. Shine, K. M. Smith, and R. G. Williams, Water vapor self-continuum absorption in near-infrared windows derived from laboratory measurements, J. Geophys. Res., 116, D16305, (2011) doi:10.1029/2011JD015603.
2011
Ptashnik I.V., McPheat R.A., Shine K.P., Smith K.M., Williams R.G. , Water vapor self-continuum absorption in near-infrared windows derived from laboratory experiments, Journal of Geophysical Research, 2011 , Volume D116 , Pages 16305.
H2 O
T=402 К
P=∅
7. CAVIAR (402K)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
2014
D. Mondelain, S. Manigand, S. Kassi, A. Campargue , Temperature dependence of the water vapor self-continuum by cavity ring down spectroscopy in the 1.6 µm transparency window, Journal of Geophysical Research: Atmospheres, 2014 , Volume 119 , Issue 9, Pages 5625–5639.
H2 O
T=431 К
P=∅
7. Ptashnik et al. (2011, 431 K)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Spectral dependence of the self-continuum cross section, Cs, measured by the CAVIAR consortium [Ptashnik et al., 2011a] (solid lines). T=431°K
[2011a] Ptashnik, I. V., R. A. McPheat, K. P. Shine, K. M. Smith, and R. G. Williams, Water vapor self-continuum absorption in near-infrared windows derived from laboratory measurements, J. Geophys. Res., 116, D16305, (2011) doi:10.1029/2011JD015603.
2011
Ptashnik I.V., McPheat R.A., Shine K.P., Smith K.M., Williams R.G. , Water vapor self-continuum absorption in near-infrared windows derived from laboratory experiments, Journal of Geophysical Research, 2011 , Volume D116 , Pages 16305.
H2 O
T=431 К
P=∅
7. CAVIAR (431K)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
2014
D. Mondelain, S. Manigand, S. Kassi, A. Campargue , Temperature dependence of the water vapor self-continuum by cavity ring down spectroscopy in the 1.6 µm transparency window, Journal of Geophysical Research: Atmospheres, 2014 , Volume 119 , Issue 9, Pages 5625–5639.
H2 O
T=472 К
P=∅
7. Ptashnik et al. (2011, 472 K)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Spectral dependence of the self-continuum cross section, Cs , measured by the CAVIAR consortium [Ptashnik et al., 2011a] (solid lines). T=472°K
[2011a] Ptashnik, I. V., R.A. McPheat, K.P. Shine, K.M. Smith, and R. G. Williams, Water vapor self-continuum absorption in near-infrared windows derived from laboratory measurements, J. Geophys. Res., 116, D16305, (2011) doi:10.1029/2011JD015603.
2011
Ptashnik I.V., McPheat R.A., Shine K.P., Smith K.M., Williams R.G. , Water vapor self-continuum absorption in near-infrared windows derived from laboratory experiments, Journal of Geophysical Research, 2011 , Volume D116 , Pages 16305.
H2 O
T=431 К
P=∅
7. CAVIAR (431K)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
2014
D. Mondelain, S. Manigand, S. Kassi, A. Campargue , Temperature dependence of the water vapor self-continuum by cavity ring down spectroscopy in the 1.6 µm transparency window, Journal of Geophysical Research: Atmospheres, 2014 , Volume 119 , Issue 9, Pages 5625–5639.
H2 O
T=340 К
P=∅
9. Ma, Q., et al. (2008). Spectral dependence of the Cs (340 K)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Spectral dependence of the self-continuum cross section, Cs , derived from theoretical calculations based on the far-wing theory by Ma (see text) at 340°K.
Ma, Q., R. H. Tipping, and C. Leforestier (2008), Temperature dependences of mechanisms responsible for the water-vapor continuum absorption. I. Far-wings of allowed lines, J. Chem. Phys., 128, 124,313, doi:10.1063/1.2839604
2008
Ma Q., Tipping R.H., Leforestier C. , Temperature dependences of mechanisms responsible for the water-vapor continuum absorption: 1. Far wings of allowed lines, Journal of Chemical Physics, 2008 , Volume 128 ,
Волновое число (см⁻¹)Температура (К)
Коэффициент поглощения (см²мол⁻¹атм⁻¹) Коэффициент поглощения (см²мол⁻¹атм⁻¹)
2014
D. Mondelain, S. Manigand, S. Kassi, A. Campargue , Temperature dependence of the water vapor self-continuum by cavity ring down spectroscopy in the 1.6 µm transparency window, Journal of Geophysical Research: Atmospheres, 2014 , Volume 119 , Issue 9, Pages 5625–5639.
H2 O
T=302 К
P=∅
9. Ma, Q., et al. (2008). Spectral dependence of the Cs, (T=302 K)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Spectral dependence of the self-continuum cross section, Cs , derived from theoretical calculations based on the far-wing theory by Ma (see text) at 302°K.
Ma, Q., R. H. Tipping, and C. Leforestier (2008), Temperature dependences of mechanisms responsible for the water-vapor continuum absorption. I. Far-wings of allowed lines, J. Chem. Phys., 128, 124,313, doi:10.1063/1.2839604
2008
Ma Q., Tipping R.H., Leforestier C. , Temperature dependences of mechanisms responsible for the water-vapor continuum absorption: 1. Far wings of allowed lines, Journal of Chemical Physics, 2008 , Volume 128 ,
Волновое число (см⁻¹)Температура (К)
Коэффициент поглощения (см²мол⁻¹атм⁻¹) Коэффициент поглощения (см²мол⁻¹атм⁻¹)
2014
E.A.Serov, M.A.Koshelev, T.A.Odintsova, V.V.Parshin, M.Tretyakov , Rotationally resolved water dimer spectra in atmospheric air and pure water vapour in the 188 - 258 GHz range, Physical Chemistry Chemical Physics, 2014 , Volume 16 , Issue 47, Pages 26221-33.
H2 O
T=311.1 К
P=0.0357895 атм
3. Empirical continuum model. M.A. Koshelev, et al. (2011)
Частота (ГГц)
Коэффициент поглощения (см⁻¹)
Continuum absorption in water vapour. The dashed blue line shows the empirical model of continuum absorption.[22]. [22] M.A. Koshelev, E. A. Serov, V. V. Parshin and M. Yu. Tretyakov, Millimeter wave continuum absorption in moist nitrogen at temperatures 261–328 K J. Quant. Spectrosc. Radiat. Transfer, 2011, 112, 2704.
2011
M.A. Koshelev, E.A. Serov, V.V. Parshin, M.Yu. Tretyakov , Millimeter wave continuum absorption in moist nitrogen at temperatures 261–328 K, Journal of Quantitative Spectroscopy and Radiative Transfer, 2011 , Volume 112 , Issue 17, Pages 2704–2712.
Частота (ГГц)
Коэффициент поглощения (дБ/км)
2014
Keith P. Shine, Igor Ptashnik, Gaby Rädel , The Water Vapour Continuum: Brief History and Recent Developments, Surveys in Geophysics, 2014 , Volume 33 , Issue 3-4, Pages 1-21.
H2 O
T=296 К
P=1 атм
2. Burch D.E. (1981) (296K, 300-1100 cm⁻¹)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
The Burch (1981) experimental continuum.
Burch D.E. (1981) Continuum absorption by H2 O. Proc SPIE 277:28–39
1981
Burch D.E. , Continuum absorption by atmospheric H2 O, SPIE Proc. Atmospheric Transmission, V.277, Editor(s) Robert W. Fan, SPIE - The international society for optical engineering, 1981 , Pages 28-39.
H2 O
T=296 К
P=∅
4. Experiment (296K, 300-800 cm⁻¹)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Semi-logarithmic plot of the H2 O continuum coefficient for self broadening at 296°K. The solid squares represent experimental values.
2014
Keith P. Shine, Igor Ptashnik, Gaby Rädel , The Water Vapour Continuum: Brief History and Recent Developments, Surveys in Geophysics, 2014 , Volume 33 , Issue 3-4, Pages 1-21.
H2 O
T=293 К
P=∅
3. Self-continuum cross-section. Ptashnik, I.V. et al. (2011, 2012) (293K, 1800-5600 cm⁻¹)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Self- -continuum cross-section as retrieved from laboratory measurements in Ptashnik et al. (2011b, 2012) (CAVIAR), along with their associated uncertainties.
Ptashnik et al. (2011b, 2012) - Ptashnik IV, McPheat RA, Shine KP, Smith KM, Williams RG (2011b) Water vapor continuum absorption in near-infrared windows derived from laboratory measurements. J Geophys Res 116:D16305
Ptashnik I.V., McPheat R.A., Shine K.P., Smith K.M., Williams R.G. (2012) Water vapour foreign continuum absorption in near-infrared windows from laboratory measurements. Phil Trans Roy Soc A (to appear). doi:10.1098/rsta.2011.0218
2011
Ptashnik I.V., McPheat R.A., Shine K.P., Smith K.M., Williams R.G. , Water vapor self-continuum absorption in near-infrared windows derived from laboratory experiments, Journal of Geophysical Research, 2011 , Volume D116 , Pages 16305.
H2 O
T=293 К
P=0.0150999 атм
1. CAVIAR (293K, 1600-5800 cm⁻¹)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
2015
Пташник И.В. , Континуальное поглощение водяного пара: краткая предыстория и современное состояние проблемы , Оптика атмосферы и океана, 2015 , Volume 28 , Number 05, Pages 443-459.
H2 O
T=311 К
P=1 атм
10. Baranov Yu.I. et al. (2011) (311K)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Восстановленные сечение поглощения self-continuum в работе Baranov и Lafferty [55].
2011
Yu.I. Baranov, W.J. Lafferty , The water-vapor continuum and selective absorption in the 3–5 μm spectral region at temperatures from 311 to 363 K, Journal of Quantitative Spectroscopy and Radiative Transfer, 2011 , Volume 112 , Issue 8, Pages 1304-1313.
H2 O
T=310.9 К
P=∅
5. NIST (310.9K)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Water-vapor self-broadened continuum at temperature:310.9K.
2015
Пташник И.В. , Континуальное поглощение водяного пара: краткая предыстория и современное состояние проблемы , Оптика атмосферы и океана, 2015 , Volume 28 , Number 05, Pages 443-459.
H2 O
T=298 К
P=1 атм
10. Bicknell et al. (2006) (298K)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Восстановленные сечение поглощения self-continuum в работах Bicknell et al. [54].
2006
Bicknell W.E., Cecca S.D., Griffin M.K., S. D. Swartz, and A. Flusberg , Search for low-absorption regions in the 1.6-and 2.1-μm atmospheric windows, Journal of Directed Energy, 2006 , Volume 2 , Pages 151–161.
Длина волны (мкм)
Коэффициент поглощения (Км⁻¹)
2015
Пташник И.В. , Континуальное поглощение водяного пара: краткая предыстория и современное состояние проблемы , Оптика атмосферы и океана, 2015 , Volume 28 , Number 05, Pages 443-459.
H2 O
T=296 К
P=1 атм
10. Mondeline, D., et al. (2013) (296K)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Восстановленные сечение поглощения self-continuum в работе Mondeline et al. [84].
2013
D. Mondelain, A.Aradj, S.Kassi, A.Campargue , The water vapour self-continuum by CRDS at room temperature in the 1.6 μm transparency window, Journal of Quantitative Spectroscopy and Radiative Transfer, 2013 , Volume 130 , Pages 381-391.
H2 O
T=296 К
P=0.0131579 атм
10. This work
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Spectral dependence of the self-continuum cross-section, Cs , at room temperature derived in this work.
2015
Пташник И.В. , Континуальное поглощение водяного пара: краткая предыстория и современное состояние проблемы , Оптика атмосферы и океана, 2015 , Volume 28 , Number 05, Pages 443-459.
H2 O
T=289.5 К
P=1 атм
10. Ptashnik I.V., et al. (2013) (289.5K)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Восстановленные сечение поглощения self-continuum в работе Ptashnik et al. [57].
2013
I.V. Ptashnik, T.M. Petrova, Yu.N. Ponomarev, K.P. Shine, A.A. Solodov, A.M. Solodov
, Near-infrared water vapour self-continuum at close to room temperature , Journal of Quantitative Spectroscopy and Radiative Transfer, 2013 , Volume 120 , Pages 23-35.
H2 O
T=289 К
P=1 атм
1. Absorption cross-section of the self-continuum. H₂O. (T=298K)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Spectrally smoothed absorption cross-section Cs (ν) (10-22 cm2 molec-1 atm-1 ) of the self-continuum, derived in this work near 289°K, and defined according Eq. (3).
2015
Пташник И.В. , Континуальное поглощение водяного пара: краткая предыстория и современное состояние проблемы , Оптика атмосферы и океана, 2015 , Volume 28 , Number 05, Pages 443-459.
H2 O
T=296 К
P=1 атм
10. Tipping, R.H., et al. (1995) (296K)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Восстановленные сечение поглощения self-continuum в работе Ma и Tipping [40].
40. Ma Q., Tipping R.H. The frequency detuning correction and the asymmetry of line shapes: The far wings of H2O–H2O // J. Chem. Phys. 2002. V. 116. P. 4102–4115.
2002
Ma Q., Tipping R.H. , The frequency detuning correction and the asymmetry of line shapes: The far wings of H2 O-H2 O, Journal of Chemical Physics, 2002 , Volume 116 , Number 10, Pages 4102 - 4115.
H2 O
T=300 К
P=∅
8. The self-broadened absorption coefficient calculated for T=300K
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
The self-broadened absorption coefficient (in units of cm2 molecule-1 atm-1 ) in the window region 600–1250 cm-1 calculated for T=300°K. A cut-off 25 cm-1 is used to exclude completely any contribution of lines that are closer than this limit.
2015
Пташник И.В. , Континуальное поглощение водяного пара: краткая предыстория и современное состояние проблемы , Оптика атмосферы и океана, 2015 , Volume 28 , Number 05, Pages 443-459.
H2 O
T=293 К
P=∅
2. Podobedov V.B. et al. (2008). Continuum (293K)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Сглаженные спектры поглощения димера воды в миллиметровом диапазоне.
[97] Podobedov V.B., Plusquellic D.F., Siegrist K.E., Fraser G.T., Ma Q., Tipping R.H. New measurements of the water vapor continuum in the region from 0.3 to 2.7 THz // J. Quant. Spectrosc. Radiat. Transfer. 2008. V. 109. P. 458–467.
2008
Podobedov V.B., Plusquellic D.F., Siegrist K.E., Fraser G.T., Ma Q., Tipping R.H. , New measurements of the water vapor continuum in the region from 0.3 to 2.7 THz, Journal of Quantitative Spectroscopy and Radiative Transfer, 2008 , Volume 109 , Pages 458-467.
H2 O
T=313 К
P=0.0210215 атм
2a. Fitting (313K, 10-90 cm⁻¹)
Волновое число (см⁻¹)
Коэффициент поглощения (дБ/км)
. Self-continuum absorption of water vapor at P = 2.13 kPa at T=313°K. Data for the 84.1 cm-1 window are not included in the ν2-fit presented by solid curves. The absorbance, A, is expressed as A= log10 (1/T), where the maximum transmittance, T, is equal to unity.
2015
Пташник И.В. , Континуальное поглощение водяного пара: краткая предыстория и современное состояние проблемы , Оптика атмосферы и океана, 2015 , Volume 28 , Number 05, Pages 443-459.
H2 O
T=296 К
P=1 атм
2a. Burch D.E. (1981) (296K, 300-1100 cm⁻¹)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Сглаженные спектры поглощения димера воды в среднем ИК (Б) диапазоне. Экспериментальные данные Burch [22].
[22] Burch D.E. Continuum absorption by H2 O // Report AFGL-TR-81-0300. Air Force Geophysics Laboratory. Hanscom AFB, MA. 1981. 46.
1981
Burch D.E. , Continuum absorption by atmospheric H2 O, SPIE Proc. Atmospheric Transmission, V.277, Editor(s) Robert W. Fan, SPIE - The international society for optical engineering, 1981 , Pages 28-39.
H2 O
T=296 К
P=∅
4. Experiment (296K, 300-800 cm⁻¹)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Semi-logarithmic plot of the H2 O continuum coefficient for self broadening at 296°K. The solid squares represent experimental values.
2015
Пташник И.В. , Континуальное поглощение водяного пара: краткая предыстория и современное состояние проблемы , Оптика атмосферы и океана, 2015 , Volume 28 , Number 05, Pages 443-459.
H2 O
T=310.8 К
P=∅
3. Baranov Yu.I. et al. (2008) (310.8 K)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Спектральная зависимость сечения континуального поглощения в чистом водяном паре при 310.8°K, согласно измерениям Баранова и др. [53].
[53] Baranov Y.I., Lafferty W.J., Ma Q., Tipping R.H. Water-vapor continuum absorption in the 800–1250 cm–1 spectral region at temperatures from 311 to 363°K // J. Quant. Spectrosc. Radiat. Transfer. 2008. V. 109, N 12–13. P. 2291–2302.
2008
Yu.I. Baranov, W.J. Lafferty, Q. Ma and R.H. Tipping , Water-vapor continuum absorption in the 800-1250 cm-1 spectral region at temperatures from 311 to 363 K, Journal of Quantitative Spectroscopy and Radiation Transfer, 2008 , Volume 109 , Issue 12, Pages 2291-2302.
H2 O
T=310.8 К
P=1 атм
4. MT-CKD model (310.8K, 800-1150 cm⁻¹)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹)
The MT_CKD values is given by solid line.The three temperatures are numbered from the top to the bottom.
2015
Пташник И.В. , Континуальное поглощение водяного пара: краткая предыстория и современное состояние проблемы , Оптика атмосферы и океана, 2015 , Volume 28 , Number 05, Pages 443-459.
H2 O
T=325.8 К
P=∅
3. Baranov, Yu.I. et al. (2008) (325.8K)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Спектральная зависимость сечения континуального поглощения в чистом водяном паре при 325.8°K, согласно измерениям Баранова и др. [53].
[53] Baranov Y.I., Lafferty W.J., Ma Q., Tipping R.H. Water-vapor continuum absorption in the 800–1250 cm–1 spectral region at temperatures from 311 to 363°K // J. Quant. Spectrosc. Radiat. Transfer. 2008. V. 109, N 12–13. P. 2291–2302.
2008
Yu.I. Baranov, W.J. Lafferty, Q. Ma and R.H. Tipping , Water-vapor continuum absorption in the 800-1250 cm-1 spectral region at temperatures from 311 to 363 K, Journal of Quantitative Spectroscopy and Radiation Transfer, 2008 , Volume 109 , Issue 12, Pages 2291-2302.
H2 O
T=325 К
P=1 атм
2. Present experiment (325K, 800-1150 cm⁻¹)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹)
Binary absorption coefficients of the water-vapor continuum derived by direct measurements of absorption in selected microwindows
2015
Пташник И.В. , Континуальное поглощение водяного пара: краткая предыстория и современное состояние проблемы , Оптика атмосферы и океана, 2015 , Volume 28 , Number 05, Pages 443-459.
H2 O
T=363.6 К
P=∅
3. Baranov, Yu.I. et al. (2008) (T=363.6K)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Спектральная зависимость сечения континуального поглощения в чистом водяном паре при 363.6°K, согласно измерениям Баранова и др. [53].
[53] Baranov Y.I., Lafferty W.J., Ma Q., Tipping R.H. Water-vapor continuum absorption in the 800–1250 cm–1 spectral region at temperatures from 311 to 363°K // J. Quant. Spectrosc. Radiat. Transfer. 2008. V. 109, N 12–13. P. 2291–2302.
2008
Yu.I. Baranov, W.J. Lafferty, Q. Ma and R.H. Tipping , Water-vapor continuum absorption in the 800-1250 cm-1 spectral region at temperatures from 311 to 363 K, Journal of Quantitative Spectroscopy and Radiation Transfer, 2008 , Volume 109 , Issue 12, Pages 2291-2302.
H2 O
T=363.6 К
P=1 атм
4. Present experiment (363.6K, 800-1150 cm⁻¹)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹)
Experimentally determined water continuum binary absorption coefficients are denoted by • and the error bars are one standard deviation determined from a least squares fit. The theoretical values are denoted by Δ, and the MT_CKD values are given by solid lines.The three temperatures are numbered from the top to the bottom.
2015
Пташник И.В. , Континуальное поглощение водяного пара: краткая предыстория и современное состояние проблемы , Оптика атмосферы и океана, 2015 , Volume 28 , Number 05, Pages 443-459.
H2 O
T=296 К
P=∅
8. Continuum. Burch D.E. (1985) (296K, 3000-4100 cm⁻¹)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Сечение континуального поглощения в чистом водяном паре, полученное Burch [24] путем вычитания из экспериментального спектра расчетного локального вклада линий воды в отдельных микроокнах прозрачности.
[24] Burch D.E. Absorption by H2 O in narrow windows between 3 000 and 4 200 cm–1 // Report AFGL-TR-85-0036. US Air Force Geophysics Laboratory. Hanscom AFB, MA. 1985. 37 p.
1985
Burch D.E. , Absorption by H2 O in narrow windows between 3000 - 4200 cm-1 , Report AFGL-TR-85-0036 by Ford Aerospace and Communications Corporation, Aeronutronic Division to AFGL, United States Air Force, Hanscom AFB, Unknown, 1985 , Pages 37.
H2 O
T=296 К
P=∅
3. Empirical e Cs ⁰ (3000-4400 cm⁻¹)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Spectral plots of the normalized absorption coefficients from 3000 to 4200 cm-1 for self broadening. The triangles represent empirical values derived from the ratio of the experimental transmittance values to the monochromatic values calculated from line parameters and convolved with an instrument slit function (see Eqs. 14, 15). Temperature, 296°K.
2015
Didier Mondelain, Semen Vasilchenko, Peter Cermak, Samir Kassi, Alain Campargue , The self- and foreign-absorption continua of water vapor by cavity ring-down spectroscopy near 2.35 µm, Physical Chemistry Chemical Physics, 2015 , Volume 17 , Issue 27, Pages 17762-17770.
H2 O
T=302 К
P=∅
7. D. Mondelain, et al. (2014) (302K)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Spectral dependence of the self-continuum cross-section: 19 (x).
[19] D. Mondelain, S. Manigand, S. Kassi and A. Campargue, J. Geophys. Res.: Atmos., 2014, 119, 5625–5639.
2014
D. Mondelain, S. Manigand, S. Kassi, A. Campargue , Temperature dependence of the water vapor self-continuum by cavity ring down spectroscopy in the 1.6 µm transparency window, Journal of Geophysical Research: Atmospheres, 2014 , Volume 119 , Issue 9, Pages 5625–5639.
H2 O
T=302 К
P=∅
7. This work (302 K)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Spectral dependence of the self-continuum cross section,Cs , measured in this work (squares). T=302°K.
2015
Didier Mondelain, Semen Vasilchenko, Peter Cermak, Samir Kassi, Alain Campargue , The self- and foreign-absorption continua of water vapor by cavity ring-down spectroscopy near 2.35 µm, Physical Chemistry Chemical Physics, 2015 , Volume 17 , Issue 27, Pages 17762-17770.
H2 O
T=289 К
P=∅
7. I. V. Ptashnik, et al. (2013) (289K)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Spectral dependence of the self-continuum cross-section: measured in ref. 17 (empty circles).
[17] I.V. Ptashnik, T.M. Petrova, Yu.N. Ponomarev, K.P. Shine, A.A. Solodov, A.M. Solodov , Near-infrared water vapour self-continuum at close to room temperature , Journal of Quantitative Spectroscopy and Radiative Transfer, 2013 , Volume 120 , Pages 23-35, DOI: 10.1016/j.jqsrt.2013.02.016, http://dx.doi.org/10.1016/j.jqsrt.2013.02.016
2013
I.V. Ptashnik, T.M. Petrova, Yu.N. Ponomarev, K.P. Shine, A.A. Solodov, A.M. Solodov
, Near-infrared water vapour self-continuum at close to room temperature , Journal of Quantitative Spectroscopy and Radiative Transfer, 2013 , Volume 120 , Pages 23-35.
H2 O
T=289 К
P=1 атм
1. The total error of the retrieval Cs + DCs
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
The total error of the retrieval, including experimental errors and uncertainty in spectral line parameters, is presented by ΔCs
2015
Didier Mondelain, Semen Vasilchenko, Peter Cermak, Samir Kassi, Alain Campargue , The self- and foreign-absorption continua of water vapor by cavity ring-down spectroscopy near 2.35 µm, Physical Chemistry Chemical Physics, 2015 , Volume 17 , Issue 27, Pages 17762-17770.
H2 O
T=293 К
P=∅
7. I.V. Ptashnik, et al. (2011) (293K)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Spectral dependence of the self-continuum cross-section: measured in ref. 3 (black circles).
[3] I. V. Ptashnik, R. A. McPheat, K. P. Shine, K. M. Smith and R. G. Williams, J. Geophys. Res., 2011, 116, D16305.
2011
Ptashnik I.V., McPheat R.A., Shine K.P., Smith K.M., Williams R.G. , Water vapor self-continuum absorption in near-infrared windows derived from laboratory experiments, Journal of Geophysical Research, 2011 , Volume D116 , Pages 16305.
H2 O
T=293 К
P=0.0150999 атм
1. CAVIAR (293K, 1600-5800 cm⁻¹)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
2015
Didier Mondelain, Semen Vasilchenko, Peter Cermak, Samir Kassi, Alain Campargue , The self- and foreign-absorption continua of water vapor by cavity ring-down spectroscopy near 2.35 µm, Physical Chemistry Chemical Physics, 2015 , Volume 17 , Issue 27, Pages 17762-17770.
H2 O
T=298 К
P=∅
7. W. E. Bicknell, et al. (2006) (298K) self+foreign
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Spectral dependence of the self-continuum cross-section: in ref. 14 (blue diamond’s).
[14] Bicknell W.E., Cecca S.D., Griffin M.K., S. D. Swartz, and A. Flusberg, Search for low-absorption regions in the 1.6-and 2.1-μm atmospheric windows, Journal of Directed Energy, 2006 , Volume 2 , Pages 151–1611.
2006
Bicknell W.E., Cecca S.D., Griffin M.K., S. D. Swartz, and A. Flusberg , Search for low-absorption regions in the 1.6-and 2.1-μm atmospheric windows, Journal of Directed Energy, 2006 , Volume 2 , Pages 151–161.
Длина волны (мкм)
Коэффициент поглощения (Км⁻¹)
2015
Didier Mondelain, Semen Vasilchenko, Peter Cermak, Samir Kassi, Alain Campargue , The self- and foreign-absorption continua of water vapor by cavity ring-down spectroscopy near 2.35 µm, Physical Chemistry Chemical Physics, 2015 , Volume 17 , Issue 27, Pages 17762-17770.
H2 O
T=298 К
P=∅
7. W.E.Bicknell, et al. (2006) (298K) self
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Spectral dependence of the self-continuum cross-section: in ref. 14 (fulled diamond).
[14] Bicknell W.E., Cecca S.D., Griffin M.K., S. D. Swartz, and A. Flusberg, Search for low-absorption regions in the 1.6-and 2.1-μm atmospheric windows, Journal of Directed Energy, 2006 , Volume 2 , Pages 151–161
2006
Bicknell W.E., Cecca S.D., Griffin M.K., S. D. Swartz, and A. Flusberg , Search for low-absorption regions in the 1.6-and 2.1-μm atmospheric windows, Journal of Directed Energy, 2006 , Volume 2 , Pages 151–161.
Длина волны (мкм)
Коэффициент поглощения (Км⁻¹)
2015
Didier Mondelain, Semen Vasilchenko, Peter Cermak, Samir Kassi, Alain Campargue , The self- and foreign-absorption continua of water vapor by cavity ring-down spectroscopy near 2.35 µm, Physical Chemistry Chemical Physics, 2015 , Volume 17 , Issue 27, Pages 17762-17770.
H2 O
T=402 К
P=∅
9. I. V. Ptashnik, et al. (2012) (402K)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Spectral dependence of the foreign-continuum cross-section, CF , measured in ref. 16 at 402°K.
[16] Ptashnik I.V., McPheat R.A., Shine K.P., Smith K.M., Williams R.G., Water vapour foreign-continuum absorption in near-infrared windows from laboratory measurements, Philosophical Transactions of the Royal Society of London Series A: Physical Sciences and Engineering, 2012, Volume 370, Pages 2557-2577, DOI: 10.1098/rsta.2011.021.
2012
Ptashnik I.V., McPheat R.A., Shine K.P. , Smith K.M., Williams R.G. , Water vapour foreign-continuum absorption in near-infrared windows from laboratory measurements , Philosophical Transactions of the Royal Society of London Series A: Physical Sciences and Engineering, 2012 , Volume 370 , Pages 2557-2577.
H2 O
T=∅
P=∅
5. MTCKD-2.5
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
The MTCKD-2.5 [9, 10] foreign-continuum model (temperature independent).
[9] Clough, S. A., Shephard, M. W., Mlawer, E., Delamere, J. S., Iacono, M., Cady-Pereira, K., Boukabara, S. & Brown, P. D. (2005) Atmospheric radiative transfer modeling: a summary of the AER codes. J. Quant. Spectrosc. Radiat. Transf. 91, 233–244. (doi:10.1016/j.jqsrt.2004.05.058).
[10] Mlawer, E. J., Payne, V. H., Moncet, J.-L., Delamere, J. S., Alvarado, M. J. & Tobin, D. C. (2012). Development and recent evaluation of the MT_CKD model of continuum absorption. Phil. Trans. R. Soc. A 370, 2520–2556. (doi:10.1098/rsta.2011.0295).
2015
M. Yu. Tretyakov, A. A. Sysoev, T. A. Odintsova, and A. A. Kyuberis , COLLISION-INDUCED DIPOLE MOMENT AND MILLIMETER AND SUBMILLIMETER CONTINUUM ABSORPTION IN WATER VAPOR, Radiophysics & Quantum Electronics, 2015 , Volume 58 , Number 4,
H2 O
T=330 К
P=∅
4. M.A. Koshelev, et al. (2011) (330K)
Волновое число (см⁻¹)
Коэффициент поглощения (см⁻¹Торр⁻²)
Frequency dependences of the absorption coefficient (17) obtained using a factor of 600 scaled-down continuum absorption in water vapor according to experimental data from [22] (dashed curve).
[22]. M. A.Koshelev, E.A. Serov, V.V. Parshin, et al., J. Quant. Spectrosc. Radiat. Transfer, 112, 2704 (2011).
2011
M.A. Koshelev, E.A. Serov, V.V. Parshin, M.Yu. Tretyakov , Millimeter wave continuum absorption in moist nitrogen at temperatures 261–328 K, Journal of Quantitative Spectroscopy and Radiative Transfer, 2011 , Volume 112 , Issue 17, Pages 2704–2712.
Частота (ГГц)
Коэффициент поглощения (дБ/км)
2015
M. Yu. Tretyakov, A. A. Sysoev, T. A. Odintsova, and A. A. Kyuberis , COLLISION-INDUCED DIPOLE MOMENT AND MILLIMETER AND SUBMILLIMETER CONTINUUM ABSORPTION IN WATER VAPOR, Radiophysics & Quantum Electronics, 2015 , Volume 58 , Number 4,
H2 O
T=300 К
P=∅
4. M.A.Koshelev, et al. (2011) (300K)
Волновое число (см⁻¹)
Коэффициент поглощения (см⁻¹Торр⁻²)
Frequency dependences of the absorption coefficient (17) obtained using a factor of 600 scaled-down continuum absorption in water vapor according to experimental data from [22] (dashed curves).
[22]. M. A.Koshelev, E.A. Serov, V.V. Parshin, et al., J. Quant. Spectrosc. Radiat. Transfer, 112, 2704 (2011).
2011
M.A. Koshelev, E.A. Serov, V.V. Parshin, M.Yu. Tretyakov , Millimeter wave continuum absorption in moist nitrogen at temperatures 261–328 K, Journal of Quantitative Spectroscopy and Radiative Transfer, 2011 , Volume 112 , Issue 17, Pages 2704–2712.
Частота (ГГц)
Коэффициент поглощения (дБ/км)
2015
M. Yu. Tretyakov, A. A. Sysoev, T. A. Odintsova, and A. A. Kyuberis , COLLISION-INDUCED DIPOLE MOMENT AND MILLIMETER AND SUBMILLIMETER CONTINUUM ABSORPTION IN WATER VAPOR, Radiophysics & Quantum Electronics, 2015 , Volume 58 , Number 4,
H2 O
T=300 К
P=∅
5. Leforestier, C., et al. (2010)
Волновое число (см⁻¹)
Коэффициент поглощения (см⁻¹Торр⁻²)
The frequency dependence of the spectrum taken from [12] solid curve 2) for a frequency range of 0 to 500 cm−1 at T = 300°K.
12.Leforestier C., Tipping, R. H., Ma Q., Temperature dependences of mechanisms responsible for the water-vapor continuum absorption. II. Dimers and collision-induced absorption, Journal of Chemical Physics, 2010 , Volume 132 , Issue 16, Pages 164302, DOI: 10.1063/1.3384653
2010
Leforestier C., Tipping, R. H., Ma Q. , Temperature dependences of mechanisms responsible for the water-vapor continuum absorption. II. Dimers and collision-induced absorption
, Journal of Chemical Physics, 2010 , Volume 132 , Issue 16,
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
2015
Olga B. Rodimova , Continuum water vapor absorption in the 4000–8000 cm-1 region, Proc. SPIE 9680, 21st International Symposium Atmospheric and Ocean Optics: Atmospheric Physics, SPIE - The international society for optical engineering, 2015 , Pages 968002.
H2 O
T=∅
P=∅
1. Bicknell W.E., et al. (2006)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Water vapor self-continuum absorption coefficients measured in different experiments at temperatures approaching room temperature: the squares are experiment [10]. 120, 23-35 (2013).
[10] Bicknell, W.E., Cecca, S.D., Griffin, M.K., Swartz, S.D. and Flusberg, A., “Search for low-absorption regions in the 1.6-and 2.1-μm atmospheric windows,” J.Directed Energy 2, 151–161 (2006).
2006
Bicknell W.E., Cecca S.D., Griffin M.K., S. D. Swartz, and A. Flusberg , Search for low-absorption regions in the 1.6-and 2.1-μm atmospheric windows, Journal of Directed Energy, 2006 , Volume 2 , Pages 151–161.
Длина волны (мкм)
Коэффициент поглощения (Км⁻¹)
2015
Olga B. Rodimova , Continuum water vapor absorption in the 4000–8000 cm-1 region, Proc. SPIE 9680, 21st International Symposium Atmospheric and Ocean Optics: Atmospheric Physics, SPIE - The international society for optical engineering, 2015 , Pages 968002.
H2 O
T=296 К
P=∅
1. Burch, D.E. (1982)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Water vapor self-continuum absorption coefficients measured in different experiments at temperatures approaching room temperature: the open circles are experiments in the 8–12 and 3–5 μm spectral regions [12].
[12] Burch, D.E., “Continuum absorption by H2 O,” Report AFGL-TR-81-0300. 46 p. (1982)
1984
Burch D.E., Alt R.L. , Continuum absorption by H2 O in the 700 - 1200 cm-1 and 2400 - 2800 cm-1 windows, Report AFGL-TR-84-0128 by Ford Aerospace and Communications Corporation, Aeronutronic Division to AFGL, United States Air Force, Hanscom AFB, Unknown, 1984 , Pages 31.
H2 O
T=296 К
P=∅
2. (296K, 700-1100cm⁻¹)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
The curve for 296°K from Figure 1 is repeated for comparison.
2015
Olga B. Rodimova , Continuum water vapor absorption in the 4000–8000 cm-1 region, Proc. SPIE 9680, 21st International Symposium Atmospheric and Ocean Optics: Atmospheric Physics, SPIE - The international society for optical engineering, 2015 , Pages 968002.
H2 O
T=∅
P=∅
1. Mondelain, D., et al. (2013)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Water vapor self-continuum absorption coefficients measured in different experiments at temperatures approaching room temperature: the triangles are experiment [11].
[11] Mondelain, D., Aradj, A., Kassi, S. and Campargue, A., “The water vapour self-continuum by CRDS at room temperature in the 1.6 mm transparency window,” J. Quant. Spectrosc. and Radiat. Transfer. 130, 381-391 (2013).
2013
D. Mondelain, A.Aradj, S.Kassi, A.Campargue , The water vapour self-continuum by CRDS at room temperature in the 1.6 μm transparency window, Journal of Quantitative Spectroscopy and Radiative Transfer, 2013 , Volume 130 , Pages 381-391.
H2 O
T=296 К
P=0.0131579 атм
10. This work
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Spectral dependence of the self-continuum cross-section, Cs , at room temperature derived in this work.
2015
Olga B. Rodimova , Continuum water vapor absorption in the 4000–8000 cm-1 region, Proc. SPIE 9680, 21st International Symposium Atmospheric and Ocean Optics: Atmospheric Physics, SPIE - The international society for optical engineering, 2015 , Pages 968002.
H2 O
T=∅
P=∅
1.Ptashnik, et al. (2011), Paynter, et al. (2009), Ptasnik, et al. (2013)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Water vapor self-continuum absorption coefficients measured in different experiments at temperatures approaching room temperature: the full circles are experiments [1,8,9].
[1] Ptashnik, I.V., Shine, K.P. and Vigasin, A.A., “Water vapour self-continuum and water dimers: 1. Analysis of recent work,” J. Quant. Spectrosc. and Radiat. Transfer. 112, 1286-1303 (2011).
[8] Paynter, D.J., Ptashnik, I.V., Shine, K.P., Smith, K.M., McPheat, R. and Williams, R.G., “Laboratory measurements of the water vapour continuum in the 1200–8000 cm- 1 region between 293 K and 351 K,“ J. Geophys.Res. 114, D21301 (2009).
[9] Ptashnik, I.V. , Petrova, T.M., Ponomarev, Yu.N., Shine, K.P., Solodov, A.A. and Solodov, A.M., “Nearinfrared water vapour self-continuum at close to room temperature,” J. Quant. Spectrosc. and Radiat. Transfer. 120, 23-35 (2013).
2009
Paynter D.J., Ptashnik I.V., Shine K.P., Smith K.M., McPheat R.M., Williams R.G. , Laboratory measurements of the water vapor continuum in the 1200-8000 cm-1 region between 293K and 351 K, Journal of Geophysical Research, 2009 , Volume 114 , Pages D21301.
H2 O
T=293 К
P=0.0153 атм
7. This work (LPAC) (293 K, 5000-5600 cm⁻¹)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
The self continuum derived from a pure water vapor measurement in the LPAC between 5000 and 5600 cm-1 conducted at 15.3 mb and 293°K with a 512.75 m path length. T
2015
Olga B. Rodimova , Continuum water vapor absorption in the 4000–8000 cm-1 region, Proc. SPIE 9680, 21st International Symposium Atmospheric and Ocean Optics: Atmospheric Physics, SPIE - The international society for optical engineering, 2015 , Pages 968002.
H2 O
T=∅
P=∅
4. Ptashnik, I.V., et al. (2013)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Water vapor self-continuum absorption in the 50−9000 cm-1 range calculated with the use of the function χ derived for different spectral intervals between the absorption bands. The circles are the experimental data [9].
[9] Ptashnik, I.V. , Petrova, T.M., Ponomarev, Yu.N., Shine, K.P., Solodov, A.A. and Solodov, A.M., “Near-infrared water vapour self-continuum at close to room temperature,” J. Quant. Spectrosc. and Radiat. Transfer. 120, 23-35 (2013).
2013
I.V. Ptashnik, T.M. Petrova, Yu.N. Ponomarev, K.P. Shine, A.A. Solodov, A.M. Solodov
, Near-infrared water vapour self-continuum at close to room temperature , Journal of Quantitative Spectroscopy and Radiative Transfer, 2013 , Volume 120 , Pages 23-35.
H2 O
T=289 К
P=1 атм
1. The total error of the retrieval Cs + DCs
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
The total error of the retrieval, including experimental errors and uncertainty in spectral line parameters, is presented by ΔCs
2015
Olga B. Rodimova , Continuum water vapor absorption in the 4000–8000 cm-1 region, Proc. SPIE 9680, 21st International Symposium Atmospheric and Ocean Optics: Atmospheric Physics, SPIE - The international society for optical engineering, 2015 , Pages 968002.
H2 O
T=289.5 К
P=1 атм
5. Ptashnik, I.V., et al. (2013) (289.5K, 4900-7600 cm⁻¹)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Water vapor self-continuum absorption in the 5000−8000 см-1 region. The experimental data [9] are shown by circles.
[9] Ptashnik, I.V. , Petrova, T.M., Ponomarev, Yu.N., Shine, K.P., Solodov, A.A. and Solodov, A.M., Near-infrared water vapour self-continuum at close to room temperature, J. Quant. Spectrosc. and Radiat. Transfer. 120, 23-35 (2013).
2013
I.V. Ptashnik, T.M. Petrova, Yu.N. Ponomarev, K.P. Shine, A.A. Solodov, A.M. Solodov
, Near-infrared water vapour self-continuum at close to room temperature , Journal of Quantitative Spectroscopy and Radiative Transfer, 2013 , Volume 120 , Pages 23-35.
H2 O
T=289 К
P=1 атм
1. The total error of the retrieval Cs + DCs
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
The total error of the retrieval, including experimental errors and uncertainty in spectral line parameters, is presented by ΔCs
2015
Olga B. Rodimova , Continuum water vapor absorption in the 4000–8000 cm-1 region, Proc. SPIE 9680, 21st International Symposium Atmospheric and Ocean Optics: Atmospheric Physics, SPIE - The international society for optical engineering, 2015 , Pages 968002.
H2 O
T=296 К
P=∅
6. Ptashnik, I.V., et al. (2011)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Experimental Н2 О self-continuum (T=296°K) versus predicted absorption spectra of bound and metastable dimers [1] and present calculations for the 1400−1900 cm-1 band. The black dots are the experimental data.
[1] Ptashnik, I.V., Shine, K.P. and Vigasin, A.A., Water vapour self-continuum and water dimers: 1. Analysis of recent work, J. Quant. Spectrosc. and Radiat. Transfer. 112, 1286-1303 (2011).
2011
I.V. Ptashnik, K.P. Shine, A.A. Vigasin , Water vapour self-continuum and water dimers: 1. Analysis of recent work, Journal of Quantitative Spectroscopy and Radiative Transfer, 2011 , Volume 112 , Issue 8, Pages 1286–1303.
H2 O
T=295 К
P=∅
5A. Paynter D.J., et al. (2009). Experimental continuum
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
The experimental water vapour self-continuum, derived from measurements made by Paynter et al. [41], in the 1600 cm-1 water vapour band at 295°K.
[41] Paynter D.J., Ptashnik I.V., Shine K.P., Smith K.M., McPheat R., Williams R.G. Laboratory measurements of the water vapor continuum in the 1200–8000 cm-1 region between 293°K and 351°K. J Geophys Res 2009;114:D21301.
2015
Olga B. Rodimova , Continuum water vapor absorption in the 4000–8000 cm-1 region, Proc. SPIE 9680, 21st International Symposium Atmospheric and Ocean Optics: Atmospheric Physics, SPIE - The international society for optical engineering, 2015 , Pages 968002.
H2 O
T=296 К
P=∅
6a. Ptashnik, et al. (2011)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Experimental Н2 О self-continuum (T =296°K) versus predicted absorption spectra of bound and metastable dimers [1] and present calculations for the 3500-3900 cm-1 band.
[1] Ptashnik, I.V., Shine, K.P. and Vigasin, A.A., “Water vapour self-continuum and water dimers: 1. Analysis of recent work,” J. Quant. Spectrosc. and Radiat. Transfer. 112, 1286-1303 (2011).
2011
I.V. Ptashnik, K.P. Shine, A.A. Vigasin , Water vapour self-continuum and water dimers: 1. Analysis of recent work, Journal of Quantitative Spectroscopy and Radiative Transfer, 2011 , Volume 112 , Issue 8, Pages 1286–1303.
H2 O
T=295 К
P=∅
5aB. The experimental water vapour self-continuum
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
The experimental water vapour self-continuum, derived from measurements made by Paynter et al. [41], in the 3600 cm-1 water vapour band at 295°K.
[41] Paynter D.J,. Ptashnik I.V., Shine K.P., Smith K.M., McPheat R., Williams R.G. Laboratory measurements of the water vapor continuum in the 1200–8000 cm-1 region between 293 K and 351 K. J Geophys Res 2009;114:D21301.
2015
Olga B. Rodimova , Continuum water vapor absorption in the 4000–8000 cm-1 region, Proc. SPIE 9680, 21st International Symposium Atmospheric and Ocean Optics: Atmospheric Physics, SPIE - The international society for optical engineering, 2015 , Pages 968002.
H2 O
T=296 К
P=∅
6b. Ptashnik, I.V., et al. (2011)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Experimental Н2 О self-continuum (T =296°K) versus predicted absorption spectra of bound and metastable dimers1 and present calculations for the 5200–5500 cm-1 band. The black dots are the experimental data.
[1] Ptashnik, I.V., Shine, K.P. and Vigasin, A.A., “Water vapour self-continuum and water dimers: 1. Analysis of recent work,” J. Quant. Spectrosc. and Radiat. Transfer. 112, 1286-1303 (2011).
2011
I.V. Ptashnik, K.P. Shine, A.A. Vigasin , Water vapour self-continuum and water dimers: 1. Analysis of recent work, Journal of Quantitative Spectroscopy and Radiative Transfer, 2011 , Volume 112 , Issue 8, Pages 1286–1303.
H2 O
T=296 К
P=∅
5c. Averaged spectra of the retrieved self-continuum Cs (296K)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Averaged spectra of the retrieved self-continuum Cs at different temperatures (left-hand axis), illustrating the temperature dependence of the continuum in the 3600 cm-1 water vapour band.
[41] Paynter DJ, Ptashnik IV, Shine KP, Smith KM, McPheat R, Williams RG. Laboratory measurements of the water vapor continuum in the 1200–8000 cm-1 region between 293°K and 351°K. J Geophys Res 2009;114:D21301.
2015
T.E. Klimeshina, O.B. Rodimova , Water-vapor foreign-continuum absorption in the 8–12 and 3–5 μm atmospheric windows, Journal of Quantitative Spectroscopy and Radiative Transfer, 2015 , Volume 161 , Pages 145–152.
H2 O
T=326 К
P=∅
2. Baranov Yu. I., et al. (2012). Lower error bound of measurements
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
H2 O + N2 continuum absorption in the 800–1230 сm-1 region: the dotted curve is the measurement error bounds.
Baranov Yu. I., Lafferty W. J., The water vapour self- and water–nitrogen continuum absorption in the 1000 and 2500 cm−1 atmospheric windows, Philosophical Transactions of the Royal Society of London Series A: Physical Sciences and Engineering, 2012 , Volume 370 , Pages 2578-2589, DOI: 10.1098/rsta.2011.0234
2012
Baranov Yu. I., Lafferty W. J. , The water vapour self- and water–nitrogen continuum absorption in the 1000 and 2500 cm−1 atmospheric windows, Philosophical Transactions of the Royal Society of London Series A: Physical Sciences and Engineering, 2012 , Volume 370 , Pages 2578-2589.
H2 O
T=351.9 К
P=∅
3. Baranov, Yu.I., et al. (2011) (351.9K)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
The results from Baranov and Lafferty [12].
[12] Baranov, Yu. I. & Lafferty, W. J. 2011 The water-vapor continuum and selective absorption in the 3–5 mm spectral region at temperatures from 311° to 363°K. J. Quant. Spectrosc. Radiat. Transfer. 112, 1304–1313. (doi:10.1016/j.jqsrt.2011.01.024).
2015
T.E. Klimeshina, O.B. Rodimova , Water-vapor foreign-continuum absorption in the 8–12 and 3–5 μm atmospheric windows, Journal of Quantitative Spectroscopy and Radiative Transfer, 2015 , Volume 161 , Pages 145–152.
H2 O
T=326 К
P=∅
2. Baranov Yu. I., et al. (2012). Upper error bound of measurements
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
H2 O+N2 continuum absorption in the 800–1230 сm-1 region: the dotted curve is measurement error bounds.
Baranov Yu. I., Lafferty W. J., The water vapour self- and water–nitrogen continuum absorption in the 1000 and 2500 cm−1 atmospheric windows, Philosophical Transactions of the Royal Society of London Series A: Physical Sciences and Engineering, 2012 , Volume 370 , Pages 2578-2589, DOI: 10.1098/rsta.2011.0234.
2012
Baranov Yu. I., Lafferty W. J. , The water vapour self- and water–nitrogen continuum absorption in the 1000 and 2500 cm−1 atmospheric windows, Philosophical Transactions of the Royal Society of London Series A: Physical Sciences and Engineering, 2012 , Volume 370 , Pages 2578-2589.
H2 O
T=351.9 К
P=∅
3. MT CKD (351.9K)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
The MT_CKD model in the 10 and 4 μm regions at temperature 351.9°К.
2016
Andreas Reichert , Quantification of the Infrared Water Vapor Continuum by Atmospheric Measurements, Unknown, 2016 ,
H2 O
T=∅
P=∅
12a. Bicknell W., et al. (2006)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹)
The calorimetric-interferometric measurements of Bicknell et al. (2006).
Bicknell, W., Cecca, S., Griffin, M., Swartz, S., and Flusberg, A.: Search for low absorption regions in the 1.6 and 2.1 μm atmospheric windows, J. Dir. Energy, 2, 151–161, 2006.
2006
Bicknell W.E., Cecca S.D., Griffin M.K., S. D. Swartz, and A. Flusberg , Search for low-absorption regions in the 1.6-and 2.1-μm atmospheric windows, Journal of Directed Energy, 2006 , Volume 2 , Pages 151–161.
H2 O
T=∅
P=∅
7. Measurement
Длина волны (мкм)
Коэффициент поглощения (Км⁻¹)
1.6-μm H2 O vapor measurement
2016
Andreas Reichert , Quantification of the Infrared Water Vapor Continuum by Atmospheric Measurements, Unknown, 2016 ,
H2 O
T=∅
P=∅
12a. Mondelain et al. (2015)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹)
The CRDS measurements of Mondelain et al. (2015).
Mondelain, D., Vasilchenko, S., Cermak, P., Kassi, S., and Campargue, A.: The self- and foreign-absorption continua of water vapor by cavity ring-down spectroscopy near 2.35 μm, Phys. Chem. Chem. Phys., 17, 17 762–17 770, doi:10.1039/C5CP01238D, 2015.
2015
Didier Mondelain, Semen Vasilchenko, Peter Cermak, Samir Kassi, Alain Campargue , The self- and foreign-absorption continua of water vapor by cavity ring-down spectroscopy near 2.35 µm, Physical Chemistry Chemical Physics, 2015 , Volume 17 , Issue 27, Pages 17762-17770.
H2 O
T=296 К
P=∅
7. E.J. Mlawer, et al. (2012) (296K)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Spectral dependence of the self-continuum cross-section, CS, at room temperature derived from the MT_CKD V2.5 model 13 (black solid line).
[13] E. J. Mlawer, V. H. Payne, J. L. Moncet, J. S. Delamere, M. J. Alvarado and D. C. Tobin, Philos. Trans. R. Soc., A, 2012, 370, 2520–2556.
2016
Andreas Reichert , Quantification of the Infrared Water Vapor Continuum by Atmospheric Measurements, Unknown, 2016 ,
H2 O
T=∅
P=∅
12a. Ptashnik et al. (2012, 2013)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹)
The FTIR measurements of Ptashnik et al. (2012, 2013).
Ptashnik, I. V., McPheat, R. A., Shine, K. P., Smith, K. M., and Williams, R. G.: Water vapour foreign-continuum absorption in near-infrared windows from laboratory measurements, Philos. T. Roy. Soc. A., 370, 2557–2577, doi:10.1098/rsta.2011.0218, 2012.
Ptashnik, I. V., Petrova, T. M., Ponomarev, Y., Shine, K. P., Solodov, A. A., and Solodov, A. M.: Near-infrared water vapour self-continuum at close to room temperature, J. Quant. Spectrosc. Radiat. Transfer, 120, 23–35, doi:10.1016/j.jqsrt.2013.02.016, 2013.
2013
I.V. Ptashnik, T.M. Petrova, Yu.N. Ponomarev, K.P. Shine, A.A. Solodov, A.M. Solodov
, Near-infrared water vapour self-continuum at close to room temperature , Journal of Quantitative Spectroscopy and Radiative Transfer, 2013 , Volume 120 , Pages 23-35.
H2 O
T=318 К
P=1 атм
2. The total error of the retrieval Cs - DCs
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
The total error of the retrieval, including experimental errors and uncertainty in spectral line parameters, is presented by ΔCs
2016
Campargue, A., Kassi, S., Mondelain, D., Vasilchenko, S., and Romanini , Accurate laboratory determination of the near infrared water vapor self-continuum: A test of the MT_CKD model, Journal of Geophysical Research: Atmospheres, 2016 , Volume 121 , Pages 13,180–13,203.
H2 O
T=∅
P=∅
1. Bicknell W.E. et al. [2006]
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
The results reported by Bicknell et al. [2006] by calorimetric interferometry.
Bicknell, W. E., S. D. Cecca, and M. K. Griffin (2006), Search for low-absorption regimes in the 1.6 and 2.1 μm atmospheric windows, J. Dir. Energy, 2, 151–161
2006
Bicknell W.E., Cecca S.D., Griffin M.K., S. D. Swartz, and A. Flusberg , Search for low-absorption regions in the 1.6-and 2.1-μm atmospheric windows, Journal of Directed Energy, 2006 , Volume 2 , Pages 151–161.
H2 O
T=∅
P=∅
7. Measurement
Длина волны (мкм)
Коэффициент поглощения (Км⁻¹)
1.6-μm H2 O vapor measurement
2016
Campargue, A., Kassi, S., Mondelain, D., Vasilchenko, S., and Romanini , Accurate laboratory determination of the near infrared water vapor self-continuum: A test of the MT_CKD model, Journal of Geophysical Research: Atmospheres, 2016 , Volume 121 , Pages 13,180–13,203.
H2 O
T=∅
P=∅
1. Bicknell et al. (2006)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
The results reported by Bicknell et al. [2006] by calorimetric interferometry in air.
Bicknell, W. E., S. D. Cecca, and M. K. Griffin (2006), Search for low-absorption regimes in the 1.6 and 2.1 μm atmospheric windows, J. Dir. Energy, 2, 151–161.
2006
Bicknell W.E., Cecca S.D., Griffin M.K., S. D. Swartz, and A. Flusberg , Search for low-absorption regions in the 1.6-and 2.1-μm atmospheric windows, Journal of Directed Energy, 2006 , Volume 2 , Pages 151–161.
H2 O
T=∅
P=∅
7. Measurement
Длина волны (мкм)
Коэффициент поглощения (Км⁻¹)
1.6-μm H2 O vapor measurement
2016
Campargue, A., Kassi, S., Mondelain, D., Vasilchenko, S., and Romanini , Accurate laboratory determination of the near infrared water vapor self-continuum: A test of the MT_CKD model, Journal of Geophysical Research: Atmospheres, 2016 , Volume 121 , Pages 13,180–13,203.
H2 O
T=296 К
P=1 атм
1. Burch D.E., et al. (1984) Experiment (296K, 400-2640cm⁻¹)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Self-broadening coefficients between 2400 and 2640 cm-1 for 296°K.
Burch, D.E., and R.L. Alt (1984), Continuum absorption by H2 O in the 700–1200 cm-1 and 2400–2800 cm-1 windows. Report AFGL-TR-84-0128, Air Force Geophys. Laboratory, Hanscom AFB, Mass.
1984
Burch D.E., Alt R.L. , Continuum absorption by H2 O in the 700 - 1200 cm-1 and 2400 - 2800 cm-1 windows, Report AFGL-TR-84-0128 by Ford Aerospace and Communications Corporation, Aeronutronic Division to AFGL, United States Air Force, Hanscom AFB, Unknown, 1984 , Pages 31.
H2 O
T=296 К
P=∅
6. Fitting (296K) (2400-2640cm⁻¹)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Self-broadening coefficients between 2400 and 2640 cm-1 for 296°K.
2016
Campargue, A., Kassi, S., Mondelain, D., Vasilchenko, S., and Romanini , Accurate laboratory determination of the near infrared water vapor self-continuum: A test of the MT_CKD model, Journal of Geophysical Research: Atmospheres, 2016 , Volume 121 , Pages 13,180–13,203.
H2 O
T=311 К
P=1 атм
1. Yu.I. Baranov, et al. (2011) (T=311K)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Water-vapor self-broadened continuum.
2011
Yu.I. Baranov, W.J. Lafferty , The water-vapor continuum and selective absorption in the 3–5 μm spectral region at temperatures from 311 to 363 K, Journal of Quantitative Spectroscopy and Radiative Transfer, 2011 , Volume 112 , Issue 8, Pages 1304-1313.
H2 O
T=∅
P=∅
5. This work (T=311K)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Water-vapor self-broadened continuum.
2016
Campargue, A., Kassi, S., Mondelain, D., Vasilchenko, S., and Romanini , Accurate laboratory determination of the near infrared water vapor self-continuum: A test of the MT_CKD model, Journal of Geophysical Research: Atmospheres, 2016 , Volume 121 , Pages 13,180–13,203.
H2 O
T=∅
P=∅
13. Bicknell, W. E. et al.(2006)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
The experiment determinations of self-continuum cross sections of water vapor near room temperature.
2006
Bicknell W.E., Cecca S.D., Griffin M.K., S. D. Swartz, and A. Flusberg , Search for low-absorption regions in the 1.6-and 2.1-μm atmospheric windows, Journal of Directed Energy, 2006 , Volume 2 , Pages 151–161.
H2 O
T=∅
P=∅
7. Measurement
Длина волны (мкм)
Коэффициент поглощения (Км⁻¹)
1.6-μm H2 O vapor measurement
2016
Campargue, A., Kassi, S., Mondelain, D., Vasilchenko, S., and Romanini , Accurate laboratory determination of the near infrared water vapor self-continuum: A test of the MT_CKD model, Journal of Geophysical Research: Atmospheres, 2016 , Volume 121 , Pages 13,180–13,203.
H2 O
T=∅
P=∅
13. Bicknell, W. E., et al. (2006)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
The experiment determinations of self-continuum cross sections of water vapor near room temperature.
2006
Bicknell W.E., Cecca S.D., Griffin M.K., S. D. Swartz, and A. Flusberg , Search for low-absorption regions in the 1.6-and 2.1-μm atmospheric windows, Journal of Directed Energy, 2006 , Volume 2 , Pages 151–161.
H2 O
T=∅
P=∅
7. Measurement
Длина волны (мкм)
Коэффициент поглощения (Км⁻¹)
1.6-μm H2 O vapor measurement
2016
Campargue, A., Kassi, S., Mondelain, D., Vasilchenko, S., and Romanini , Accurate laboratory determination of the near infrared water vapor self-continuum: A test of the MT_CKD model, Journal of Geophysical Research: Atmospheres, 2016 , Volume 121 , Pages 13,180–13,203.
H2 O
T=296 К
P=∅
13. Burch D.E., et al. (1984) (296K, 2400-2640cm⁻¹)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Self-broadening coefficients between 2400 and 2640 cm-1 for 296°K.
Burch, D.E., and R.L. Alt (1984), Continuum absorption by H2 O in the 700–1200 cm-1 and 2400–2800 cm-1 windows. Report AFGL-TR-84-0128, Air Force Geophys. Laboratory, Hanscom AFB, Mass.
1984
Burch D.E., Alt R.L. , Continuum absorption by H2 O in the 700 - 1200 cm-1 and 2400 - 2800 cm-1 windows, Report AFGL-TR-84-0128 by Ford Aerospace and Communications Corporation, Aeronutronic Division to AFGL, United States Air Force, Hanscom AFB, Unknown, 1984 , Pages 31.
H2 O
T=296 К
P=∅
6. Fitting (296K) (2400-2640cm⁻¹)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Self-broadening coefficients between 2400 and 2640 cm-1 for 296°K.
2016
Campargue, A., Kassi, S., Mondelain, D., Vasilchenko, S., and Romanini , Accurate laboratory determination of the near infrared water vapor self-continuum: A test of the MT_CKD model, Journal of Geophysical Research: Atmospheres, 2016 , Volume 121 , Pages 13,180–13,203.
H2 O
T=∅
P=∅
13. Mondelain, D., et al. (2015)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
The experiment determinations of self-continuum cross sections of water vapor near room temperature.
2015
Didier Mondelain, Semen Vasilchenko, Peter Cermak, Samir Kassi, Alain Campargue , The self- and foreign-absorption continua of water vapor by cavity ring-down spectroscopy near 2.35 µm, Physical Chemistry Chemical Physics, 2015 , Volume 17 , Issue 27, Pages 17762-17770.
H2 O
T=296 К
P=∅
7. E.J. Mlawer, et al. (2012) (296K)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Spectral dependence of the self-continuum cross-section, CS, at room temperature derived from the MT_CKD V2.5 model 13 (black solid line).
[13] E. J. Mlawer, V. H. Payne, J. L. Moncet, J. S. Delamere, M. J. Alvarado and D. C. Tobin, Philos. Trans. R. Soc., A, 2012, 370, 2520–2556.
2016
Campargue, A., Kassi, S., Mondelain, D., Vasilchenko, S., and Romanini , Accurate laboratory determination of the near infrared water vapor self-continuum: A test of the MT_CKD model, Journal of Geophysical Research: Atmospheres, 2016 , Volume 121 , Pages 13,180–13,203.
H2 O
T=∅
P=∅
13. Ventrillard, I., et al. (2015)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
The experiment determinations of self-continuum cross sections of water vapor near room temperature.
2017
Richard, L., Vasilchenko, S., Mondelain, D., Ventrillard, I., Romanini, D., and Campargue, A. , Water vapor self-continuum absorption measurements in the 4.0 and 2.1 μm transparency windows, Journal of Quantitative Spectroscopy and Radiative Transfer, 2017 , Volume 201 , Pages 171–179.
H2 O
T=∅
P=∅
9. Campargue A., et al. (2016) (4300-4400 cm⁻¹)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Spectral dependence of self-continuum cross-section at room temperature in the 2.1 μm window. Our CRDS [12] measurements.
[12] Campargue A., Kassi S., Mondelain D., Vasilchenko S., Romanini D. Accurate laboratory determination of the near infrared water vapor self-continuum: A test of the MT_CKD model. J Geophys Res Atmos, 121,13,180–13,203, 2016, doi: 10.1002/ 2016JD025531.
2016
Campargue, A., Kassi, S., Mondelain, D., Vasilchenko, S., and Romanini , Accurate laboratory determination of the near infrared water vapor self-continuum: A test of the MT_CKD model, Journal of Geophysical Research: Atmospheres, 2016 , Volume 121 , Pages 13,180–13,203.
H2 O
T=296 К
P=1 атм
4. Burch, D. E., et al. (1984) (T=296K, 2400-2630 cm⁻¹)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Spectral dependence of the self-continuum cross section, Cs , at room temperature derived from Burch and Alt [1984] with a grating spectrograph.
1984
Burch D.E., Alt R.L. , Continuum absorption by H2 O in the 700 - 1200 cm-1 and 2400 - 2800 cm-1 windows, Report AFGL-TR-84-0128 by Ford Aerospace and Communications Corporation, Aeronutronic Division to AFGL, United States Air Force, Hanscom AFB, Unknown, 1984 , Pages 31.
H2 O
T=296 К
P=∅
6. Experiment (296K, 2400-2640cm⁻¹)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Self-broadening coefficients between 2400 and 2640 cm-1 for 296°K.
2016
Campargue, A., Kassi, S., Mondelain, D., Vasilchenko, S., and Romanini , Accurate laboratory determination of the near infrared water vapor self-continuum: A test of the MT_CKD model, Journal of Geophysical Research: Atmospheres, 2016 , Volume 121 , Pages 13,180–13,203.
H2 O
T=289.5 К
P=1 атм
4. Ptashnik, I.V., et al., (2013) (289K, 2100-2700 cm⁻¹)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Spectral dependence of the self-continuum cross section, Cs , at room temperature measured by [Ptashnik et al., 2013].
2013
I.V. Ptashnik, T.M. Petrova, Yu.N. Ponomarev, K.P. Shine, A.A. Solodov, A.M. Solodov
, Near-infrared water vapour self-continuum at close to room temperature , Journal of Quantitative Spectroscopy and Radiative Transfer, 2013 , Volume 120 , Pages 23-35.
H2 O
T=289 К
P=1 атм
1. Absorption cross-section of the self-continuum. H₂O. (T=298K)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Spectrally smoothed absorption cross-section Cs (ν) (10-22 cm2 molec-1 atm-1 ) of the self-continuum, derived in this work near 289°K, and defined according Eq. (3).
2016
Campargue, A., Kassi, S., Mondelain, D., Vasilchenko, S., and Romanini , Accurate laboratory determination of the near infrared water vapor self-continuum: A test of the MT_CKD model, Journal of Geophysical Research: Atmospheres, 2016 , Volume 121 , Pages 13,180–13,203.
H2 O
T=∅
P=∅
5. Baranov, Yu.I., et al. Temperature dependence of the water vapor. (2011). (2288 cm⁻¹)
1000/Т (К⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Temperature dependence of the water vapor self-continuum crosssections near 2283 cm-1 obtained by Baranov and Lafferty [2011].
2011
Yu.I. Baranov , The continuum absorption in H2 O+N2 mixtures in the 2000–3250 cm-1 spectral region at temperatures from 326 to 363 K, Journal of Quantitative Spectroscopy and Radiative Transfer, 2011 , Volume 112 , Issue 14, Pages 2281-2286.
1/Т (К⁻¹)Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹) Коэффициент поглощения (см²мол⁻¹атм⁻¹)
2016
Campargue, A., Kassi, S., Mondelain, D., Vasilchenko, S., and Romanini , Accurate laboratory determination of the near infrared water vapor self-continuum: A test of the MT_CKD model, Journal of Geophysical Research: Atmospheres, 2016 , Volume 121 , Pages 13,180–13,203.
H2 O
T=∅
P=∅
5. Burch, D.E., et al. (1984) (2400 cm⁻¹)
1000/Т (К⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Temperature dependence of the water vapor self-continuum crosssections near 2283 cm-1 obtained by grating spectrograph from Burch and Alt [1984] at 2400 cm-1 .
1984
Burch D.E., Alt R.L. , Continuum absorption by H2 O in the 700 - 1200 cm-1 and 2400 - 2800 cm-1 windows, Report AFGL-TR-84-0128 by Ford Aerospace and Communications Corporation, Aeronutronic Division to AFGL, United States Air Force, Hanscom AFB, Unknown, 1984 , Pages 31.
H2 O
T=∅
P=∅
8. Wavenumber 2400 cm⁻¹. Temperature dependence. Experiment
1000/Т (К⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Plots of the self-broadening coefficients at 2400 cm-1 versus the reciprocal of temperature. Experiment
2016
Campargue, A., Kassi, S., Mondelain, D., Vasilchenko, S., and Romanini , Accurate laboratory determination of the near infrared water vapor self-continuum: A test of the MT_CKD model, Journal of Geophysical Research: Atmospheres, 2016 , Volume 121 , Pages 13,180–13,203.
H2 O
T=∅
P=∅
9. Mondelain et al. (2015) CRDS
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Spectral dependence of self-continuum cross section at room temperature in the 2.1 μm window. CRDS data reported in Mondelain et al. [2015].
2015
Didier Mondelain, Semen Vasilchenko, Peter Cermak, Samir Kassi, Alain Campargue , The self- and foreign-absorption continua of water vapor by cavity ring-down spectroscopy near 2.35 µm, Physical Chemistry Chemical Physics, 2015 , Volume 17 , Issue 27, Pages 17762-17770.
H2 O
T=298 К
P=∅
7. This work (298K)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Spectral dependence of the self-continuum cross-section: in this work (x).
2016
Julia V. Bogdanova, Olga B. Rodimova , The water vapor absorption in the long wave wing of the rotational band, Proc. SPIE v. 10035, 22nd International Symposium Atmospheric and Ocean Optics: Atmospheric Physics, Editor(s) Gennadii G. Matvienko; Oleg A. Romanovski, SPIE - The international society for optical engineering, 2016 ,
H2 O
T=∅
P=∅
2. Burch (1984)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Self-broadened water vapor absorption coefficient: Burch experimental data
(triangles,1984. Burch D.E. and Alt R.L. Continuum absorption by H2 O in the 700-1200 cm-1 and 2400-2800 cm-1 windows. Report AFGL-TR-84-0128 (1984))
1984
Burch D.E., Alt R.L. , Continuum absorption by H2 O in the 700 - 1200 cm-1 and 2400 - 2800 cm-1 windows, Report AFGL-TR-84-0128 by Ford Aerospace and Communications Corporation, Aeronutronic Division to AFGL, United States Air Force, Hanscom AFB, Unknown, 1984 , Pages 31.
H2 O
T=296 К
P=∅
1. Our experimental results (296K, 700-1100cm⁻¹)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Self-broadening coefficient from 700 cm-1 to 1100 cm-1 at 296°K.
2016
Julia V. Bogdanova, Olga B. Rodimova , The water vapor absorption in the long wave wing of the rotational band, Proc. SPIE v. 10035, 22nd International Symposium Atmospheric and Ocean Optics: Atmospheric Physics, Editor(s) Gennadii G. Matvienko; Oleg A. Romanovski, SPIE - The international society for optical engineering, 2016 ,
H2 O
T=296 К
P=∅
2. Burch D.E., et al. (1974) (296K, 300-850 cm⁻¹)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Self-broadened water vapor absorption coefficient: Burch experimental data.
Burch D.E., Gryvnak D.A., Gates F.J. Continuum absorption by H2 O between 330 and 825 cm-1 Report AFCRL-TR-74-0377 (1974))
1974
Burch D.E., Gryvnak D.A., Gates F.J. , Continuum absorption by H2 O between 330 and 825 cm-1 , Final Report for Period 16 October 1973-30 September 1974, Aeronutronic Division, Philco Ford Corporation, AFCRL-TR-74-0377, Unknown, 1974 ,
H2 O
T=296 К
P=∅
1. Tabular original continuum coefficient e C⁰s (296K, 300-850 cm⁻¹)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
H2 O continuum coefficient for self-broadening (molec-1 cm2 atm-1 )
2016
Julia V. Bogdanova, Olga B. Rodimova , The water vapor absorption in the long wave wing of the rotational band, Proc. SPIE v. 10035, 22nd International Symposium Atmospheric and Ocean Optics: Atmospheric Physics, Editor(s) Gennadii G. Matvienko; Oleg A. Romanovski, SPIE - The international society for optical engineering, 2016 ,
H2 O
T=296 К
P=∅
3. Tretyakov, M Yu., (2014). Curve 1.
Частота (ГГц)
Коэффициент поглощения (см⁻¹)
Water vapor absorption coefficient in the 195–260 GHz region: the total absorption coefficient measured by Tretyakov, M Yu., Koshelev, M. A., Serov, E. A., Parshin, V. V., Odintsova, T. A, and Bubnov, G M , Water dimer and atmospheric continuum, Physics-Uspekhi. 57(11), 1083–1098 (2014) (1)
2014
Mikhail Yu. Tretyakov, Maxim A. Koshelev, Evgenii A. Serov, Vladimir V. Parshin, Tatiana A. Odintsova, Grigoriy M. Bubnov , Water dimer and the atmospheric continuum, Успехи физических наук, 2014 , Volume 57 , Issue 11, Pages 1083-1098.
Волновое число (см⁻¹) Волновое число (см⁻¹)Температура (К)
Коэффициент поглощения (дБ/км) Коэффициент поглощения (см⁻¹)Константа равновесия (м⁻³)
2016
Julia V. Bogdanova, Olga B. Rodimova , The water vapor absorption in the long wave wing of the rotational band, Proc. SPIE v. 10035, 22nd International Symposium Atmospheric and Ocean Optics: Atmospheric Physics, Editor(s) Gennadii G. Matvienko; Oleg A. Romanovski, SPIE - The international society for optical engineering, 2016 ,
H2 O
T=∅
P=∅
3. Tretyakov, M Yu., (2014). Curve 3.
Частота (ГГц)
Коэффициент поглощения (см⁻¹)
Water vapor absorption coefficient in the 195–260 GHz region: the experimental absorption coefficient minus the local contribution (Tretyakov, M Yu., Koshelev, M. A., Serov, E. A., Parshin, V. V., Odintsova, T. A, and Bubnov, G M , “Water dimer and atmospheric continuum,” Physics-Uspekhi. 57(11), 1083–1098 (2014)) (3).
2014
Mikhail Yu. Tretyakov, Maxim A. Koshelev, Evgenii A. Serov, Vladimir V. Parshin, Tatiana A. Odintsova, Grigoriy M. Bubnov , Water dimer and the atmospheric continuum, Успехи физических наук, 2014 , Volume 57 , Issue 11, Pages 1083-1098.
Волновое число (см⁻¹) Волновое число (см⁻¹)Температура (К)
Коэффициент поглощения (дБ/км) Коэффициент поглощения (см⁻¹)Константа равновесия (м⁻³)
2016
Julia V. Bogdanova, Olga B. Rodimova , The water vapor absorption in the long wave wing of the rotational band, Proc. SPIE v. 10035, 22nd International Symposium Atmospheric and Ocean Optics: Atmospheric Physics, Editor(s) Gennadii G. Matvienko; Oleg A. Romanovski, SPIE - The international society for optical engineering, 2016 ,
H2 O
T=296 К
P=0.015789 атм
4. Tretyakov, M Yu., et al. (2014). Experimental absorption minus local contribution
Частота (ГГц)
Коэффициент поглощения (см⁻¹)
Water vapor absorption coefficient in the 195–260 GHz region: the experimental absorption coefficient minus the local contribution [2] calculated with the use of the Van Vleck–Weisskopf contour.
[2] Tretyakov, M Yu., Koshelev, M. A., Serov, E. A., Parshin, V. V., Odintsova, T. A, and Bubnov, G M , “Water dimer and atmospheric continuum,” Physics-Uspekhi. 57(11), 1083–1098 (2014)] (black curve).
2014
Mikhail Yu. Tretyakov, Maxim A. Koshelev, Evgenii A. Serov, Vladimir V. Parshin, Tatiana A. Odintsova, Grigoriy M. Bubnov , Water dimer and the atmospheric continuum, Успехи физических наук, 2014 , Volume 57 , Issue 11, Pages 1083-1098.
Волновое число (см⁻¹) Волновое число (см⁻¹)Температура (К)
Коэффициент поглощения (дБ/км) Коэффициент поглощения (см⁻¹)Константа равновесия (м⁻³)
2016
Julia V. Bogdanova, Olga B. Rodimova , The water vapor absorption in the long wave wing of the rotational band, Proc. SPIE v. 10035, 22nd International Symposium Atmospheric and Ocean Optics: Atmospheric Physics, Editor(s) Gennadii G. Matvienko; Oleg A. Romanovski, SPIE - The international society for optical engineering, 2016 ,
H2 O
T=296 К
P=∅
5. I.V. Ptashnik (2011). Experimental H₂O self-continuum
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Experimental Н2 О self-continuum (T =296°K).
I.V. Ptashnik, K.P. Shine, A.A. Vigasin, Water vapour self-continuum and water dimers: 1. Analysis of recent work, Journal of Quantitative Spectroscopy and Radiative Transfer, 2011 , Volume 112 , Issue 8, Pages 1286–1303, DOI: 10.1016/j.jqsrt.2011.01.012.
2011
I.V. Ptashnik, K.P. Shine, A.A. Vigasin , Water vapour self-continuum and water dimers: 1. Analysis of recent work, Journal of Quantitative Spectroscopy and Radiative Transfer, 2011 , Volume 112 , Issue 8, Pages 1286–1303.
H2 O
T=295 К
P=∅
5aB. The experimental water vapour self-continuum
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
The experimental water vapour self-continuum, derived from measurements made by Paynter et al. [41], in the 3600 cm-1 water vapour band at 295°K.
[41] Paynter D.J,. Ptashnik I.V., Shine K.P., Smith K.M., McPheat R., Williams R.G. Laboratory measurements of the water vapor continuum in the 1200–8000 cm-1 region between 293 K and 351 K. J Geophys Res 2009;114:D21301.
2016
Keith P. Shine, Alain Campargue, Didier Mondelain, Robert A. McPheat, Igor V. Ptashnik, Damien Weidmann , The water vapour continuum in near-infrared windows – Current understanding and prospects for its inclusion in spectroscopic databases, Journal of Molecular Spectroscopy, 2016 , Volume 327 , Pages 193–208.
H2 O
T=296 К
P=∅
3. Burch, D.E., et al. (1984) (296K, 2400 - 2800 cm⁻¹)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Comparison of near-room temperature measurements of the water vapour self-continuum cross-sections between 2000 and 7000 cm-1 .
[14] D.E. Burch, R.L. Alt, Continuum Absorption by H2 O in the 700–1200 cm-1 and 2400–2800 cm-1 windows, Air Force Geophys. Lab, Hanscom AFB, Mass, 1984.
1984
Burch D.E., Alt R.L. , Continuum absorption by H2 O in the 700 - 1200 cm-1 and 2400 - 2800 cm-1 windows, Report AFGL-TR-84-0128 by Ford Aerospace and Communications Corporation, Aeronutronic Division to AFGL, United States Air Force, Hanscom AFB, Unknown, 1984 , Pages 31.
H2 O
T=296 К
P=∅
6. Fitting (296K) (2400-2640cm⁻¹)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Self-broadening coefficients between 2400 and 2640 cm-1 for 296°K.
2016
Keith P. Shine, Alain Campargue, Didier Mondelain, Robert A. McPheat, Igor V. Ptashnik, Damien Weidmann , The water vapour continuum in near-infrared windows – Current understanding and prospects for its inclusion in spectroscopic databases, Journal of Molecular Spectroscopy, 2016 , Volume 327 , Pages 193–208.
H2 O
T=298 К
P=∅
3. CI W.E.Bicknell et al. (2006), self, (298K)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Comparison of near-room temperature measurements of the water vapour self-continuum cross-sections between 2000 and 7000 cm-1 .
[62] W.E. Bicknell, S.D. Cecca, M.K. Griffin, Search for low-absorption regimes in the 1.6 and 2.1 μm atmospheric windows, Journal of Directed Energy, 2 (2006) 151-161.
2006
Bicknell W.E., Cecca S.D., Griffin M.K., S. D. Swartz, and A. Flusberg , Search for low-absorption regions in the 1.6-and 2.1-μm atmospheric windows, Journal of Directed Energy, 2006 , Volume 2 , Pages 151–161.
H2 O
T=∅
P=∅
7. Measurement
Длина волны (мкм)
Коэффициент поглощения (Км⁻¹)
1.6-μm H2 O vapor measurement
2016
Keith P. Shine, Alain Campargue, Didier Mondelain, Robert A. McPheat, Igor V. Ptashnik, Damien Weidmann , The water vapour continuum in near-infrared windows – Current understanding and prospects for its inclusion in spectroscopic databases, Journal of Molecular Spectroscopy, 2016 , Volume 327 , Pages 193–208.
H2 O
T=298 К
P=∅
3. CI W.E.Bicknell et al. (2006), total (298K)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Comparison of near-room temperature measurements of the water vapour self-continuum cross-sections between 2000 and 7000 cm-1 .
[62] Bicknell, S.D. Cecca, M.K. Griffin, Search for low-absorption regimes in the 1.6 and 2.1 μm atmospheric windows, Journal of Directed Energy, 2 (2006) 151-161.
2006
Bicknell W.E., Cecca S.D., Griffin M.K., S. D. Swartz, and A. Flusberg , Search for low-absorption regions in the 1.6-and 2.1-μm atmospheric windows, Journal of Directed Energy, 2006 , Volume 2 , Pages 151–161.
H2 O
T=∅
P=∅
7. Measurement
Длина волны (мкм)
Коэффициент поглощения (Км⁻¹)
1.6-μm H2 O vapor measurement
2016
Keith P. Shine, Alain Campargue, Didier Mondelain, Robert A. McPheat, Igor V. Ptashnik, Damien Weidmann , The water vapour continuum in near-infrared windows – Current understanding and prospects for its inclusion in spectroscopic databases, Journal of Molecular Spectroscopy, 2016 , Volume 327 , Pages 193–208.
H2 O
T=298 К
P=∅
3. CRDS D. Mondelain, et al. (2015) (298K)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Comparison of near-room temperature measurements of the water vapour self-continuum cross-sections between 2000 and 7000 cm-1 .
[59] D. Mondelain, S. Vasilchenko, P. Cermak, S. Kassi, A. Campargue, The self- and foreign-absorption continua of water vapor by cavity ring-down spectroscopy near 2.35 lm, Phys. Chem. Chem. Phys. 17 (2015) 17762–17770, http://dx.doi.org/10.1039/c5cp01238d.
2015
Didier Mondelain, Semen Vasilchenko, Peter Cermak, Samir Kassi, Alain Campargue , The self- and foreign-absorption continua of water vapor by cavity ring-down spectroscopy near 2.35 µm, Physical Chemistry Chemical Physics, 2015 , Volume 17 , Issue 27, Pages 17762-17770.
H2 O
T=298 К
P=∅
7. This work (298K)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Spectral dependence of the self-continuum cross-section: in this work (x).
2016
Keith P. Shine, Alain Campargue, Didier Mondelain, Robert A. McPheat, Igor V. Ptashnik, Damien Weidmann , The water vapour continuum in near-infrared windows – Current understanding and prospects for its inclusion in spectroscopic databases, Journal of Molecular Spectroscopy, 2016 , Volume 327 , Pages 193–208.
H2 O
T=296 К
P=∅
3. D. Mondelain, et al. (2013) (296K)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Comparison of near-room temperature measurements of the water vapour self-continuum cross-sections between 2000 and 7000 cm-1 .
[61] D. Mondelain, A. Aradj, S. Kassi, A. Campargue, The water vapour self-continuum by CRDS at room temperature in the 1.6 lm transparency window, J. Quant. Spectrosc. Radiat. Transfer 130 (2013) 381–391, http://dx.doi.org/10.1016/j.jqsrt.2013.07.006.
2013
D. Mondelain, A.Aradj, S.Kassi, A.Campargue , The water vapour self-continuum by CRDS at room temperature in the 1.6 μm transparency window, Journal of Quantitative Spectroscopy and Radiative Transfer, 2013 , Volume 130 , Pages 381-391.
H2 O
T=296 К
P=0.0131579 атм
10. This work
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Spectral dependence of the self-continuum cross-section, Cs , at room temperature derived in this work.
2016
Keith P. Shine, Alain Campargue, Didier Mondelain, Robert A. McPheat, Igor V. Ptashnik, Damien Weidmann , The water vapour continuum in near-infrared windows – Current understanding and prospects for its inclusion in spectroscopic databases, Journal of Molecular Spectroscopy, 2016 , Volume 327 , Pages 193–208.
H2 O
T=302 К
P=∅
3. D. Mondelain, et al. (2014) (302K)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Comparison of near-room temperature measurements of the water vapour self-continuum cross-sections between 2000 and 7000 cm-1 .
[60] D. Mondelain, S. Manigand, S. Kassi, A. Campargue, Temperature dependence of the water vapor self-continuum by cavity ring-down spectroscopy in the 1.6 lm transparency window, J. Geophys. Res. – Atmos. 119 (2014) 5625–5639, http://dx.doi.org/10.1002/2013jd021319.
2014
D. Mondelain, S. Manigand, S. Kassi, A. Campargue , Temperature dependence of the water vapor self-continuum by cavity ring down spectroscopy in the 1.6 µm transparency window, Journal of Geophysical Research: Atmospheres, 2014 , Volume 119 , Issue 9, Pages 5625–5639.
H2 O
T=302 К
P=∅
7. This work (302 K)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Spectral dependence of the self-continuum cross section,Cs , measured in this work (squares). T=302°K.
2016
Keith P. Shine, Alain Campargue, Didier Mondelain, Robert A. McPheat, Igor V. Ptashnik, Damien Weidmann , The water vapour continuum in near-infrared windows – Current understanding and prospects for its inclusion in spectroscopic databases, Journal of Molecular Spectroscopy, 2016 , Volume 327 , Pages 193–208.
H2 O
T=293 К
P=∅
3. FTS I.V. Ptashnik, et al. (2011) (293K)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Comparison of near-room temperature measurements of the water vapour self-continuum cross-sections between 2000 and 7000 cm-1 .
[23] I.V. Ptashnik, R.A. McPheat, K.P. Shine, K.M. Smith, R.G. Williams, Water vapor self-continuum absorption in near-infrared windows derived from laboratory measurements, Journal of Geophysical Research-Atmospheres, 116 (2011), D16305. 10.1029/2011JD015603.
2011
Ptashnik I.V., McPheat R.A., Shine K.P., Smith K.M., Williams R.G. , Water vapor self-continuum absorption in near-infrared windows derived from laboratory experiments, Journal of Geophysical Research, 2011 , Volume D116 , Pages 16305.
H2 O
T=293 К
P=0.0150999 атм
1. CAVIAR (293K, 1600-5800 cm⁻¹)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
2016
Keith P. Shine, Alain Campargue, Didier Mondelain, Robert A. McPheat, Igor V. Ptashnik, Damien Weidmann , The water vapour continuum in near-infrared windows – Current understanding and prospects for its inclusion in spectroscopic databases, Journal of Molecular Spectroscopy, 2016 , Volume 327 , Pages 193–208.
H2 O
T=267 К
P=∅
3. FTS I.V. Ptashnik, et al. (2015) (287K)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Comparison of near-room temperature measurements of the water vapour self-continuum cross-sections between 2000 and 7000 cm-1 .
[57] I.V. Ptashnik, T.M. Petrova, Y.N. Ponomarev, A.A. Solodov, A.M. Solodov, Water vapor continuum absorption in near-IR atmospheric windows, Atmos. Ocean. Opt. 28 (2015) 115–120, http://dx.doi.org/10.1134/S102485601502009.
2014
Пташник И.В., Петрова Т.М., Пономарев Ю.Н., Солодов А.А., Солодов А.М. , Континуальное поглощение водяного пара в окнах прозрачности ближнего ИК-диапазона , Оптика атмосферы и океана, 2014 , Volume 27 , Number 11, Pages 970-975.
H2 O
T=287 К
P=1 атм
4. This work (287K, 2000-8000 cm⁻¹)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Восстановленное в данной работе сечение поглощения self-continuum при Т=287°K. .
2016
Keith P. Shine, Alain Campargue, Didier Mondelain, Robert A. McPheat, Igor V. Ptashnik, Damien Weidmann , The water vapour continuum in near-infrared windows – Current understanding and prospects for its inclusion in spectroscopic databases, Journal of Molecular Spectroscopy, 2016 , Volume 327 , Pages 193–208.
H2 O
T=311 К
P=∅
3. FTS Yu.I.Baranov et al. (2011) (311K)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Comparison of near-room temperature measurements of the water vapour self-continuum cross-sections between 2000 and 7000 cm-1 .
[16] Y.I. Baranov, W.J. Lafferty, The water-vapor continuum and selective absorption in the 3–5 μm spectral region at temperatures from 311° to 363°K, J. Quant. Spectrosc. Radiat. Transfer 112 (2011) 1304–1313, http://dx.doi.org/10.1016/j.jqsrt.2011.01.024.
2011
Yu.I. Baranov, W.J. Lafferty , The water-vapor continuum and selective absorption in the 3–5 μm spectral region at temperatures from 311 to 363 K, Journal of Quantitative Spectroscopy and Radiative Transfer, 2011 , Volume 112 , Issue 8, Pages 1304-1313.
H2 O
T=310.9 К
P=∅
5. NIST (310.9K)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Water-vapor self-broadened continuum at temperature:310.9K.
2016
Keith P. Shine, Alain Campargue, Didier Mondelain, Robert A. McPheat, Igor V. Ptashnik, Damien Weidmann , The water vapour continuum in near-infrared windows – Current understanding and prospects for its inclusion in spectroscopic databases, Journal of Molecular Spectroscopy, 2016 , Volume 327 , Pages 193–208.
H2 O
T=289.5 К
P=∅
3. I.V. Ptashnik, et al. (2013) (289.5K)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Comparison of near-room temperature measurements of the water vapour self-continuum cross-sections between 2000 and 7000 cm-1 .
[55] I.V. Ptashnik, T.M. Petrova, Y.N. Ponomarev, K.P. Shine, A.A. Solodov, A.M. Solodov, Near-infrared water vapour self-continuum at close to room temperature, J. Quant. Spectrosc. Radiat. Transfer 120 (2013) 23–35, http://dx.doi.org/10.1016/j.jqsrt.2013.02.016.
2013
I.V. Ptashnik, T.M. Petrova, Yu.N. Ponomarev, K.P. Shine, A.A. Solodov, A.M. Solodov
, Near-infrared water vapour self-continuum at close to room temperature , Journal of Quantitative Spectroscopy and Radiative Transfer, 2013 , Volume 120 , Pages 23-35.
H2 O
T=289 К
P=1 атм
1. The total error of the retrieval Cs + DCs
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
The total error of the retrieval, including experimental errors and uncertainty in spectral line parameters, is presented by ΔCs
2016
Keith P. Shine, Alain Campargue, Didier Mondelain, Robert A. McPheat, Igor V. Ptashnik, Damien Weidmann , The water vapour continuum in near-infrared windows – Current understanding and prospects for its inclusion in spectroscopic databases, Journal of Molecular Spectroscopy, 2016 , Volume 327 , Pages 193–208.
H2 O
T=297 К
P=∅
3. OF-CEAS (Grenoble, 2015) (297K)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Comparison of near-room temperature measurements of the water vapour self-continuum cross-sections between 2000 and 7000 cm-1 .
[59] D. Mondelain, S. Vasilchenko, P. Cermak, S. Kassi, A. Campargue, The self- and foreign-absorption continua of water vapor by cavity ring-down spectroscopy near 2.35 μm, Phys. Chem. Chem. Phys. 17 (2015) 17762–17770, http://dx.doi.org/10.1039/c5cp01238d.
2015
Didier Mondelain, Semen Vasilchenko, Peter Cermak, Samir Kassi, Alain Campargue , The self- and foreign-absorption continua of water vapor by cavity ring-down spectroscopy near 2.35 µm, Physical Chemistry Chemical Physics, 2015 , Volume 17 , Issue 27, Pages 17762-17770.
1000/Т (К⁻¹) Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹) Коэффициент поглощения (см²мол⁻¹атм⁻¹)
2016
Keith P. Shine, Alain Campargue, Didier Mondelain, Robert A. McPheat, Igor V. Ptashnik, Damien Weidmann , The water vapour continuum in near-infrared windows – Current understanding and prospects for its inclusion in spectroscopic databases, Journal of Molecular Spectroscopy, 2016 , Volume 327 , Pages 193–208.
H2 O
T=296 К
P=∅
3. R.H.Tipping et al. (1995) (296K)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Comparison of near-room temperature measurements of the water vapour self-continuum cross-sections between 2000 and 7000 cm-1 . Also shown is the self-continuum from Tipping and Ma [69] model.
[69] R.H. Tipping, Q. Ma, Theory of water-vapor continuum and validations, Atmospheric Research, 36 (1995) 69-94. 10.1016/0169-8095(94)00028-c.
1995
Tipping R.H., Ma Q. , Theory of the water continuum and validations, Atmospheric Research, 1995 , Volume 36 , Number 1-2, Pages 69-94.
H2 O
T=296 К
P=∅
3. The present theory (296K)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
The H2 O+H2 O absorption coefficient α(ω) (in units of cm2 molecule-1 atm -1 ) as a function of frequency ω (in units of cm-1 ) calculated for T= 296°K. The results obtained from the two averaged line shape functions.
2016
Keith P. Shine, Alain Campargue, Didier Mondelain, Robert A. McPheat, Igor V. Ptashnik, Damien Weidmann , The water vapour continuum in near-infrared windows – Current understanding and prospects for its inclusion in spectroscopic databases, Journal of Molecular Spectroscopy, 2016 , Volume 327 , Pages 193–208.
H2 O
T=∅
P=∅
5. D. Mondelain, et al. (2015) (4250 cm⁻¹, CRDS)
1000/Т (К⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Temperature dependence of the water vapour self-continuum cross-section at three wavenumbers in the 4700 cm-1 window (after [58]) from Grenoble CRDS.
[58] I. Ventrillard, D. Romanini, D. Mondelain, A. Campargue, Accurate measurements and temperature dependence of the water vapor selfcontinuum absorption in the 2.1μm atmospheric window, J. Chem. Phys. 143 (2015) 134304, http://dx.doi.org/10.1063/1.4931811.
[59] D. Mondelain, S. Vasilchenko, P. Cermak, S. Kassi, A. Campargue, The self- and foreign-absorption continua of water vapor by cavity ring-down spectroscopy near 2.35 μm, Phys. Chem. Chem. Phys. 17 (2015) 17762–17770, http://dx.doi.org/10.1039/c5cp01238d.
2017
Richard, L., Vasilchenko, S., Mondelain, D., Ventrillard, I., Romanini, D., and Campargue, A. , Water vapor self-continuum absorption measurements in the 4.0 and 2.1 μm transparency windows, Journal of Quantitative Spectroscopy and Radiative Transfer, 2017 , Volume 201 , Pages 171–179.
H2 O
T=∅
P=∅
6. This work (2490 cm⁻¹)
1000/Т (К⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Temperature dependence of the water vapor self-continuum cross-sections near 2490 cm−1 obtained by OF-CEAS.
2016
Keith P. Shine, Alain Campargue, Didier Mondelain, Robert A. McPheat, Igor V. Ptashnik, Damien Weidmann , The water vapour continuum in near-infrared windows – Current understanding and prospects for its inclusion in spectroscopic databases, Journal of Molecular Spectroscopy, 2016 , Volume 327 , Pages 193–208.
H2 O
T=∅
P=∅
5. D. Mondelain, et al. (2015) (4250 cm⁻¹, OF-CEAS)
1000/Т (К⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Temperature dependence of the water vapour self-continuum cross-section at three wavenumbers in the 4700 cm-1 window (after [58]) from Grenoble OF-CEAS.
[58] I. Ventrillard, D. Romanini, D. Mondelain, A. Campargue, Accurate measurements and temperature dependence of the water vapor selfcontinuum absorption in the 2.1μm atmospheric window, J. Chem. Phys. 143 (2015) 134304, http://dx.doi.org/10.1063/1.4931811.
[59] D. Mondelain, S. Vasilchenko, P. Cermak, S. Kassi, A. Campargue, The self- and foreign-absorption continua of water vapor by cavity ring-down spectroscopy near 2.35 μm, Phys. Chem. Chem. Phys. 17 (2015) 17762–17770, http://dx.doi.org/10.1039/c5cp01238d.
2015
Didier Mondelain, Semen Vasilchenko, Peter Cermak, Samir Kassi, Alain Campargue , The self- and foreign-absorption continua of water vapor by cavity ring-down spectroscopy near 2.35 µm, Physical Chemistry Chemical Physics, 2015 , Volume 17 , Issue 27, Pages 17762-17770.
H2 O
T=300 К
P=∅
8. Linear extrapolation
1000/Т (К⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Linear extrapolation to room temperature
2016
Keith P. Shine, Alain Campargue, Didier Mondelain, Robert A. McPheat, Igor V. Ptashnik, Damien Weidmann , The water vapour continuum in near-infrared windows – Current understanding and prospects for its inclusion in spectroscopic databases, Journal of Molecular Spectroscopy, 2016 , Volume 327 , Pages 193–208.
H2 O
T=∅
P=∅
5. I.V. Ptashnik, et al. (2011) (4250 cm⁻¹)
1000/Т (К⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Temperature dependence of the water vapour self-continuum cross-section at the 4250 cm-1 from CAVIAR FTS.
[23] I.V. Ptashnik, R.A. McPheat, K.P. Shine, K.M. Smith, R.G. Williams, Water vapor self-continuum absorption in near-infrared windows derived from laboratory measurements, Journal of Geophysical Research-Atmospheres, 116 (2011), D16305. 10.1029/2011JD015603.
2011
Ptashnik I.V., McPheat R.A., Shine K.P., Smith K.M., Williams R.G. , Water vapor self-continuum absorption in near-infrared windows derived from laboratory experiments, Journal of Geophysical Research, 2011 , Volume D116 , Pages 16305.
H2 O
T=∅
P=∅
9. RAL 4300 cm⁻¹
1000/Т (К⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Temperature dependence of the retrieved self-continuum at selected wavenumbers.
2016
Keith P. Shine, Alain Campargue, Didier Mondelain, Robert A. McPheat, Igor V. Ptashnik, Damien Weidmann , The water vapour continuum in near-infrared windows – Current understanding and prospects for its inclusion in spectroscopic databases, Journal of Molecular Spectroscopy, 2016 , Volume 327 , Pages 193–208.
H2 O
T=∅
P=∅
5. I.V. Ptashnik, et al. (2013) (4250 cm⁻¹)
1000/Т (К⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Temperature dependence of the water vapour self-continuum cross-section at the 4250 cm-1 from Tomsk FTS (filled green circles).
[55] I.V. Ptashnik, T.M. Petrova, Y.N. Ponomarev, K.P. Shine, A.A. Solodov, A.M. Solodov, Near-infrared water vapour self-continuum at close to room temperature, Journal of Quantitative Spectroscopy & Radiative Transfer, 120 (2013) 23-35. 10.1016/j.jqsrt.2013.02.016
2013
I.V. Ptashnik, T.M. Petrova, Yu.N. Ponomarev, K.P. Shine, A.A. Solodov, A.M. Solodov
, Near-infrared water vapour self-continuum at close to room temperature , Journal of Quantitative Spectroscopy and Radiative Transfer, 2013 , Volume 120 , Pages 23-35.
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
2016
Keith P. Shine, Alain Campargue, Didier Mondelain, Robert A. McPheat, Igor V. Ptashnik, Damien Weidmann , The water vapour continuum in near-infrared windows – Current understanding and prospects for its inclusion in spectroscopic databases, Journal of Molecular Spectroscopy, 2016 , Volume 327 , Pages 193–208.
H2 O
T=∅
P=∅
5a. D. Mondelain, et al. (2015) (4301 cm⁻¹, CRDS)
1000/Т (К⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Temperature dependence of the water vapour self-continuum cross-section at 4301 cm-1 (after [58]) from Grenoble CRDS.
[58] I. Ventrillard, D. Romanini, D. Mondelain, A. Campargue, Accurate measurements and temperature dependence of the water vapor selfcontinuum absorption in the 2.1μm atmospheric window, J. Chem. Phys. 143 (2015) 134304, http://dx.doi.org/10.1063/1.4931811.
[59] D. Mondelain, S. Vasilchenko, P. Cermak, S. Kassi, A. Campargue, The self- and foreign-absorption continua of water vapor by cavity ring-down spectroscopy near 2.35 μm, Phys. Chem. Chem. Phys. 17 (2015) 17762–17770, http://dx.doi.org/10.1039/c5cp01238d.
2015
Didier Mondelain, Semen Vasilchenko, Peter Cermak, Samir Kassi, Alain Campargue , The self- and foreign-absorption continua of water vapor by cavity ring-down spectroscopy near 2.35 µm, Physical Chemistry Chemical Physics, 2015 , Volume 17 , Issue 27, Pages 17762-17770.
H2 O
T=300 К
P=∅
8. Linear extrapolation
1000/Т (К⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Linear extrapolation to room temperature
2016
Keith P. Shine, Alain Campargue, Didier Mondelain, Robert A. McPheat, Igor V. Ptashnik, Damien Weidmann , The water vapour continuum in near-infrared windows – Current understanding and prospects for its inclusion in spectroscopic databases, Journal of Molecular Spectroscopy, 2016 , Volume 327 , Pages 193–208.
H2 O
T=∅
P=∅
5a. D. Mondelain, et al. (2015) (4301 cm⁻¹, OF-CEAS)
1000/Т (К⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Temperature dependence of the water vapour self-continuum cross-section at 4301 cm-1 (after [58]) from Grenoble OF-CEAS.
[58] I. Ventrillard, D. Romanini, D. Mondelain, A. Campargue, Accurate measurements and temperature dependence of the water vapor selfcontinuum absorption in the 2.1μm atmospheric window, J. Chem. Phys. 143 (2015) 134304, http://dx.doi.org/10.1063/1.4931811.
[59] D. Mondelain, S. Vasilchenko, P. Cermak, S. Kassi, A. Campargue, The self- and foreign-absorption continua of water vapor by cavity ring-down spectroscopy near 2.35 μm, Phys. Chem. Chem. Phys. 17 (2015) 17762–17770, http://dx.doi.org/10.1039/c5cp01238d.
2015
Didier Mondelain, Semen Vasilchenko, Peter Cermak, Samir Kassi, Alain Campargue , The self- and foreign-absorption continua of water vapor by cavity ring-down spectroscopy near 2.35 µm, Physical Chemistry Chemical Physics, 2015 , Volume 17 , Issue 27, Pages 17762-17770.
H2 O
T=297 К
P=∅
8. This work (297 K)
1000/Т (К⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Temperature dependence of the water self-continuum cross sections, CS, obtained by CRDS at 297 K (x).
2016
Keith P. Shine, Alain Campargue, Didier Mondelain, Robert A. McPheat, Igor V. Ptashnik, Damien Weidmann , The water vapour continuum in near-infrared windows – Current understanding and prospects for its inclusion in spectroscopic databases, Journal of Molecular Spectroscopy, 2016 , Volume 327 , Pages 193–208.
H2 O
T=∅
P=∅
5a. I.V. Ptashnik, et al. (2011) (4301 cm⁻¹)
1000/Т (К⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Temperature dependence of the water vapour self-continuum cross-section at the 4301 cm-1 from CAVIAR FTS.
[23] I.V. Ptashnik, R.A. McPheat, K.P. Shine, K.M. Smith, R.G. Williams, Water vapor self-continuum absorption in near-infrared windows derived from laboratory measurements, Journal of Geophysical Research-Atmospheres, 116 (2011), D16305. 10.1029/2011JD015603.
2011
Ptashnik I.V., McPheat R.A., Shine K.P., Smith K.M., Williams R.G. , Water vapor self-continuum absorption in near-infrared windows derived from laboratory experiments, Journal of Geophysical Research, 2011 , Volume D116 , Pages 16305.
H2 O
T=∅
P=∅
9. RAL 4300 cm⁻¹
1000/Т (К⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Temperature dependence of the retrieved self-continuum at selected wavenumbers.
2016
Keith P. Shine, Alain Campargue, Didier Mondelain, Robert A. McPheat, Igor V. Ptashnik, Damien Weidmann , The water vapour continuum in near-infrared windows – Current understanding and prospects for its inclusion in spectroscopic databases, Journal of Molecular Spectroscopy, 2016 , Volume 327 , Pages 193–208.
H2 O
T=∅
P=∅
5a. I.V. Ptashnik, et al. (2013) (4301 cm⁻¹)
1000/Т (К⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Temperature dependence of the water vapour self-continuum cross-section at the 4301 cm-1 from Tomsk FTS (filled green circles).
[55] I.V. Ptashnik, T.M. Petrova, Y.N. Ponomarev, K.P. Shine, A.A. Solodov, A.M. Solodov, Near-infrared water vapour self-continuum at close to room temperature, Journal of Quantitative Spectroscopy & Radiative Transfer, 120 (2013) 23-35. 10.1016/j.jqsrt.2013.02.016
2013
I.V. Ptashnik, T.M. Petrova, Yu.N. Ponomarev, K.P. Shine, A.A. Solodov, A.M. Solodov
, Near-infrared water vapour self-continuum at close to room temperature , Journal of Quantitative Spectroscopy and Radiative Transfer, 2013 , Volume 120 , Pages 23-35.
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
2016
Keith P. Shine, Alain Campargue, Didier Mondelain, Robert A. McPheat, Igor V. Ptashnik, Damien Weidmann , The water vapour continuum in near-infrared windows – Current understanding and prospects for its inclusion in spectroscopic databases, Journal of Molecular Spectroscopy, 2016 , Volume 327 , Pages 193–208.
H2 O
T=∅
P=∅
5b. D. Mondelain, et al. (2015) (4723 cm⁻¹, OF-CEAS)
1000/Т (К⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Temperature dependence of the water vapour self-continuum cross-section at 4723 cm-1 (after [58]) from Grenoble OF-CEAS.
[58] I. Ventrillard, D. Romanini, D. Mondelain, A. Campargue, Accurate measurements and temperature dependence of the water vapor selfcontinuum absorption in the 2.1μm atmospheric window, J. Chem. Phys. 143 (2015) 134304, http://dx.doi.org/10.1063/1.4931811.
[59] D. Mondelain, S. Vasilchenko, P. Cermak, S. Kassi, A. Campargue, The self- and foreign-absorption continua of water vapor by cavity ring-down spectroscopy near 2.35 μm, Phys. Chem. Chem. Phys. 17 (2015) 17762–17770, http://dx.doi.org/10.1039/c5cp01238d.
2015
Didier Mondelain, Semen Vasilchenko, Peter Cermak, Samir Kassi, Alain Campargue , The self- and foreign-absorption continua of water vapor by cavity ring-down spectroscopy near 2.35 µm, Physical Chemistry Chemical Physics, 2015 , Volume 17 , Issue 27, Pages 17762-17770.
H2 O
T=∅
P=∅
8. E. J. Mlawer, et al. (2012)
1000/Т (К⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Temperature dependence of the water self-continuum cross sections. The MT_CKD values take into account the 296/T correction factor (see text).
[13] E. J. Mlawer, V. H. Payne, J. L. Moncet, J. S. Delamere, M. J. Alvarado and D. C. Tobin, Philos. Trans. R. Soc., A, 2012, 370, 2520–2556.
2016
Keith P. Shine, Alain Campargue, Didier Mondelain, Robert A. McPheat, Igor V. Ptashnik, Damien Weidmann , The water vapour continuum in near-infrared windows – Current understanding and prospects for its inclusion in spectroscopic databases, Journal of Molecular Spectroscopy, 2016 , Volume 327 , Pages 193–208.
H2 O
T=∅
P=∅
5b. I.V. Ptashnik, et al. (2011) (4723 cm⁻¹)
1000/Т (К⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Temperature dependence of the water vapour self-continuum cross-section at the 4723 cm-1 from CAVIAR FTS.
[23] I.V. Ptashnik, R.A. McPheat, K.P. Shine, K.M. Smith, R.G. Williams, Water vapor self-continuum absorption in near-infrared windows derived from laboratory measurements, Journal of Geophysical Research-Atmospheres, 116 (2011), D16305. 10.1029/2011JD015603.
2013
I.V. Ptashnik, T.M. Petrova, Yu.N. Ponomarev, K.P. Shine, A.A. Solodov, A.M. Solodov
, Near-infrared water vapour self-continuum at close to room temperature , Journal of Quantitative Spectroscopy and Radiative Transfer, 2013 , Volume 120 , Pages 23-35.
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
2016
Keith P. Shine, Alain Campargue, Didier Mondelain, Robert A. McPheat, Igor V. Ptashnik, Damien Weidmann , The water vapour continuum in near-infrared windows – Current understanding and prospects for its inclusion in spectroscopic databases, Journal of Molecular Spectroscopy, 2016 , Volume 327 , Pages 193–208.
H2 O
T=∅
P=∅
5b. I.V. Ptashnik, et al. (2013) (4723 cm⁻¹)
1000/Т (К⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Temperature dependence of the water vapour self-continuum cross-section at the 4723 cm-1 from Tomsk FTS.
[55] I.V. Ptashnik, T.M. Petrova, Y.N. Ponomarev, K.P. Shine, A.A. Solodov, A.M. Solodov, Near-infrared water vapour self-continuum at close to room temperature, Journal of Quantitative Spectroscopy & Radiative Transfer, 120 (2013) 23-35. 10.1016/j.jqsrt.2013.02.016
2013
I.V. Ptashnik, T.M. Petrova, Yu.N. Ponomarev, K.P. Shine, A.A. Solodov, A.M. Solodov
, Near-infrared water vapour self-continuum at close to room temperature , Journal of Quantitative Spectroscopy and Radiative Transfer, 2013 , Volume 120 , Pages 23-35.
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
2016
Keith P. Shine, Alain Campargue, Didier Mondelain, Robert A. McPheat, Igor V. Ptashnik, Damien Weidmann , The water vapour continuum in near-infrared windows – Current understanding and prospects for its inclusion in spectroscopic databases, Journal of Molecular Spectroscopy, 2016 , Volume 327 , Pages 193–208.
H2 O
T=∅
P=∅
6. I.V. Ptashnik, et al. (2013) (2400 cm⁻¹)
1000/Т (К⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Temperature dependence of the water vapour self-continuum cross-sections in the middle of the 2500 cm-1 window from Tomsk [55].
[55] I.V. Ptashnik, T.M. Petrova, Y.N. Ponomarev, K.P. Shine, A.A. Solodov, A.M. Solodov, Near-infrared water vapour self-continuum at close to room temperature, Journal of Quantitative Spectroscopy & Radiative Transfer, 120 (2013) 23-35.10.1016/j.jqsrt.2013.02.016.
2013
I.V. Ptashnik, T.M. Petrova, Yu.N. Ponomarev, K.P. Shine, A.A. Solodov, A.M. Solodov
, Near-infrared water vapour self-continuum at close to room temperature , Journal of Quantitative Spectroscopy and Radiative Transfer, 2013 , Volume 120 , Pages 23-35.
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
2016
Keith P. Shine, Alain Campargue, Didier Mondelain, Robert A. McPheat, Igor V. Ptashnik, Damien Weidmann , The water vapour continuum in near-infrared windows – Current understanding and prospects for its inclusion in spectroscopic databases, Journal of Molecular Spectroscopy, 2016 , Volume 327 , Pages 193–208.
H2 O
T=∅
P=∅
6. Burch, D.E., et al. (1984) (2400 cm⁻¹)
1000/Т (К⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Temperature dependence of the water vapour self-continuum cross-sections in the middle of the 2500 cm-1 window. Burch and Alt’s [14] grating-spectrometer measurements.
[14] D.E. Burch, R.L. Alt, Continuum Absorption by H2 O in the 700–1200 cm-1 and 2400–2800 cm-1 windows, Air Force Geophys. Lab, Hanscom AFB, Mass, 1984.
1984
Burch D.E., Alt R.L. , Continuum absorption by H2 O in the 700 - 1200 cm-1 and 2400 - 2800 cm-1 windows, Report AFGL-TR-84-0128 by Ford Aerospace and Communications Corporation, Aeronutronic Division to AFGL, United States Air Force, Hanscom AFB, Unknown, 1984 , Pages 31.
H2 O
T=∅
P=∅
8. Wavenumber 2400 cm⁻¹. Temperature dependence. Experiment
1000/Т (К⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Plots of the self-broadening coefficients at 2400 cm-1 versus the reciprocal of temperature. Experiment
2016
Keith P. Shine, Alain Campargue, Didier Mondelain, Robert A. McPheat, Igor V. Ptashnik, Damien Weidmann , The water vapour continuum in near-infrared windows – Current understanding and prospects for its inclusion in spectroscopic databases, Journal of Molecular Spectroscopy, 2016 , Volume 327 , Pages 193–208.
H2 O
T=∅
P=∅
6. Burch, D.E., et al. (1984) (2500 cm⁻¹)
1000/Т (К⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Temperature dependence of the water vapour self-continuum cross-sections in the middle of the 2500 cm-1 window. Burch and Alt’s [14] grating-spectrometer measurements.
[14] D.E. Burch, R.L. Alt, Continuum Absorption by H2 O in the 700–1200 cm-1 and 2400–2800 cm-1 windows, Air Force Geophys. Lab, Hanscom AFB, Mass, 1984.
1984
Burch D.E., Alt R.L. , Continuum absorption by H2 O in the 700 - 1200 cm-1 and 2400 - 2800 cm-1 windows, Report AFGL-TR-84-0128 by Ford Aerospace and Communications Corporation, Aeronutronic Division to AFGL, United States Air Force, Hanscom AFB, Unknown, 1984 , Pages 31.
H2 O
T=∅
P=∅
8. Wavenumber 2500 cm⁻¹. Temperature dependence. Experiment
1000/Т (К⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Plots of the self-broadening coefficients at 2500 cm-1 versus the reciprocal of temperature. Experiment.
2016
Keith P. Shine, Alain Campargue, Didier Mondelain, Robert A. McPheat, Igor V. Ptashnik, Damien Weidmann , The water vapour continuum in near-infrared windows – Current understanding and prospects for its inclusion in spectroscopic databases, Journal of Molecular Spectroscopy, 2016 , Volume 327 , Pages 193–208.
H2 O
T=∅
P=∅
6. Burch, D.E., et al. (1984) (2600 cm⁻¹)
1000/Т (К⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Temperature dependence of the water vapour self-continuum cross-sections in the middle of the 2500 cm-1 window. Burch and Alt’s [14] grating-spectrometer measurements.
[14] D.E. Burch, R.L. Alt, Continuum Absorption by H2 O in the 700–1200 cm-1 and 2400–2800 cm-1 windows, Air Force Geophys. Lab, Hanscom AFB, Mass, 1984.
1984
Burch D.E., Alt R.L. , Continuum absorption by H2 O in the 700 - 1200 cm-1 and 2400 - 2800 cm-1 windows, Report AFGL-TR-84-0128 by Ford Aerospace and Communications Corporation, Aeronutronic Division to AFGL, United States Air Force, Hanscom AFB, Unknown, 1984 , Pages 31.
H2 O
T=∅
P=∅
8. Wavenumber 2600 cm⁻¹. Temperature dependence. Experiment
1000/Т (К⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Plots of the self-broadening coefficients at 2600 cm-1 versus the reciprocal of temperature. Experiment.
2016
Keith P. Shine, Alain Campargue, Didier Mondelain, Robert A. McPheat, Igor V. Ptashnik, Damien Weidmann , The water vapour continuum in near-infrared windows – Current understanding and prospects for its inclusion in spectroscopic databases, Journal of Molecular Spectroscopy, 2016 , Volume 327 , Pages 193–208.
H2 O
T=∅
P=∅
6. FTS Baranov, Yu.I., et al. (2011) (2400 cm⁻¹)
1000/Т (К⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Temperature dependence of the water vapour self-continuum cross-sections in the middle of the 2500 cm-1 window from Baranov and Lafferty [16].
[16] Y.I. Baranov, W.J. Lafferty, The water-vapor continuum and selective absorption in the 3-5 μm spectral region at temperatures from 311° to 363°K, Journal of Quantitative Spectroscopy & Radiative Transfer, 112 (2011) 1304-1313. 10.1016/j.jqsrt.2011.01.024.
2011
Yu.I. Baranov, W.J. Lafferty , The water-vapor continuum and selective absorption in the 3–5 μm spectral region at temperatures from 311 to 363 K, Journal of Quantitative Spectroscopy and Radiative Transfer, 2011 , Volume 112 , Issue 8, Pages 1304-1313.
H2 O
T=∅
P=∅
6. MT-CKD 2.4 model
Температура (К)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
The solid line represents the MT_CKD versions 2.4 continuum model.
2016
Keith P. Shine, Alain Campargue, Didier Mondelain, Robert A. McPheat, Igor V. Ptashnik, Damien Weidmann , The water vapour continuum in near-infrared windows – Current understanding and prospects for its inclusion in spectroscopic databases, Journal of Molecular Spectroscopy, 2016 , Volume 327 , Pages 193–208.
H2 O
T=∅
P=∅
6. FTS Baranov, Yu.I., et al. (2011) (2600 cm⁻¹)
1000/Т (К⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Temperature dependence of the water vapour self-continuum cross-sections in the middle of the 2500 cm-1 window from Baranov and Lafferty [16].
[16] Y.I. Baranov, W.J. Lafferty, The water-vapor continuum and selective absorption in the 3-5 μm spectral region at temperatures from 311° to 363°K, Journal of Quantitative Spectroscopy & Radiative Transfer, 112 (2011) 1304-1313. 10.1016/j.jqsrt.2011.01.024.
2011
Yu.I. Baranov, W.J. Lafferty , The water-vapor continuum and selective absorption in the 3–5 μm spectral region at temperatures from 311 to 363 K, Journal of Quantitative Spectroscopy and Radiative Transfer, 2011 , Volume 112 , Issue 8, Pages 1304-1313.
Волновое число (см⁻¹) Температура (К)
Коэффициент поглощения (см²мол⁻¹атм⁻¹) Коэффициент поглощения (см²мол⁻¹атм⁻¹)
2016
Keith P. Shine, Alain Campargue, Didier Mondelain, Robert A. McPheat, Igor V. Ptashnik, Damien Weidmann , The water vapour continuum in near-infrared windows – Current understanding and prospects for its inclusion in spectroscopic databases, Journal of Molecular Spectroscopy, 2016 , Volume 327 , Pages 193–208.
H2 O
T=∅
P=∅
6. FTS Baranov, et al. (2011) (2500 cm⁻¹)
1000/Т (К⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Temperature dependence of the water vapour self-continuum cross-sections in the middle of the 2500 cm-1 window from Baranov and Lafferty [16].
[16] Y.I. Baranov, W.J. Lafferty, The water-vapor continuum and selective absorption in the 3-5 μm spectral region at temperatures from 311° to 363°K, Journal of Quantitative Spectroscopy & Radiative Transfer, 112 (2011) 1304-1313. 10.1016/j.jqsrt.2011.01.024.
2011
Yu.I. Baranov, W.J. Lafferty , The water-vapor continuum and selective absorption in the 3–5 μm spectral region at temperatures from 311 to 363 K, Journal of Quantitative Spectroscopy and Radiative Transfer, 2011 , Volume 112 , Issue 8, Pages 1304-1313.
Волновое число (см⁻¹) Температура (К)
Коэффициент поглощения (см²мол⁻¹атм⁻¹) Коэффициент поглощения (см²мол⁻¹атм⁻¹)
2016
Keith P. Shine, Alain Campargue, Didier Mondelain, Robert A. McPheat, Igor V. Ptashnik, Damien Weidmann , The water vapour continuum in near-infrared windows – Current understanding and prospects for its inclusion in spectroscopic databases, Journal of Molecular Spectroscopy, 2016 , Volume 327 , Pages 193–208.
H2 O
T=∅
P=∅
6. FTS I.V. Ptashnik, et al. (2011) (2400 cm⁻¹)
1000/Т (К⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Temperature dependence of the water vapour self-continuum cross-sections in the middle of the 2500 cm-1 window from FTS measurements (CAVIAR [23].
[23] I.V. Ptashnik, R.A. McPheat, K.P. Shine, K.M. Smith, R.G. Williams, Water vapor self-continuum absorption in near-infrared windows derived from laboratory measurements, Journal of Geophysical Research-Atmospheres, 116 (2011), D16305. 10.1029/2011JD015603.
2011
Ptashnik I.V., McPheat R.A., Shine K.P., Smith K.M., Williams R.G. , Water vapor self-continuum absorption in near-infrared windows derived from laboratory experiments, Journal of Geophysical Research, 2011 , Volume D116 , Pages 16305.
H2 O
T=∅
P=∅
9. RAL 2400 cm⁻¹
1000/Т (К⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Temperature dependence of the retrieved self-continuum at selected wavenumbers.
2016
Keith P. Shine, Alain Campargue, Didier Mondelain, Robert A. McPheat, Igor V. Ptashnik, Damien Weidmann , The water vapour continuum in near-infrared windows – Current understanding and prospects for its inclusion in spectroscopic databases, Journal of Molecular Spectroscopy, 2016 , Volume 327 , Pages 193–208.
H2 O
T=∅
P=∅
6. FTS I.V. Ptashnik, et al. (2011) (2500 cm⁻¹)
1000/Т (К⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Temperature dependence of the water vapour self-continuum cross-sections in the middle of the 2500 cm-1 window from FTS measurements (CAVIAR [23].
[23] I.V. Ptashnik, R.A. McPheat, K.P. Shine, K.M. Smith, R.G. Williams, Water vapor self-continuum absorption in near-infrared windows derived from laboratory measurements, Journal of Geophysical Research-Atmospheres, 116 (2011), D16305. 10.1029/2011JD015603.
2011
Ptashnik I.V., McPheat R.A., Shine K.P., Smith K.M., Williams R.G. , Water vapor self-continuum absorption in near-infrared windows derived from laboratory experiments, Journal of Geophysical Research, 2011 , Volume D116 , Pages 16305.
H2 O
T=∅
P=∅
9. RAL 2500 cm⁻¹
1000/Т (К⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Temperature dependence of the retrieved self-continuum at selected wavenumbers.
2016
Keith P. Shine, Alain Campargue, Didier Mondelain, Robert A. McPheat, Igor V. Ptashnik, Damien Weidmann , The water vapour continuum in near-infrared windows – Current understanding and prospects for its inclusion in spectroscopic databases, Journal of Molecular Spectroscopy, 2016 , Volume 327 , Pages 193–208.
H2 O
T=∅
P=∅
6. FTS I.V. Ptashnik, et al. (2011) (2600 cm⁻¹)
1000/Т (К⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Temperature dependence of the water vapour self-continuum cross-sections in the middle of the 2500 cm- 1 window from FTS measurements (CAVIAR) [23].
[23] I.V. Ptashnik, R.A. McPheat, K.P. Shine, K.M. Smith, R.G. Williams, Water vapor self-continuum absorption in near-infrared windows derived from laboratory measurements, Journal of Geophysical Research-Atmospheres, 116 (2011), D16305. 10.1029/2011JD015603.
2011
Ptashnik I.V., McPheat R.A., Shine K.P., Smith K.M., Williams R.G. , Water vapor self-continuum absorption in near-infrared windows derived from laboratory experiments, Journal of Geophysical Research, 2011 , Volume D116 , Pages 16305.
H2 O
T=∅
P=∅
9. RAL 2600 cm⁻¹
1000/Т (К⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Temperature dependence of the retrieved self-continuum at selected wavenumbers.
2016
Keith P. Shine, Alain Campargue, Didier Mondelain, Robert A. McPheat, Igor V. Ptashnik, Damien Weidmann , The water vapour continuum in near-infrared windows – Current understanding and prospects for its inclusion in spectroscopic databases, Journal of Molecular Spectroscopy, 2016 , Volume 327 , Pages 193–208.
H2 O
T=∅
P=∅
7. D. Mondelain, et al. (2015), (5875 cm⁻¹)
1000/Т (К⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Temperature dependence of the water self-continuum cross sections, CS , from Grenoble CRDS [60].
[60] D. Mondelain, S. Manigand, S. Kassi, A. Campargue, Temperature dependence of the water vapor self-continuum by cavity ring-down spectroscopy in the 1.6 μm transparency window, J. Geophys. Res. – Atmos. 119 (2014) 5625–5639, http://dx.doi.org/10.1002/2013jd021319
2014
D. Mondelain, S. Manigand, S. Kassi, A. Campargue , Temperature dependence of the water vapor self-continuum by cavity ring down spectroscopy in the 1.6 µm transparency window, Journal of Geophysical Research: Atmospheres, 2014 , Volume 119 , Issue 9, Pages 5625–5639.
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
2016
Keith P. Shine, Alain Campargue, Didier Mondelain, Robert A. McPheat, Igor V. Ptashnik, Damien Weidmann , The water vapour continuum in near-infrared windows – Current understanding and prospects for its inclusion in spectroscopic databases, Journal of Molecular Spectroscopy, 2016 , Volume 327 , Pages 193–208.
H2 O
T=∅
P=∅
7. I.V. Ptashnik, et al. (2011), (5875 cm⁻¹)
1000/Т (К⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Temperature dependence of the water self-continuum cross sections, CS , from CAVIAR FTS [23].
[23] I.V. Ptashnik, R.A. McPheat, K.P. Shine, K.M. Smith, R.G. Williams, Water vapor self-continuum absorption in near-infrared windows derived from laboratory measurements, Journal of Geophysical Research-Atmospheres, 116 (2011), D16305. 10.1029/2011JD015603.
2011
Ptashnik I.V., McPheat R.A., Shine K.P., Smith K.M., Williams R.G. , Water vapor self-continuum absorption in near-infrared windows derived from laboratory experiments, Journal of Geophysical Research, 2011 , Volume D116 , Pages 16305.
H2 O
T=∅
P=∅
9. RAL 5900 cm⁻¹
1000/Т (К⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Temperature dependence of the retrieved self-continuum at selected wavenumbers.
2016
Keith P. Shine, Alain Campargue, Didier Mondelain, Robert A. McPheat, Igor V. Ptashnik, Damien Weidmann , The water vapour continuum in near-infrared windows – Current understanding and prospects for its inclusion in spectroscopic databases, Journal of Molecular Spectroscopy, 2016 , Volume 327 , Pages 193–208.
H2 O
T=∅
P=∅
7. I.V. Ptashnik, et al. (2013), (5875 cm⁻¹)
1000/Т (К⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Temperature dependence of the water self-continuum cross sections, CS, from Tomsk FTS [55] .
[55] I.V. Ptashnik, T.M. Petrova, Y.N. Ponomarev, K.P. Shine, A.A. Solodov, A.M. Solodov, Near-infrared water vapour self-continuum at close to room temperature, Journal of Quantitative Spectroscopy & Radiative Transfer, 120 (2013) 23-35. 10.1016/j.jqsrt.2013.02.016.
2013
I.V. Ptashnik, T.M. Petrova, Yu.N. Ponomarev, K.P. Shine, A.A. Solodov, A.M. Solodov
, Near-infrared water vapour self-continuum at close to room temperature , Journal of Quantitative Spectroscopy and Radiative Transfer, 2013 , Volume 120 , Pages 23-35.
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
2016
Keith P. Shine, Alain Campargue, Didier Mondelain, Robert A. McPheat, Igor V. Ptashnik, Damien Weidmann , The water vapour continuum in near-infrared windows – Current understanding and prospects for its inclusion in spectroscopic databases, Journal of Molecular Spectroscopy, 2016 , Volume 327 , Pages 193–208.
H2 O
T=∅
P=∅
7a. D. Mondelain, et al. (2015), (6121 cm⁻¹)
1000/Т (К⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Temperature dependence of the water self-continuum cross sections, CS , from Grenoble CRDS [60].
[60] D. Mondelain, S. Manigand, S. Kassi, A. Campargue, Temperature dependence of the water vapor self-continuum by cavity ring-down spectroscopy in the 1.6 lm transparency window, J. Geophys. Res. – Atmos. 119 (2014) 5625–5639, http://dx.doi.org/10.1002/2013jd021319.
2014
D. Mondelain, S. Manigand, S. Kassi, A. Campargue , Temperature dependence of the water vapor self-continuum by cavity ring down spectroscopy in the 1.6 µm transparency window, Journal of Geophysical Research: Atmospheres, 2014 , Volume 119 , Issue 9, Pages 5625–5639.
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
2016
Keith P. Shine, Alain Campargue, Didier Mondelain, Robert A. McPheat, Igor V. Ptashnik, Damien Weidmann , The water vapour continuum in near-infrared windows – Current understanding and prospects for its inclusion in spectroscopic databases, Journal of Molecular Spectroscopy, 2016 , Volume 327 , Pages 193–208.
H2 O
T=∅
P=∅
7a. I.V. Ptashnik, et al. (2011), (6121 cm⁻¹)
1000/Т (К⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Temperature dependence of the water self-continuum cross sections, CS , from CAVIAR FTS [23].
[23] I.V. Ptashnik, R.A. McPheat, K.P. Shine, K.M. Smith, R.G. Williams, Water vapor self-continuum absorption in near-infrared windows derived from laboratory measurements, Journal of Geophysical Research-Atmospheres, 116 (2011), D16305. 10.1029/2011JD015603.
2011
Ptashnik I.V., McPheat R.A., Shine K.P., Smith K.M., Williams R.G. , Water vapor self-continuum absorption in near-infrared windows derived from laboratory experiments, Journal of Geophysical Research, 2011 , Volume D116 , Pages 16305.
H2 O
T=∅
P=∅
9. RAL 6100 cm⁻¹
1000/Т (К⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Temperature dependence of the retrieved self-continuum at selected wavenumbers.
2016
Keith P. Shine, Alain Campargue, Didier Mondelain, Robert A. McPheat, Igor V. Ptashnik, Damien Weidmann , The water vapour continuum in near-infrared windows – Current understanding and prospects for its inclusion in spectroscopic databases, Journal of Molecular Spectroscopy, 2016 , Volume 327 , Pages 193–208.
H2 O
T=∅
P=∅
7a. I.V. Ptashnik, et al. (2013), (6121 cm⁻¹)
1000/Т (К⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Temperature dependence of the water self-continuum cross sections, CS, from Tomsk FTS [55] .
[55] I.V. Ptashnik, T.M. Petrova, Y.N. Ponomarev, K.P. Shine, A.A. Solodov, A.M. Solodov, Near-infrared water vapour self-continuum at close to room temperature, Journal of Quantitative Spectroscopy & Radiative Transfer, 120 (2013) 23-35. 10.1016/j.jqsrt.2013.02.016.
2013
I.V. Ptashnik, T.M. Petrova, Yu.N. Ponomarev, K.P. Shine, A.A. Solodov, A.M. Solodov
, Near-infrared water vapour self-continuum at close to room temperature , Journal of Quantitative Spectroscopy and Radiative Transfer, 2013 , Volume 120 , Pages 23-35.
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
2016
Keith P. Shine, Alain Campargue, Didier Mondelain, Robert A. McPheat, Igor V. Ptashnik, Damien Weidmann , The water vapour continuum in near-infrared windows – Current understanding and prospects for its inclusion in spectroscopic databases, Journal of Molecular Spectroscopy, 2016 , Volume 327 , Pages 193–208.
H2 O
T=∅
P=∅
7a. W.E. Bicknell, et al. (2006), (6121 cm⁻¹)
1000/Т (К⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Temperature dependence of the water self-continuum cross sections, CS , from Bicknell et al., CI [62].
[62] W.E. Bicknell, S.D. Cecca, M.K. Griffin, Search for low-absorption regimes in the 1.6 and 2.1 μm atmospheric windows, Journal of Directed Energy, 2 (2006) 151-161.
2006
Bicknell W.E., Cecca S.D., Griffin M.K., S. D. Swartz, and A. Flusberg , Search for low-absorption regions in the 1.6-and 2.1-μm atmospheric windows, Journal of Directed Energy, 2006 , Volume 2 , Pages 151–161.
Длина волны (мкм)
Коэффициент поглощения (Км⁻¹)
2016
Keith P. Shine, Alain Campargue, Didier Mondelain, Robert A. McPheat, Igor V. Ptashnik, Damien Weidmann , The water vapour continuum in near-infrared windows – Current understanding and prospects for its inclusion in spectroscopic databases, Journal of Molecular Spectroscopy, 2016 , Volume 327 , Pages 193–208.
H2 O
T=∅
P=∅
7b. D. Mondelain, et al. (2015), (6665 cm⁻¹)
1000/Т (К⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Temperature dependence of the water self-continuum cross sections, CS , from Grenoble CRDS [60].
[60] D. Mondelain, S. Manigand, S. Kassi, A. Campargue, Temperature dependence of the water vapor self-continuum by cavity ring-down spectroscopy in the 1.6 lm transparency window, J. Geophys. Res. – Atmos. 119 (2014) 5625–5639, http://dx.doi.org/10.1002/2013jd021319.
2014
D. Mondelain, S. Manigand, S. Kassi, A. Campargue , Temperature dependence of the water vapor self-continuum by cavity ring down spectroscopy in the 1.6 µm transparency window, Journal of Geophysical Research: Atmospheres, 2014 , Volume 119 , Issue 9, Pages 5625–5639.
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
2016
Keith P. Shine, Alain Campargue, Didier Mondelain, Robert A. McPheat, Igor V. Ptashnik, Damien Weidmann , The water vapour continuum in near-infrared windows – Current understanding and prospects for its inclusion in spectroscopic databases, Journal of Molecular Spectroscopy, 2016 , Volume 327 , Pages 193–208.
H2 O
T=∅
P=∅
7b. I.V. Ptashnik, et al. (2011), (6665 cm⁻¹)
1000/Т (К⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Temperature dependence of the water self-continuum cross sections, CS , from CAVIAR FTS [23].
[23] I.V. Ptashnik, R.A. McPheat, K.P. Shine, K.M. Smith, R.G. Williams, Water vapor self-continuum absorption in near-infrared windows derived from laboratory measurements, Journal of Geophysical Research-Atmospheres, 116 (2011), D16305. 10.1029/2011JD015603.
2011
Ptashnik I.V., McPheat R.A., Shine K.P., Smith K.M., Williams R.G. , Water vapor self-continuum absorption in near-infrared windows derived from laboratory experiments, Journal of Geophysical Research, 2011 , Volume D116 , Pages 16305.
H2 O
T=∅
P=∅
9. RAL 6100 cm⁻¹
1000/Т (К⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Temperature dependence of the retrieved self-continuum at selected wavenumbers.
2016
Keith P. Shine, Alain Campargue, Didier Mondelain, Robert A. McPheat, Igor V. Ptashnik, Damien Weidmann , The water vapour continuum in near-infrared windows – Current understanding and prospects for its inclusion in spectroscopic databases, Journal of Molecular Spectroscopy, 2016 , Volume 327 , Pages 193–208.
H2 O
T=∅
P=∅
7b. I.V. Ptashnik, et al. (2013), (6665 cm⁻¹)
1000/Т (К⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Temperature dependence of the water self-continuum cross sections, CS, from Tomsk FTS [55] .
[55] I.V. Ptashnik, T.M. Petrova, Y.N. Ponomarev, K.P. Shine, A.A. Solodov, A.M. Solodov, Near-infrared water vapour self-continuum at close to room temperature, Journal of Quantitative Spectroscopy & Radiative Transfer, 120 (2013) 23-35. 10.1016/j.jqsrt.2013.02.016.
2013
I.V. Ptashnik, T.M. Petrova, Yu.N. Ponomarev, K.P. Shine, A.A. Solodov, A.M. Solodov
, Near-infrared water vapour self-continuum at close to room temperature , Journal of Quantitative Spectroscopy and Radiative Transfer, 2013 , Volume 120 , Pages 23-35.
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
2016
Keith P. Shine, Alain Campargue, Didier Mondelain, Robert A. McPheat, Igor V. Ptashnik, Damien Weidmann , The water vapour continuum in near-infrared windows – Current understanding and prospects for its inclusion in spectroscopic databases, Journal of Molecular Spectroscopy, 2016 , Volume 327 , Pages 193–208.
H2 O
T=298 К
P=∅
8. CRDS D. Mondelain, et al. (2015) (298K)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Water vapour foreign continuum cross-section.
[59] D. Mondelain, S. Vasilchenko, P. Cermak, S. Kassi, A. Campargue, The self- and foreign-absorption continua of water vapor by cavity ring-down spectroscopy near 2.35 μm, Physical Chemistry Chemical Physics, 17 (2015) 17762-17770. 10.1039/c5cp01238d.
2015
Didier Mondelain, Semen Vasilchenko, Peter Cermak, Samir Kassi, Alain Campargue , The self- and foreign-absorption continua of water vapor by cavity ring-down spectroscopy near 2.35 µm, Physical Chemistry Chemical Physics, 2015 , Volume 17 , Issue 27, Pages 17762-17770.
H2 O
T=298 К
P=∅
7. This work (298K)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Spectral dependence of the self-continuum cross-section: in this work (x).
2016
Keith P. Shine, Alain Campargue, Didier Mondelain, Robert A. McPheat, Igor V. Ptashnik, Damien Weidmann , The water vapour continuum in near-infrared windows – Current understanding and prospects for its inclusion in spectroscopic databases, Journal of Molecular Spectroscopy, 2016 , Volume 327 , Pages 193–208.
H2 O
T=339 К
P=∅
8. FTS Baranov, Yu.I. (2011) (339K)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Water vapour foreign continuum cross-section. Experimental data of FTS measurements (H2 O + N2 ) in 2500 cm-1 window [75].
[75] Y.I. Baranov, The continuum absorption in H2 O + N2 mixtures in the 2000-3250 cm-1 spectral region at temperatures from 326° to 363°K, Journal of Quantitative Spectroscopy & Radiative Transfer, 112 (2011) 2281-2286. 10.1016/j.jqsrt.2011.06.005
2011
Yu.I. Baranov , The continuum absorption in H2 O+N2 mixtures in the 2000–3250 cm-1 spectral region at temperatures from 326 to 363 K, Journal of Quantitative Spectroscopy and Radiative Transfer, 2011 , Volume 112 , Issue 14, Pages 2281-2286.
1/Т (К⁻¹) Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹) Коэффициент поглощения (см²мол⁻¹атм⁻¹)
2016
Keith P. Shine, Alain Campargue, Didier Mondelain, Robert A. McPheat, Igor V. Ptashnik, Damien Weidmann , The water vapour continuum in near-infrared windows – Current understanding and prospects for its inclusion in spectroscopic databases, Journal of Molecular Spectroscopy, 2016 , Volume 327 , Pages 193–208.
H2 O
T=350 К
P=∅
8. FTS I.V. Ptashnik, et al. (2012) (350K)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Water vapour foreign continuum cross-section derived from CAVIAR FTS measurements (H2 O+Air) at 350°K [17].
[17] I.V. Ptashnik, R.A. McPheat, K.P. Shine, K.M. Smith, R.G. Williams, Water vapour foreign-continuum absorption in near-infrared windows from laboratory measurements, Philosophical Transactions of the Royal Society a-Mathematical Physical and Engineering Sciences, 370 (2012) 2557-2577. 10.1098/rsta.2011.0218.
2012
Ptashnik I.V., McPheat R.A., Shine K.P. , Smith K.M., Williams R.G. , Water vapour foreign-continuum absorption in near-infrared windows from laboratory measurements , Philosophical Transactions of the Royal Society of London Series A: Physical Sciences and Engineering, 2012 , Volume 370 , Pages 2557-2577.
H2 O
T=∅
P=∅
5. MTCKD-2.5
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
The MTCKD-2.5 [9, 10] foreign-continuum model (temperature independent).
[9] Clough, S. A., Shephard, M. W., Mlawer, E., Delamere, J. S., Iacono, M., Cady-Pereira, K., Boukabara, S. & Brown, P. D. (2005) Atmospheric radiative transfer modeling: a summary of the AER codes. J. Quant. Spectrosc. Radiat. Transf. 91, 233–244. (doi:10.1016/j.jqsrt.2004.05.058).
[10] Mlawer, E. J., Payne, V. H., Moncet, J.-L., Delamere, J. S., Alvarado, M. J. & Tobin, D. C. (2012). Development and recent evaluation of the MT_CKD model of continuum absorption. Phil. Trans. R. Soc. A 370, 2520–2556. (doi:10.1098/rsta.2011.0295).
2016
Keith P. Shine, Alain Campargue, Didier Mondelain, Robert A. McPheat, Igor V. Ptashnik, Damien Weidmann , The water vapour continuum in near-infrared windows – Current understanding and prospects for its inclusion in spectroscopic databases, Journal of Molecular Spectroscopy, 2016 , Volume 327 , Pages 193–208.
H2 O
T=372 К
P=∅
8. FTS I.V. Ptashnik, et al. (2012) (372K)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Water vapour foreign continuum cross-section derived from CAVIAR FTS measurements (H2 O + Air) at 372°K [17].
[17] I.V. Ptashnik, R.A. McPheat, K.P. Shine, K.M. Smith, R.G. Williams, Water vapour foreign-continuum absorption in near-infrared windows from laboratory measurements, Philosophical Transactions of the Royal Society a-Mathematical Physical and Engineering Sciences, 370 (2012) 2557-2577. 10.1098/rsta.2011.0218.
2012
Ptashnik I.V., McPheat R.A., Shine K.P. , Smith K.M., Williams R.G. , Water vapour foreign-continuum absorption in near-infrared windows from laboratory measurements , Philosophical Transactions of the Royal Society of London Series A: Physical Sciences and Engineering, 2012 , Volume 370 , Pages 2557-2577.
H2 O
T=∅
P=∅
5. MTCKD-2.5
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
The MTCKD-2.5 [9, 10] foreign-continuum model (temperature independent).
[9] Clough, S. A., Shephard, M. W., Mlawer, E., Delamere, J. S., Iacono, M., Cady-Pereira, K., Boukabara, S. & Brown, P. D. (2005) Atmospheric radiative transfer modeling: a summary of the AER codes. J. Quant. Spectrosc. Radiat. Transf. 91, 233–244. (doi:10.1016/j.jqsrt.2004.05.058).
[10] Mlawer, E. J., Payne, V. H., Moncet, J.-L., Delamere, J. S., Alvarado, M. J. & Tobin, D. C. (2012). Development and recent evaluation of the MT_CKD model of continuum absorption. Phil. Trans. R. Soc. A 370, 2520–2556. (doi:10.1098/rsta.2011.0295).
2016
Keith P. Shine, Alain Campargue, Didier Mondelain, Robert A. McPheat, Igor V. Ptashnik, Damien Weidmann , The water vapour continuum in near-infrared windows – Current understanding and prospects for its inclusion in spectroscopic databases, Journal of Molecular Spectroscopy, 2016 , Volume 327 , Pages 193–208.
H2 O
T=402 К
P=∅
8. FTS I.V. Ptashnik, et al. (2012) (402K)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Water vapour foreign continuum cross-section derived from CAVIAR FTS measurements (H2 O+Air) at 402°K [17].
[17] I.V. Ptashnik, R.A. McPheat, K.P. Shine, K.M. Smith, R.G. Williams, Water vapour foreign-continuum absorption in near-infrared windows from laboratory measurements, Philosophical Transactions of the Royal Society a-Mathematical Physical and Engineering Sciences, 370 (2012) 2557-2577. 10.1098/rsta.2011.0218.
2012
Ptashnik I.V., McPheat R.A., Shine K.P. , Smith K.M., Williams R.G. , Water vapour foreign-continuum absorption in near-infrared windows from laboratory measurements , Philosophical Transactions of the Royal Society of London Series A: Physical Sciences and Engineering, 2012 , Volume 370 , Pages 2557-2577.
H2 O
T=∅
P=∅
5. MTCKD-2.5
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
The MTCKD-2.5 [9, 10] foreign-continuum model (temperature independent).
[9] Clough, S. A., Shephard, M. W., Mlawer, E., Delamere, J. S., Iacono, M., Cady-Pereira, K., Boukabara, S. & Brown, P. D. (2005) Atmospheric radiative transfer modeling: a summary of the AER codes. J. Quant. Spectrosc. Radiat. Transf. 91, 233–244. (doi:10.1016/j.jqsrt.2004.05.058).
[10] Mlawer, E. J., Payne, V. H., Moncet, J.-L., Delamere, J. S., Alvarado, M. J. & Tobin, D. C. (2012). Development and recent evaluation of the MT_CKD model of continuum absorption. Phil. Trans. R. Soc. A 370, 2520–2556. (doi:10.1098/rsta.2011.0295).
2016
Keith P. Shine, Alain Campargue, Didier Mondelain, Robert A. McPheat, Igor V. Ptashnik, Damien Weidmann , The water vapour continuum in near-infrared windows – Current understanding and prospects for its inclusion in spectroscopic databases, Journal of Molecular Spectroscopy, 2016 , Volume 327 , Pages 193–208.
H2 O
T=431 К
P=∅
8. FTS I.V. Ptashnik, et al. (2012) (431K)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Water vapour foreign continuum cross-section derived from CAVIAR FTS measurements (H2 O + Air) at 431°K [17].
[17] I.V. Ptashnik, R.A. McPheat, K.P. Shine, K.M. Smith, R.G. Williams, Water vapour foreign-continuum absorption in near-infrared windows from laboratory measurements, Philosophical Transactions of the Royal Society a-Mathematical Physical and Engineering Sciences, 370 (2012) 2557-2577. 10.1098/rsta.2011.0218.
2012
Ptashnik I.V., McPheat R.A., Shine K.P. , Smith K.M., Williams R.G. , Water vapour foreign-continuum absorption in near-infrared windows from laboratory measurements , Philosophical Transactions of the Royal Society of London Series A: Physical Sciences and Engineering, 2012 , Volume 370 , Pages 2557-2577.
H2 O
T=∅
P=∅
5. MTCKD-2.5
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
The MTCKD-2.5 [9, 10] foreign-continuum model (temperature independent).
[9] Clough, S. A., Shephard, M. W., Mlawer, E., Delamere, J. S., Iacono, M., Cady-Pereira, K., Boukabara, S. & Brown, P. D. (2005) Atmospheric radiative transfer modeling: a summary of the AER codes. J. Quant. Spectrosc. Radiat. Transf. 91, 233–244. (doi:10.1016/j.jqsrt.2004.05.058).
[10] Mlawer, E. J., Payne, V. H., Moncet, J.-L., Delamere, J. S., Alvarado, M. J. & Tobin, D. C. (2012). Development and recent evaluation of the MT_CKD model of continuum absorption. Phil. Trans. R. Soc. A 370, 2520–2556. (doi:10.1098/rsta.2011.0295).
2016
Keith P. Shine, Alain Campargue, Didier Mondelain, Robert A. McPheat, Igor V. Ptashnik, Damien Weidmann , The water vapour continuum in near-infrared windows – Current understanding and prospects for its inclusion in spectroscopic databases, Journal of Molecular Spectroscopy, 2016 , Volume 327 , Pages 193–208.
H2 O
T=400 К
P=∅
9. FTS I.V. Ptashnik, et al. (1046 hPa H₂O)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Water vapour self-continuum cross-sections at about 400°K in the 4700 cm-1 window. FTS CAVIAR measurements [23] with the same short-path absorption cell, but using a more conventional 50 W quartz tungsten halogen bulb result..
[23] I.V. Ptashnik, R.A. McPheat, K.P. Shine, K.M. Smith, R.G. Williams, Water vapor selfcontinuum absorption in near-infrared windows derived from laboratory measurements, Journal of Geophysical Research-Atmospheres, 116 (2011), D16305. 10.1029/2011JD015603.
2011
Ptashnik I.V., McPheat R.A., Shine K.P., Smith K.M., Williams R.G. , Water vapor self-continuum absorption in near-infrared windows derived from laboratory experiments, Journal of Geophysical Research, 2011 , Volume D116 , Pages 16305.
H2 O
T=402 К
P=∅
7. CAVIAR (402K)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
2017
E.A. Serov, T.A. Odintsova, M.Yu. Tretyakov, V.E. Semenov , On the origin of the water vapor continuum absorption within rotational and fundamental vibrational bands, Journal of Quantitative Spectroscopy and Radiative Transfer, 2017 , Volume 193 , Pages 1–12.
H2 O
T=∅
P=∅
3. Odintsova, T.A., et al. (2017). Experiment
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Experimental spectra of the H2 O continuum in far infrared [31] range approximated by the model allowing for the contribution from the water dimers and the empirically calculated contribution from the line wings. The dots are the experimental data.
[31] T.A. Odintsova, M.Yu. Tretyakov, O. Pirali, P. Roy, Water vapor continuum in the range of rotational spectrum of H2 O molecule: New experimental data and their comparative analysis, Journal of Quantitative Spectroscopy and Radiative Transfer, 2017 , Volume 187 , Issue 2017, Pages 116–123, DOI: 10.1016/j.jqsrt.2016.09.00, http://dx.doi.org/10.1016/j.jqsrt.2016.09.00
2017
T.A. Odintsova, M.Yu. Tretyakov, O. Pirali, P. Roy , Water vapor continuum in the range of rotational spectrum of H2 O molecule: New experimental data and their comparative analysis, Journal of Quantitative Spectroscopy and Radiative Transfer, 2017 , Volume 187 , Issue 2017, Pages 116–123.
H2 O
T=296 К
P=0.0026943 атм
4. Continuum retrieved from spectra (2.73 mbar)
Волновое число (см⁻¹)
Коэффициент поглощения (дБ/км мБар²)
Continuum retrieved from spectra recorded at 2.73 mbar in microwindows of transparency within frequency range of 40–200 cm−1 .
2017
Richard, L., Vasilchenko, S., Mondelain, D., Ventrillard, I., Romanini, D., and Campargue, A. , Water vapor self-continuum absorption measurements in the 4.0 and 2.1 μm transparency windows, Journal of Quantitative Spectroscopy and Radiative Transfer, 2017 , Volume 201 , Pages 171–179.
H2 O
T=∅
P=∅
4. Burch D.E., et al. (1984), (311K, 2400-2700 cm⁻¹)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Spectral dependence of the self-continuum cross-section, Cs , at room temperature. The experimental results: measurements by Burch and Alt [11] with a grating spectrograph.
[11] Burch D.E., Alt R.L. Continuum absorption by H2O in the 700 –1200 cm−1 and 2400 –2800 cm−1 windows. Report AFGL-TR-84-0128, Air Force Geophys. Laboratory, Hanscom AFB, MA., 1984.
1984
Burch D.E., Alt R.L. , Continuum absorption by H2 O in the 700 - 1200 cm-1 and 2400 - 2800 cm-1 windows, Report AFGL-TR-84-0128 by Ford Aerospace and Communications Corporation, Aeronutronic Division to AFGL, United States Air Force, Hanscom AFB, Unknown, 1984 , Pages 31.
H2 O
T=296 К
P=∅
6. Experiment (296K, 2400-2640cm⁻¹)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Self-broadening coefficients between 2400 and 2640 cm-1 for 296°K.
2017
Richard, L., Vasilchenko, S., Mondelain, D., Ventrillard, I., Romanini, D., and Campargue, A. , Water vapor self-continuum absorption measurements in the 4.0 and 2.1 μm transparency windows, Journal of Quantitative Spectroscopy and Radiative Transfer, 2017 , Volume 201 , Pages 171–179.
H2 O
T=∅
P=∅
4. Campargue A., et al. (2016)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Spectral dependence of the self-continuum cross-section, Cs , at room temperature derived from the experimental results: OF-CEAS [12] .
[12] Campargue A., Kassi S., Mondelain D., Vasilchenko S., Romanini D. Accurate laboratory determination of the near infrared water vapor self-continuum: A test of the MT_CKD model. J Geophys Res Atmos, 121,13,180–13,203, doi: 10.1002/ 2016JD025531 .
2016
Campargue, A., Kassi, S., Mondelain, D., Vasilchenko, S., and Romanini , Accurate laboratory determination of the near infrared water vapor self-continuum: A test of the MT_CKD model, Journal of Geophysical Research: Atmospheres, 2016 , Volume 121 , Pages 13,180–13,203.
1000/Т (К⁻¹) Волновое число (см⁻¹)Температура (К)
Коэффициент поглощения (см²мол⁻¹атм⁻¹) Коэффициент поглощения (см²мол⁻¹атм⁻¹) Коэффициент поглощения (см²мол⁻¹атм⁻¹)
2017
Richard, L., Vasilchenko, S., Mondelain, D., Ventrillard, I., Romanini, D., and Campargue, A. , Water vapor self-continuum absorption measurements in the 4.0 and 2.1 μm transparency windows, Journal of Quantitative Spectroscopy and Radiative Transfer, 2017 , Volume 201 , Pages 171–179.
H2 O
T=300 К
P=1 атм
4. Ptashnik I.V., et al. (2013), (287K, 2100-2800 cm⁻¹)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Spectral dependence of the self-continuum cross-section, Cs , at room temperature. The experimental results: measurements by Tomsk2013 [8].
[8] I.V. Ptashnik, T.M. Petrova, Y.N. Ponomarev, K.P. Shine, A.A. Solodov, A.M. Solodov, Near-infrared water vapour self-continuum at close to room temperature, Journal of Quantitative Spectroscopy & Radiative Transfer, 120 (2013) 23-35. 10.1016/j.jqsrt.2013.02.016.
2013
I.V. Ptashnik, T.M. Petrova, Yu.N. Ponomarev, K.P. Shine, A.A. Solodov, A.M. Solodov
, Near-infrared water vapour self-continuum at close to room temperature , Journal of Quantitative Spectroscopy and Radiative Transfer, 2013 , Volume 120 , Pages 23-35.
H2 O
T=289 К
P=1 атм
1. The total error of the retrieval Cs + DCs
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
The total error of the retrieval, including experimental errors and uncertainty in spectral line parameters, is presented by ΔCs
2017
Richard, L., Vasilchenko, S., Mondelain, D., Ventrillard, I., Romanini, D., and Campargue, A. , Water vapor self-continuum absorption measurements in the 4.0 and 2.1 μm transparency windows, Journal of Quantitative Spectroscopy and Radiative Transfer, 2017 , Volume 201 , Pages 171–179.
H2 O
T=∅
P=∅
5. Burch D.E., et al. (1984) (2400-2650 cm⁻¹)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
The results by Burch and Alt [11] are included for comparison.
[11] Burch D.E., Alt R.L. Continuum absorption by H2 O in the 700 – 1200 cm−1 and 2400 – 2800 cm−1 windows. Report AFGL-TR-84-0128, Air Force Geophys. Laboratory, Hanscom AFB, MA., 1984.
1984
Burch D.E., Alt R.L. , Continuum absorption by H2 O in the 700 - 1200 cm-1 and 2400 - 2800 cm-1 windows, Report AFGL-TR-84-0128 by Ford Aerospace and Communications Corporation, Aeronutronic Division to AFGL, United States Air Force, Hanscom AFB, Unknown, 1984 , Pages 31.
H2 O
T=296 К
P=∅
6. Experiment (296K, 2400-2640cm⁻¹)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Self-broadening coefficients between 2400 and 2640 cm-1 for 296°K.
2017
Richard, L., Vasilchenko, S., Mondelain, D., Ventrillard, I., Romanini, D., and Campargue, A. , Water vapor self-continuum absorption measurements in the 4.0 and 2.1 μm transparency windows, Journal of Quantitative Spectroscopy and Radiative Transfer, 2017 , Volume 201 , Pages 171–179.
H2 O
T=∅
P=∅
5. Campargue A., et al. (2016) (~2300 cm⁻¹)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
The OF-CEAS results [12] are included for comparison.
[12] Campargue A., Kassi S., Mondelain D., Vasilchenko S., Romanini D. Accurate laboratory determination of the near infrared water vapor self-continuum: A test of the MT_CKD model. J Geophys Res Atmos, 121,13,180–13,203, doi: 10.1002/ 2016JD025531.
2016
Campargue, A., Kassi, S., Mondelain, D., Vasilchenko, S., and Romanini , Accurate laboratory determination of the near infrared water vapor self-continuum: A test of the MT_CKD model, Journal of Geophysical Research: Atmospheres, 2016 , Volume 121 , Pages 13,180–13,203.
H2 O
T=296 К
P=1 атм
1. MT-CKD₂.8 model
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
The MT_CKD2.8 model in the 1500–10000 cm-1 range.
2017
Richard, L., Vasilchenko, S., Mondelain, D., Ventrillard, I., Romanini, D., and Campargue, A. , Water vapor self-continuum absorption measurements in the 4.0 and 2.1 μm transparency windows, Journal of Quantitative Spectroscopy and Radiative Transfer, 2017 , Volume 201 , Pages 171–179.
H2 O
T=∅
P=∅
6. Baranov Y.I., et al. (2011, 2490 cm⁻¹)
1000/Т (К⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Temperature dependence of the water vapor self-continuum cross-sections near 2490 cm−1 obtained by Baranov and Lafferty [6].
[6] Baranov Y.I., Lafferty W.J. The water-vapor continuum and selective absorption in the 3-5 μm spectral region at temperatures from 311 to 363°K. J Quant Spectrosc Radiat Transfer 2011;112:1304–13. doi: 10.1016/j.jqsrt.2011.01.024.
2011
Yu.I. Baranov, W.J. Lafferty , The water-vapor continuum and selective absorption in the 3–5 μm spectral region at temperatures from 311 to 363 K, Journal of Quantitative Spectroscopy and Radiative Transfer, 2011 , Volume 112 , Issue 8, Pages 1304-1313.
H2 O
T=∅
P=∅
6. Burch D.E., et al. (1971) (2460 cm⁻¹)
Температура (К)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Temperature dependence of the continuum absorption coefficient around 2460 cm−1 .
[15] Burch D.E., Gryvnak D.A., Pembrook J.D., Investigation of the absorption of infrared radiation by atmospheric gases: water, nitrogen, nitrous oxide, AFCRL-71-0124 U-4897, 1971 .
2017
Richard, L., Vasilchenko, S., Mondelain, D., Ventrillard, I., Romanini, D., and Campargue, A. , Water vapor self-continuum absorption measurements in the 4.0 and 2.1 μm transparency windows, Journal of Quantitative Spectroscopy and Radiative Transfer, 2017 , Volume 201 , Pages 171–179.
H2 O
T=∅
P=∅
6. Burch D.E., et al. (1971, 2490 cm⁻¹)
1000/Т (К⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Temperature dependence of the water vapor self-continuum cross-sections near 2490 cm−1 obtained by Burch et al. [23] ).
[23] Burch D.E ., Gryvnak D.A., Pembrook J.D., Investigation Absorption by Atmospheric Gases: water, nitrogen, nitrous oxide, Aeronutronic Division: Philco-Ford Corp.; 1971. Report AFCRL-71-0124, AD882876.
1971
Burch D.E., Gryvnak D.A., Pembrook J.D. , Investigation of the absorption of infrared radiation by atmospheric gases: water, nitrogen, nitrous oxide, Aeronutronic, Rep. U4897, Contract F19628-69-C-0263, Philco-Ford Corp., Unknown, 1971 ,
H2 O
T=∅
P=∅
1. 2600 cm⁻¹. Original data
1/Т (К⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Semi-logarithm plots of C0 S,w vs 1/T for wavenumber 2600 cm-1. Original.
2017
Richard, L., Vasilchenko, S., Mondelain, D., Ventrillard, I., Romanini, D., and Campargue, A. , Water vapor self-continuum absorption measurements in the 4.0 and 2.1 μm transparency windows, Journal of Quantitative Spectroscopy and Radiative Transfer, 2017 , Volume 201 , Pages 171–179.
H2 O
T=∅
P=∅
6. Burch D.E., et al. (1984, 2490 cm⁻¹)
1000/Т (К⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Temperature dependence of the water vapor self-continuum cross-sections near 2490 cm−1 obtained by grating spectrograph (blue diamonds: Burch and Alt [11].
[11] Burch D.E., Alt R.L. Continuum absorption by H2 O in the 700 –1200 cm−1 and 2400 –2800 cm−1 windows. Report AFGL-TR-84-0128, Air Force Geophys. Laboratory, Hanscom AFB, MA., 1984.
1984
Burch D.E., Alt R.L. , Continuum absorption by H2 O in the 700 - 1200 cm-1 and 2400 - 2800 cm-1 windows, Report AFGL-TR-84-0128 by Ford Aerospace and Communications Corporation, Aeronutronic Division to AFGL, United States Air Force, Hanscom AFB, Unknown, 1984 , Pages 31.
H2 O
T=∅
P=∅
8. Wavenumber 2500 cm⁻¹. Temperature dependence. Experiment
1000/Т (К⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Plots of the self-broadening coefficients at 2500 cm-1 versus the reciprocal of temperature. Experiment.
2017
Richard, L., Vasilchenko, S., Mondelain, D., Ventrillard, I., Romanini, D., and Campargue, A. , Water vapor self-continuum absorption measurements in the 4.0 and 2.1 μm transparency windows, Journal of Quantitative Spectroscopy and Radiative Transfer, 2017 , Volume 201 , Pages 171–179.
H2 O
T=∅
P=∅
6. Ptashnik I.V., et al. (2011) (2490 cm⁻¹)
1000/Т (К⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Temperature dependence of the water vapor self-continuum cross-sections near 2490 cm−1 . The MT_CKD3.0 values which are normalized to the number density at 1 atm and 296°K are multiplied by the factor 296/T.
[7] Ptashnik I.V., McPheat R.A., Shine K.P., Smith K.M., Williams R.G. Water vapor self - continuum absorption in near - infrared windows derived from laboratory measurements. J Geophys Res 2011;116:D16305. doi: 10.1029/2011JD015603
2011
Ptashnik I.V., McPheat R.A., Shine K.P., Smith K.M., Williams R.G. , Water vapor self-continuum absorption in near-infrared windows derived from laboratory experiments, Journal of Geophysical Research, 2011 , Volume D116 , Pages 16305.
H2 O
T=∅
P=∅
9. RAL 2500 cm⁻¹
1000/Т (К⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Temperature dependence of the retrieved self-continuum at selected wavenumbers.
2017
Richard, L., Vasilchenko, S., Mondelain, D., Ventrillard, I., Romanini, D., and Campargue, A. , Water vapor self-continuum absorption measurements in the 4.0 and 2.1 μm transparency windows, Journal of Quantitative Spectroscopy and Radiative Transfer, 2017 , Volume 201 , Pages 171–179.
H2 O
T=∅
P=∅
6. Ptashnik I.V., et al. (2013) (2490 cm⁻¹)
1000/Т (К⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Temperature dependence of the water vapor self-continuum cross-sections near 2490 cm−1 obtained by Tomsk 2013 [8]).
[8] Ptashnik I.V., Petrova T.M., Ponomarev Y.N., Shine K.P., Solodov A.A., Solodov A.M. Near-infrared water vapour self-continuum at close to room temperature,. J Quant Spectrosc Radiat Transfer 2013;120:23–35. doi: 10.1016/j.jqsrt.2013.02. 016 .
2013
I.V. Ptashnik, T.M. Petrova, Yu.N. Ponomarev, K.P. Shine, A.A. Solodov, A.M. Solodov
, Near-infrared water vapour self-continuum at close to room temperature , Journal of Quantitative Spectroscopy and Radiative Transfer, 2013 , Volume 120 , Pages 23-35.
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
2017
Richard, L., Vasilchenko, S., Mondelain, D., Ventrillard, I., Romanini, D., and Campargue, A. , Water vapor self-continuum absorption measurements in the 4.0 and 2.1 μm transparency windows, Journal of Quantitative Spectroscopy and Radiative Transfer, 2017 , Volume 201 , Pages 171–179.
H2 O
T=∅
P=∅
6. Ptashnik I.V., et al. (2015, 2490 cm⁻¹)
1000/Т (К⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Temperature dependence of the water vapor self-continuum cross-sections near 2490 cm−1 obtained by Tomsk 2015 [9] ).
[9] Ptashnik I.V., Petrova T.M., Ponomarev Y.N., Solodov A.A., Solodov A.M. Water vapor continuum absorption in near-IR atmospheric windows. Atmos Oceanic Optics 2015;28:115–20. doi: 10.1134/S102485601502009
2015
Igor Ptashnik, T.M. Petrova, Yu.N. Ponomarev, A.A. Solodov, A.M. Solodov , Water vapor continuum absorption in near-IR atmospheric windows, Atmospheric and Oceanic Optics, 2015 , Volume 28 , Issue 2, Pages 115-120.
2017
Richard, L., Vasilchenko, S., Mondelain, D., Ventrillard, I., Romanini, D., and Campargue, A. , Water vapor self-continuum absorption measurements in the 4.0 and 2.1 μm transparency windows, Journal of Quantitative Spectroscopy and Radiative Transfer, 2017 , Volume 201 , Pages 171–179.
H2 O
T=∅
P=∅
6. Rocher-Casterline B.E., et al. (2011)
1000/Т (К⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Temperature dependence of the water vapor self-continuum cross-sections near 2490 cm−1 . The D0 slope corresponds to a exp( D0 /kT ) law, D0 ≈1100 cm −1 being the dissociation energy of the water dimer molecule [24] . (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
[24] Rocher-Casterline B.E., Ch’ng L.C., Mollner A.K., Reisler H. Determination of the bond dissociation energy (D0 ) of the water dimer, (H2 O)2 , by velocity map imaging J. Chem. Phys. 2011;134:211101; https://doi.org/10.1063/1.3598339.
2011
Blithe E. Rocher-Casterline , Lee C. Ch'ng, Andrew K. Mollner, and Hanna Reisler
, Communication: Determination of the bond dissociation energy (D0) of the water dimer, (H 2 O)2 , by velocity map imaging , Journal of Chemical Physics, 2011 , Volume 134 , Issue 21,
Волновое число (см⁻¹)
Интенсивность (произвольные единицы)
2017
Richard, L., Vasilchenko, S., Mondelain, D., Ventrillard, I., Romanini, D., and Campargue, A. , Water vapor self-continuum absorption measurements in the 4.0 and 2.1 μm transparency windows, Journal of Quantitative Spectroscopy and Radiative Transfer, 2017 , Volume 201 , Pages 171–179.
H2 O
T=293 К
P=1 атм
9. Ptashnik I.V., et al. (2011), (293K, 4200-5000 cm⁻¹)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Spectral dependence of self-continuum cross-section at room temperature in the 2.1 μm window. FTS results obtained by the CAVIAR consortium [7].
[7] Ptashnik I.V., McPheat R.A., Shine K.P., Smith K.M., Williams R.G. Water vapor self - continuum absorption in near - infrared windows derived from laboratory measurements. J Geophys Res 2011;116:D16305. doi: 10.1029/2011JD015603.
2011
Ptashnik I.V., McPheat R.A., Shine K.P., Smith K.M., Williams R.G. , Water vapor self-continuum absorption in near-infrared windows derived from laboratory experiments, Journal of Geophysical Research, 2011 , Volume D116 , Pages 16305.
H2 O
T=293 К
P=0.0150999 атм
1. CAVIAR (293K, 1600-5800 cm⁻¹)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
2017
Richard, L., Vasilchenko, S., Mondelain, D., Ventrillard, I., Romanini, D., and Campargue, A. , Water vapor self-continuum absorption measurements in the 4.0 and 2.1 μm transparency windows, Journal of Quantitative Spectroscopy and Radiative Transfer, 2017 , Volume 201 , Pages 171–179.
H2 O
T=287 К
P=1 атм
9. Ptashnik I.V., et al. (2015), (287K, 4200-5500 cm⁻¹)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Spectral dependence of self-continuum cross-section at room temperature in the 2.1 μm window. FTS results obtained in Tomsk [9] .
[9] Ptashnik I.V., Petrova T.M, Ponomarev Y.N., Solodov A.A., Solodov A.M. Water vapor continuum absorption in near-IR atmospheric windows. Atmos Oceanic Optics 2015;28:115–20. doi: 10.1134/S102485601502009.
2015
Igor Ptashnik, T.M. Petrova, Yu.N. Ponomarev, A.A. Solodov, A.M. Solodov , Water vapor continuum absorption in near-IR atmospheric windows, Atmospheric and Oceanic Optics, 2015 , Volume 28 , Issue 2, Pages 115-120.
2017
Richard, L., Vasilchenko, S., Mondelain, D., Ventrillard, I., Romanini, D., and Campargue, A. , Water vapor self-continuum absorption measurements in the 4.0 and 2.1 μm transparency windows, Journal of Quantitative Spectroscopy and Radiative Transfer, 2017 , Volume 201 , Pages 171–179.
H2 O
T=289.5 К
P=1 атм
9. Ptashnik I.V., et al. (2013), (289.5K, 4200-5300 cm⁻¹)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Spectral dependence of self-continuum cross-section at room temperature in the 2.1 μm window. FTS results obtained in Tomsk [8] .
[8] Ptashnik I.V., Petrova T.M., Ponomarev Y.N., Shine K.P., Solodov A.A., Solodov A.M. Near-infrared water vapour self-continuum at close to room temperature, J Quant Spectrosc Radiat Transfer 2013;120:23–35. doi: 10.1016/j.jqsrt.2013.02. 016.
2013
I.V. Ptashnik, T.M. Petrova, Yu.N. Ponomarev, K.P. Shine, A.A. Solodov, A.M. Solodov
, Near-infrared water vapour self-continuum at close to room temperature , Journal of Quantitative Spectroscopy and Radiative Transfer, 2013 , Volume 120 , Pages 23-35.
H2 O
T=289 К
P=1 атм
1. Absorption cross-section of the self-continuum. H₂O. (T=298K)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Spectrally smoothed absorption cross-section Cs (ν) (10-22 cm2 molec-1 atm-1 ) of the self-continuum, derived in this work near 289°K, and defined according Eq. (3).
2017
Richard, L., Vasilchenko, S., Mondelain, D., Ventrillard, I., Romanini, D., and Campargue, A. , Water vapor self-continuum absorption measurements in the 4.0 and 2.1 μm transparency windows, Journal of Quantitative Spectroscopy and Radiative Transfer, 2017 , Volume 201 , Pages 171–179.
H2 O
T=∅
P=∅
9. Bicknell W.E., et al. (2006)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Spectral dependence of self-continuum cross-section at room temperature in the 2.1 μm window. Calorimetric–interferometry data [10].
[10] Bicknell W.E., Cecca S.D., Griffin M.K . Search for low-absorption regimes in the 1.6 and 2.1 μm atmospheric windows. J Directed Energy 2006;2:151–61 .
2006
Bicknell W.E., Cecca S.D., Griffin M.K., S. D. Swartz, and A. Flusberg , Search for low-absorption regions in the 1.6-and 2.1-μm atmospheric windows, Journal of Directed Energy, 2006 , Volume 2 , Pages 151–161.
Длина волны (мкм)
Коэффициент поглощения (Км⁻¹)
2017
Richard, L., Vasilchenko, S., Mondelain, D., Ventrillard, I., Romanini, D., and Campargue, A. , Water vapor self-continuum absorption measurements in the 4.0 and 2.1 μm transparency windows, Journal of Quantitative Spectroscopy and Radiative Transfer, 2017 , Volume 201 , Pages 171–179.
H2 O
T=∅
P=∅
9. Campargue A., et al. (2016) (4300-4400 cm⁻¹)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Spectral dependence of self-continuum cross-section at room temperature in the 2.1 μm window. Our CRDS [12] measurements.
[12] Campargue A., Kassi S., Mondelain D., Vasilchenko S., Romanini D. Accurate laboratory determination of the near infrared water vapor self-continuum: A test of the MT_CKD model. J Geophys Res Atmos, 121,13,180–13,203, 2016, doi: 10.1002/ 2016JD025531.
2016
Campargue, A., Kassi, S., Mondelain, D., Vasilchenko, S., and Romanini , Accurate laboratory determination of the near infrared water vapor self-continuum: A test of the MT_CKD model, Journal of Geophysical Research: Atmospheres, 2016 , Volume 121 , Pages 13,180–13,203.
H2 O
T=∅
P=∅
9. CRDS this work
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Figure 9. Spectral dependence of self-continuum cross section at room temperature in the 2.1 μm window. CRDS this work.
2017
Richard, L., Vasilchenko, S., Mondelain, D., Ventrillard, I., Romanini, D., and Campargue, A. , Water vapor self-continuum absorption measurements in the 4.0 and 2.1 μm transparency windows, Journal of Quantitative Spectroscopy and Radiative Transfer, 2017 , Volume 201 , Pages 171–179.
H2 O
T=∅
P=∅
9. Campargue A., et al. (2016) (4480-4550 cm⁻¹)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Spectral dependence of self-continuum cross-section at room temperature in the 2.1 μm window. Our CRDS [12] measurements.
[12] Campargue A., Kassi S., Mondelain D., Vasilchenko S., Romanini D. Accurate laboratory determination of the near infrared water vapor self-continuum: A test of the MT_CKD model. J Geophys Res Atmos, 121,13,180–13,203, 2016, doi: 10.1002/ 2016JD025531.
2016
Campargue, A., Kassi, S., Mondelain, D., Vasilchenko, S., and Romanini , Accurate laboratory determination of the near infrared water vapor self-continuum: A test of the MT_CKD model, Journal of Geophysical Research: Atmospheres, 2016 , Volume 121 , Pages 13,180–13,203.
H2 O
T=297 К
P=1 атм
1c. Self-Continuum Absorption Cross Sections of Water Vapor
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Self-Continuum Absorption Cross Sections of Water Vapor at T = 24°C Obtained by CRDS-VECSEL in the 4340–4370 cm-1 Spectral Range and by CRDS-DFB Between 4516 and 4533 cm-1
2017
Richard, L., Vasilchenko, S., Mondelain, D., Ventrillard, I., Romanini, D., and Campargue, A. , Water vapor self-continuum absorption measurements in the 4.0 and 2.1 μm transparency windows, Journal of Quantitative Spectroscopy and Radiative Transfer, 2017 , Volume 201 , Pages 171–179.
H2 O
T=∅
P=∅
9. Mondelain D., et al. (2015) (~4720 cm⁻¹)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Spectral dependence of self-continuum cross-section at room temperature in the 2.1 μm window. Our OF-CEAS [13] measurements.
[13] Mondelain D., Vasilchenko S., Cermak P., Kassi S., Campargue A. The self- and foreign-absorption continua of water vapor by cavity ring-down spectroscopy near 2.35 μm. Phys Chem Chem Phys 2015;17(27) 17762-1777, 35 doi: 10.1039/ C5CP01238D.
2015
Didier Mondelain, Semen Vasilchenko, Peter Cermak, Samir Kassi, Alain Campargue , The self- and foreign-absorption continua of water vapor by cavity ring-down spectroscopy near 2.35 µm, Physical Chemistry Chemical Physics, 2015 , Volume 17 , Issue 27, Pages 17762-17770.
2017
Richard, L., Vasilchenko, S., Mondelain, D., Ventrillard, I., Romanini, D., and Campargue, A. , Water vapor self-continuum absorption measurements in the 4.0 and 2.1 μm transparency windows, Journal of Quantitative Spectroscopy and Radiative Transfer, 2017 , Volume 201 , Pages 171–179.
H2 O
T=∅
P=∅
9. Ventrillard I., et al. (2015) (2280 cm⁻¹)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Spectral dependence of self-continuum cross-section at room temperature in the 2.1 μm window. Our CRDS [14] measurements.
[14] Ventrillard I., Romanini D., Mondelain D., Campargue A.. Accurate measurements and temperature dependence of the water vapor self-continuum absorption in the 2.1 μm atmospheric window. J Chem Phys 2015;143. doi: 10.1063/1.4931811.
2017
Richard, L., Vasilchenko, S., Mondelain, D., Ventrillard, I., Romanini, D., and Campargue, A. , Water vapor self-continuum absorption measurements in the 4.0 and 2.1 μm transparency windows, Journal of Quantitative Spectroscopy and Radiative Transfer, 2017 , Volume 201 , Pages 171–179.
1000/Т (К⁻¹) Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹) Коэффициент поглощения (см²мол⁻¹атм⁻¹)
2017
Richard, L., Vasilchenko, S., Mondelain, D., Ventrillard, I., Romanini, D., and Campargue, A. , Water vapor self-continuum absorption measurements in the 4.0 and 2.1 μm transparency windows, Journal of Quantitative Spectroscopy and Radiative Transfer, 2017 , Volume 201 , Pages 171–179.
H2 O
T=∅
P=∅
9. Ventrillard I., et al. (2015) (4200-4300 cm⁻¹)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Spectral dependence of self-continuum cross-section at room temperature in the 2.1 μm window. Our CRDS [14] measurements.
[14] I. Ventrillard, D. Romanini, D. Mondelain, A. Campargue, Accurate measurements and temperature dependence of the water vapor self-continuum absorption in the 2.1 μm atmospheric window, J Chem Phys, 2015 Oct 7;143(13):134304. doi: 10.1063/1.4931811.
2015
I. Ventrillard, D. Romanini, D. Mondelain, A. Campargue , Accurate measurements and temperature dependence of the water vapor self-continuum absorption in the 2.1 μm atmospheric window, The Journal of Chemical Physics, 2015 , Volume 143 , Issue 13,
2017
T.A. Odintsova, M.Yu. Tretyakov, O. Pirali, P. Roy , Water vapor continuum in the range of rotational spectrum of H2 O molecule: New experimental data and their comparative analysis, Journal of Quantitative Spectroscopy and Radiative Transfer, 2017 , Volume 187 , Issue 2017, Pages 116–123.
H2 O
T=∅
P=∅
5. Burch D.E. (1981) (15-50 cm⁻¹)
Волновое число (см⁻¹)
Ослабление (дБ/км)
Green rhombuses correspond to measurements of [11] and [12] in the range of 15–50 cm−1 .
[11] Burch D.E. Continuum absorption by atmospheric H2 O. SPIE Proc. Atmos Transm 1981;277:28–39. [12] Burch D.E. In: Continuum absorption by H2 O.1982 Report No. AFGL-TR-81-0300.
1982
Burch D.E. , Continuum absorption by atmospheric H2 O, Report AFGL-TR-81-0300, by Ford Aeronutronic to Air Force Geophys. Lab., Hanscom AFB, Unknown, 1982 , Pages 46.
H2 O
T=∅
P=∅
10. Calculation, the line contribution plus continuum
Волновое число (см⁻¹)
Ослабление (дБ/км)
Spectral plots of the near- millimeter attenuation by atmospheric H2 O at sea level. H2 O density = 5.9 gm/m3 . Attenuation calculated by summing the theoretical contributions by all the lines and adding the continuum.
2017
T.A. Odintsova, M.Yu. Tretyakov, O. Pirali, P. Roy , Water vapor continuum in the range of rotational spectrum of H2 O molecule: New experimental data and their comparative analysis, Journal of Quantitative Spectroscopy and Radiative Transfer, 2017 , Volume 187 , Issue 2017, Pages 116–123.
H2 O
T=296 К
P=0.0052 атм
5. Burch D.E. (1981) (360-800 cm⁻¹)
Волновое число (см⁻¹)
Коэффициент поглощения (дБ/км)
Triangles correspond to 360–800 cm−1 data from [11] and [12].
[11] Burch D.E. Continuum absorption by atmospheric H2 O. SPIE Proc. Atmos Transm 1981;277:28–39.
[12] Burch D.E., Continuum absorption by atmospheric H2 O, Report AFGL-TR-81-0300 by Ford Aeronutronic to AFGL, Hanscom AFB, Massachusets, 1982 , Pages 46.
1982
Burch D.E. , Continuum absorption by atmospheric H2 O, Report AFGL-TR-81-0300, by Ford Aeronutronic to Air Force Geophys. Lab., Hanscom AFB, Unknown, 1982 , Pages 46.
H2 O
T=296 К
P=∅
1. Experiment (296K, 600-1350 cm⁻¹)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Spectral plots of Cs 0 for H2 O at temperature 296°K.
2017
T.A. Odintsova, M.Yu. Tretyakov, O. Pirali, P. Roy , Water vapor continuum in the range of rotational spectrum of H2 O molecule: New experimental data and their comparative analysis, Journal of Quantitative Spectroscopy and Radiative Transfer, 2017 , Volume 187 , Issue 2017, Pages 116–123.
H2 O
T=∅
P=1 атм
6. Leforestier C., et el. (2010)
Волновое число (см⁻¹)
Коэффициент поглощения (дБ/км)
Collision induced absorption [41] multiplied by 100.
[41] Leforestier C., Tipping, R. H., Ma Q., Temperature dependences of mechanisms responsible for the water-vapor continuum absorption. II. Dimers and collision-induced absorption, Journal of Chemical Physics, 2010 , Volume 132 , Issue 16, Pages 164302, DOI: 10.1063/1.3384653
2010
Leforestier C., Tipping, R. H., Ma Q. , Temperature dependences of mechanisms responsible for the water-vapor continuum absorption. II. Dimers and collision-induced absorption
, Journal of Chemical Physics, 2010 , Volume 132 , Issue 16,
H2 O
T=240 К
P=1 атм
7. MT-CKD model, T=240 K
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
In addition, we present predicted values from the MT_CKD model (Ref. 30) at T=240°K.
[30] S. A. Clough, M. W. Shephard, E. J. Mlawer, J. S. Delamere, M. J. Iacono, K. Cady-Pereira, S. Boukabara, and P. D. Brown, J. Quant. Spectrosc. Radiat. Transf. 91, 233 (2005).
2018
Loic Lechevallier, Semen Vasilchenko, Roberto Grilli, Didier Mondelain, Daniele Romanini, and Alain Campargue , The water vapour self-continuum absorption in the infrared atmospheric windows: new laser measurements near 3.3 and 2.0 µm, Atmospheric Measurement Techniques, 2018 , Volume 11 , Issue 1, Pages 2159-217.
H2 O
T=293 К
P=1 атм
3. Ptashnik, I. V., et al. (2011), (293K, 2000-3200 cm⁻¹)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Overview comparison of the self-continuum cross-section of water vapour near room temperature. Experimental results are obtained from CAVIAR (2011).
Ptashnik, I. V., McPheat, R. A., Shine, K. P., Smith, K. M., and Williams, R. G.: Water vapor self – continuum absorption in near – infrared windows derived from laboratory measurements, J. Geophys. Res., 116, 2011, D16305, https://doi.org/10.1029/2011JD015603, 2011a
2011
Ptashnik I.V., McPheat R.A., Shine K.P., Smith K.M., Williams R.G. , Water vapor self-continuum absorption in near-infrared windows derived from laboratory experiments, Journal of Geophysical Research, 2011 , Volume D116 , Pages 16305.
H2 O
T=293 К
P=0.0150999 атм
1. CAVIAR (293K, 1600-5800 cm⁻¹)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
2018
Loic Lechevallier, Semen Vasilchenko, Roberto Grilli, Didier Mondelain, Daniele Romanini, and Alain Campargue , The water vapour self-continuum absorption in the infrared atmospheric windows: new laser measurements near 3.3 and 2.0 µm, Atmospheric Measurement Techniques, 2018 , Volume 11 , Issue 1, Pages 2159-217.
H2 O
T=287 К
P=1 атм
3. Ptashnik, I. V., et al. (2015), (287K, 2000-3100 cm⁻¹)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Overview comparison of the self-continuum cross-section of water vapour near room temperature. Experimental results are obtained from Tomsk (2015) .
Ptashnik et al., 2015 - Ptashnik, I. V., Petrova, T. M., Ponomarev, Y. N., Solodov, A. A., and Solodov, A. M.: Water vapor continuum absorption in near-IR atmospheric windows, Atmos. Ocean. Opt., 28, 115–120, https://doi.org/10.1134/S1024856015020098, 2015.
2015
Igor Ptashnik, T.M. Petrova, Yu.N. Ponomarev, A.A. Solodov, A.M. Solodov , Water vapor continuum absorption in near-IR atmospheric windows, Atmospheric and Oceanic Optics, 2015 , Volume 28 , Issue 2, Pages 115-120.
2018
Loic Lechevallier, Semen Vasilchenko, Roberto Grilli, Didier Mondelain, Daniele Romanini, and Alain Campargue , The water vapour self-continuum absorption in the infrared atmospheric windows: new laser measurements near 3.3 and 2.0 µm, Atmospheric Measurement Techniques, 2018 , Volume 11 , Issue 1, Pages 2159-217.
H2 O
T=289.5 К
P=1 атм
3. Ptashnik, I. V., et al. (2013), (289.5K, 2100-2700 cm⁻¹)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Overview comparison of the self-continuum cross-section of water vapour near room temperature. Experimental results are obtained from Tomsk (2013),
Ptashnik, I. V., Petrova, T. M., Ponomarev, Y. N., Shine, K. P., Solodov, A. A., and Solodov, A. M.: Near-infrared water vapour self-continuum at close to room temperature, J. Quant. Spectrosc. Ra. Transf., 120, 23–35, https://doi.org/10.1016/j.jqsrt.2013.02.016, 2013.
2013
I.V. Ptashnik, T.M. Petrova, Yu.N. Ponomarev, K.P. Shine, A.A. Solodov, A.M. Solodov
, Near-infrared water vapour self-continuum at close to room temperature , Journal of Quantitative Spectroscopy and Radiative Transfer, 2013 , Volume 120 , Pages 23-35.
H2 O
T=289 К
P=1 атм
1. The total error of the retrieval Cs + DCs
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
The total error of the retrieval, including experimental errors and uncertainty in spectral line parameters, is presented by ΔCs
2018
Loic Lechevallier, Semen Vasilchenko, Roberto Grilli, Didier Mondelain, Daniele Romanini, and Alain Campargue , The water vapour self-continuum absorption in the infrared atmospheric windows: new laser measurements near 3.3 and 2.0 µm, Atmospheric Measurement Techniques, 2018 , Volume 11 , Issue 1, Pages 2159-217.
H2 O
T=311 К
P=1 атм
3. Baranov, Y. I., et al. (2011), (311K, 2050-3100 cm⁻¹)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Overview comparison of the self-continuum cross-section of water vapour near room temperature. Experimental results are obtained using by FTS Baranov and Lafferty, (2011).
Baranov, Y. I. and Lafferty, W. J.: The water-vapor continuum and selective absorption in the 3–5 µm spectral region at temperatures from 311“ to 363“K, J. Quant. Spectrosc. Ra. Transf., 112, 1304–1313, https://doi.org/10.1016/j.jqsrt.2011.01.024, 2011.
2011
Yu.I. Baranov, W.J. Lafferty , The water-vapor continuum and selective absorption in the 3–5 μm spectral region at temperatures from 311 to 363 K, Journal of Quantitative Spectroscopy and Radiative Transfer, 2011 , Volume 112 , Issue 8, Pages 1304-1313.
H2 O
T=∅
P=∅
5. This work (T=311K)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Water-vapor self-broadened continuum.
2018
Loic Lechevallier, Semen Vasilchenko, Roberto Grilli, Didier Mondelain, Daniele Romanini, and Alain Campargue , The water vapour self-continuum absorption in the infrared atmospheric windows: new laser measurements near 3.3 and 2.0 µm, Atmospheric Measurement Techniques, 2018 , Volume 11 , Issue 1, Pages 2159-217.
H2 O
T=296 К
P=1 атм
3. Burch, D. E., et al. (1984), (296K, 2400-2640 cm⁻¹)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Overview comparison of the self-continuum cross-section of water vapour near room temperature. Experimental results are obtained with a grating spectrograph (Burch and Alt (1984)).
Burch, D. E. and Alt, R. L.: Continuum absorption by H2 O in the 700–1200 cm-1 and 2400–2800 cm-1 windows, Report AFGLTR-84-0128, Air Force Geophys. Laboratory, Hanscom AFB, MA, USA, 1984
1984
Burch D.E., Alt R.L. , Continuum absorption by H2 O in the 700 - 1200 cm-1 and 2400 - 2800 cm-1 windows, Report AFGL-TR-84-0128 by Ford Aerospace and Communications Corporation, Aeronutronic Division to AFGL, United States Air Force, Hanscom AFB, Unknown, 1984 , Pages 31.
H2 O
T=296 К
P=∅
6. Experiment (296K, 2400-2640cm⁻¹)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Self-broadening coefficients between 2400 and 2640 cm-1 for 296°K.
2018
Loic Lechevallier, Semen Vasilchenko, Roberto Grilli, Didier Mondelain, Daniele Romanini, and Alain Campargue , The water vapour self-continuum absorption in the infrared atmospheric windows: new laser measurements near 3.3 and 2.0 µm, Atmospheric Measurement Techniques, 2018 , Volume 11 , Issue 1, Pages 2159-217.
H2 O
T=296.15 К
P=1 атм
3. Campargue, A., et al. (2016), (296.15K, 2490 cm⁻¹)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Overview comparison of the self-continuum cross-section of water vapour near room temperature. Experimental results are obtained by OFCEAS (2016). The temperature of the OFCEAS results is 297.3°K.The temperature of the OFCEAS results are 296.15° for Campargue et al. (2016).
Campargue, A., Kassi, S., Mondelain, D., Vasilchenko, S., and Romanini, D.: Accurate laboratory determination of the near infrared water vapor self-continuum: A test of the MT_CKD model, J. Geophys. Res.-Atmos., 121, 180–13,203, 2016, https://doi.org/10.1002/2016JD025531
2016
Campargue, A., Kassi, S., Mondelain, D., Vasilchenko, S., and Romanini , Accurate laboratory determination of the near infrared water vapor self-continuum: A test of the MT_CKD model, Journal of Geophysical Research: Atmospheres, 2016 , Volume 121 , Pages 13,180–13,203.
1000/Т (К⁻¹) Волновое число (см⁻¹)Температура (К)
Коэффициент поглощения (см²мол⁻¹атм⁻¹) Коэффициент поглощения (см²мол⁻¹атм⁻¹) Коэффициент поглощения (см²мол⁻¹атм⁻¹)
2018
Loic Lechevallier, Semen Vasilchenko, Roberto Grilli, Didier Mondelain, Daniele Romanini, and Alain Campargue , The water vapour self-continuum absorption in the infrared atmospheric windows: new laser measurements near 3.3 and 2.0 µm, Atmospheric Measurement Techniques, 2018 , Volume 11 , Issue 1, Pages 2159-217.
H2 O
T=297.3 К
P=1 атм
3. Richard, L., et al. (2017), (297.3K, 2490 cm⁻¹)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Overview comparison of the self-continuum cross-section of water vapour near room temperature. Experimental results are obtained by OFCEAS (2017). The temperature of the OFCEAS results is 297.3°K,.
Richard, L., Vasilchenko, S., Mondelain, D., Ventrillard, I., Romanini, D., and Campargue, A. Water vapor self-continuum absorption measurements in the 4.0 and 2.1 μm transparency windows, J. Quant. Spectrosc. Ra. Transf., 201, 171-179, 2017, http://dx.doi.org/10.1016/j.jqsrt.2017.06.037
2017
Richard, L., Vasilchenko, S., Mondelain, D., Ventrillard, I., Romanini, D., and Campargue, A. , Water vapor self-continuum absorption measurements in the 4.0 and 2.1 μm transparency windows, Journal of Quantitative Spectroscopy and Radiative Transfer, 2017 , Volume 201 , Pages 171–179.
1000/Т (К⁻¹) Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹) Коэффициент поглощения (см²мол⁻¹атм⁻¹)
2018
Loic Lechevallier, Semen Vasilchenko, Roberto Grilli, Didier Mondelain, Daniele Romanini, and Alain Campargue , The water vapour self-continuum absorption in the infrared atmospheric windows: new laser measurements near 3.3 and 2.0 µm, Atmospheric Measurement Techniques, 2018 , Volume 11 , Issue 1, Pages 2159-217.
H2 O
T=∅
P=∅
6. CRDS measurements (2015-18) (4200-5200 cm⁻¹)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Spectral dependence of self-continuum cross-section at room temperature in the 2.1 μm window (4200-5200 cm-1 ). Present CRDS values near 5000 cm-1 and our previous results [1-4].
Didier Mondelain, Semen Vasilchenko, Peter Cermak, Samir Kassi,· Alain Campargue, The self- and foreign-absorption continua of water vapor by cavity ring-down spectroscopy near 2.35 µm, Physical Chemistry Chemical Physics, 2015; 17(27), 17762-17770 DOI: 10.1039/C5CP01238D
Ventrillard, I., Romanini, D., Mondelain, D., and Campargue, A. Accurate measurements and temperature dependence of the water vapor self-continuum absorption in the 2.1 μm atmospheric window, J. Chem. Phys., 143, 134304, https://doi.org/10.1063/1.4931811, 2015.
Campargue, A., Kassi, S., Mondelain, D., Vasilchenko, S., and Romanini, D. Accurate laboratory determination of the near infrared water vapor self-continuum: A test of the MT_CKD model, J. Geophys. Res.-Atmos., 121, 180–13,203, https://doi.org/10.1002/2016JD025531, 2016.
Richard, L., Vasilchenko, S., Mondelain, D., Ventrillard, I., Romanini, D., and Campargue, A. Water vapor self-continuum absorption measurements in the 4.0 and 2.1 μm transparency windows, J. Quant. Spectrosc. Ra. Transf., 201, 171–179, 2017.
2015
Didier Mondelain, Semen Vasilchenko, Peter Cermak, Samir Kassi, Alain Campargue , The self- and foreign-absorption continua of water vapor by cavity ring-down spectroscopy near 2.35 µm, Physical Chemistry Chemical Physics, 2015 , Volume 17 , Issue 27, Pages 17762-17770.
H2 O
T=298 К
P=∅
7. This work (298K)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Spectral dependence of the self-continuum cross-section: in this work (x).
2018
Loic Lechevallier, Semen Vasilchenko, Roberto Grilli, Didier Mondelain, Daniele Romanini, and Alain Campargue , The water vapour self-continuum absorption in the infrared atmospheric windows: new laser measurements near 3.3 and 2.0 µm, Atmospheric Measurement Techniques, 2018 , Volume 11 , Issue 1, Pages 2159-217.
H2 O
T=293 К
P=∅
6. Ptashnik et al., (2011) (293K, 4200-5200 cm⁻¹)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Spectral dependence of self-continuum cross-section at room temperature in the 2.1 μm window (4200-5200 cm-1 ). CAVIAR consortium (Ptashnik et al., 2011).
Ptashnik, I. V., McPheat, R. A., Shine, K. P., Smith, K. M., and Williams, R. G.: Water vapor self – continuum absorption in near – infrared windows derived from laboratory measurements, J. Geophys. Res., 116, D16305, 2011, https://doi.org/10.1029/2011JD015603.
2011
Ptashnik I.V., McPheat R.A., Shine K.P., Smith K.M., Williams R.G. , Water vapor self-continuum absorption in near-infrared windows derived from laboratory experiments, Journal of Geophysical Research, 2011 , Volume D116 , Pages 16305.
H2 O
T=293 К
P=0.0150999 атм
1. CAVIAR (293K, 1600-5800 cm⁻¹)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
2018
Loic Lechevallier, Semen Vasilchenko, Roberto Grilli, Didier Mondelain, Daniele Romanini, and Alain Campargue , The water vapour self-continuum absorption in the infrared atmospheric windows: new laser measurements near 3.3 and 2.0 µm, Atmospheric Measurement Techniques, 2018 , Volume 11 , Issue 1, Pages 2159-217.
H2 O
T=289.5 К
P=∅
6. Ptashnik et al., (2013) (289.5K, 4200-5200 cm⁻¹)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Spectral dependence of self-continuum cross-section at room temperature in the 2.1 μm window (4200-5200 cm-1 ). FTS results obtained in Tomsk (Ptashnik et al., 2013.
Ptashnik, I.V., Petrova, T. M., Ponomarev, Y.N., Shine, K.P., Solodov, A.A., and Solodov, A.M. Near-infrared water vapour self-continuum at close to room temperature, J. Quant. Spectrosc. Rad. Transf., 2013, 120, 23–35, https://doi.org/10.1016/j.jqsrt.2013.02.016, 2013
2013
I.V. Ptashnik, T.M. Petrova, Yu.N. Ponomarev, K.P. Shine, A.A. Solodov, A.M. Solodov
, Near-infrared water vapour self-continuum at close to room temperature , Journal of Quantitative Spectroscopy and Radiative Transfer, 2013 , Volume 120 , Pages 23-35.
H2 O
T=289 К
P=1 атм
1. The total error of the retrieval Cs + DCs
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
The total error of the retrieval, including experimental errors and uncertainty in spectral line parameters, is presented by ΔCs
2018
Loic Lechevallier, Semen Vasilchenko, Roberto Grilli, Didier Mondelain, Daniele Romanini, and Alain Campargue , The water vapour self-continuum absorption in the infrared atmospheric windows: new laser measurements near 3.3 and 2.0 µm, Atmospheric Measurement Techniques, 2018 , Volume 11 , Issue 1, Pages 2159-217.
H2 O
T=287 К
P=∅
6. Ptashnik et al., (2015) (287K, 4200-5200 cm⁻¹)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Spectral dependence of self-continuum cross-section at room temperature in the 2.1 μm window (4200-5200 cm-1 ). The FTS results obtained in Tomsk (Ptashnik et al., 2015). The 30–50% error bars on the Ptashnik et al., 2015 FTS values are not plotted, for clarity.
Ptashnik, I.V., Petrova, T.M., Ponomarev, Y.N., Solodov, A.A., and Solodov, A.M., Water vapor continuum absorption in near-IR atmospheric windows, Atmos. Ocean. Opt., 28, 115–120, https://doi.org/10.1134/S1024856015020098, 2015.
2015
Igor Ptashnik, T.M. Petrova, Yu.N. Ponomarev, A.A. Solodov, A.M. Solodov , Water vapor continuum absorption in near-IR atmospheric windows, Atmospheric and Oceanic Optics, 2015 , Volume 28 , Issue 2, Pages 115-120.
2018
Loic Lechevallier, Semen Vasilchenko, Roberto Grilli, Didier Mondelain, Daniele Romanini, and Alain Campargue , The water vapour self-continuum absorption in the infrared atmospheric windows: new laser measurements near 3.3 and 2.0 µm, Atmospheric Measurement Techniques, 2018 , Volume 11 , Issue 1, Pages 2159-217.
H2 O
T=293 К
P=1 атм
7. Ptashnik, I. V., et al. (2011), (3000 cm⁻¹, CAVIAR)
1000/Т (К⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Temperature dependence of the water vapour self-continuum cross-sections near 3000 cm-1 obtained by FTS (CAVIAR, [1]).
Ptashnik, I. V., McPheat, R. A., Shine, K. P., Smith, K. M., and Williams, R. G.: Water vapor self – continuum absorption in near – infrared windows derived from laboratory measurements, J. Geophys. Res., 116, D16305, 2011, https://doi.org/10.1029/2011JD015603.
2011
Ptashnik I.V., McPheat R.A., Shine K.P., Smith K.M., Williams R.G. , Water vapor self-continuum absorption in near-infrared windows derived from laboratory experiments, Journal of Geophysical Research, 2011 , Volume D116 , Pages 16305.
H2 O
T=∅
P=∅
9. RAL 2600 cm⁻¹
1000/Т (К⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Temperature dependence of the retrieved self-continuum at selected wavenumbers.
2018
Loic Lechevallier, Semen Vasilchenko, Roberto Grilli, Didier Mondelain, Daniele Romanini, and Alain Campargue , The water vapour self-continuum absorption in the infrared atmospheric windows: new laser measurements near 3.3 and 2.0 µm, Atmospheric Measurement Techniques, 2018 , Volume 11 , Issue 1, Pages 2159-217.
H2 O
T=293 К
P=1 атм
7. Ptashnik, I. V., et al. (2011), (3000 cm⁻¹, CAVIAR high T)
1000/Т (К⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Temperature dependence of the water vapour self-continuum cross-sections near 3000 cm-1 obtained by FTS (CAVIAR; [1]).
Ptashnik, I. V., McPheat, R. A., Shine, K. P., Smith, K. M., and Williams, R. G.: Water vapor self – continuum absorption in near – infrared windows derived from laboratory measurements, J. Geophys. Res., 116, D16305, 2011, https://doi.org/10.1029/2011JD015603.
2011
Ptashnik I.V., McPheat R.A., Shine K.P., Smith K.M., Williams R.G. , Water vapor self-continuum absorption in near-infrared windows derived from laboratory experiments, Journal of Geophysical Research, 2011 , Volume D116 , Pages 16305.
H2 O
T=∅
P=∅
9. RAL 4300 cm⁻¹
1000/Т (К⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Temperature dependence of the retrieved self-continuum at selected wavenumbers.
2018
Loic Lechevallier, Semen Vasilchenko, Roberto Grilli, Didier Mondelain, Daniele Romanini, and Alain Campargue , The water vapour self-continuum absorption in the infrared atmospheric windows: new laser measurements near 3.3 and 2.0 µm, Atmospheric Measurement Techniques, 2018 , Volume 11 , Issue 1, Pages 2159-217.
H2 O
T=∅
P=∅
7. Baranov, Yu. I., et al. (2011) (3000 cm⁻¹)
1000/Т (К⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Temperature dependence of the water vapour self-continuum cross-sections near 3000 cm-1 obtained by FTS (Baranov and Lafferty, 2011).
Baranov, Y. I. and Lafferty, W. J.: The water-vapor continuum and selective absorption in the 3–5 µm spectral region at temperatures from 311° to 363°K, J. Quant. Spectrosc. Ra. Transf., 112, 1304–1313, 2011, https://doi.org/10.1016/j.jqsrt.2011.01.024.
2011
Yu.I. Baranov, W.J. Lafferty , The water-vapor continuum and selective absorption in the 3–5 μm spectral region at temperatures from 311 to 363 K, Journal of Quantitative Spectroscopy and Radiative Transfer, 2011 , Volume 112 , Issue 8, Pages 1304-1313.
H2 O
T=∅
P=∅
6. MT-CKD 2.4 model
Температура (К)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
The solid line represents the MT_CKD versions 2.4 continuum model.
2018
Loic Lechevallier, Semen Vasilchenko, Roberto Grilli, Didier Mondelain, Daniele Romanini, and Alain Campargue , The water vapour self-continuum absorption in the infrared atmospheric windows: new laser measurements near 3.3 and 2.0 µm, Atmospheric Measurement Techniques, 2018 , Volume 11 , Issue 1, Pages 2159-217.
H2 O
T=293 К
P=1 атм
7a. Ptashnik, I. V., et al. (2011), (4301 cm⁻¹, CAVIAR)
1000/Т (К⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Temperature dependence of the water vapour self-continuum cross-sections near 4301 cm-1 obtained by FTS (CAVIAR).
1. Ptashnik, I. V., McPheat, R. A., Shine, K. P., Smith, K. M., and Williams, R. G.: Water vapor self – continuum absorption in near – infrared windows derived from laboratory measurements, J. Geophys. Res., 116, D16305, 2011, https://doi.org/10.1029/2011JD015603.
2011
Ptashnik I.V., McPheat R.A., Shine K.P., Smith K.M., Williams R.G. , Water vapor self-continuum absorption in near-infrared windows derived from laboratory experiments, Journal of Geophysical Research, 2011 , Volume D116 , Pages 16305.
H2 O
T=∅
P=∅
9. RAL 4200 cm⁻¹
1000/Т (К⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Temperature dependence of the retrieved self-continuum at selected wavenumbers.
2018
Loic Lechevallier, Semen Vasilchenko, Roberto Grilli, Didier Mondelain, Daniele Romanini, and Alain Campargue , The water vapour self-continuum absorption in the infrared atmospheric windows: new laser measurements near 3.3 and 2.0 µm, Atmospheric Measurement Techniques, 2018 , Volume 11 , Issue 1, Pages 2159-217.
H2 O
T=293 К
P=1 атм
7a. Ptashnik, I. V., et al. (2011), (4301 cm⁻¹, CAVIAR high T)
1000/Т (К⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Temperature dependence of the water vapour self-continuum cross-sections near 4301 cm-1 obtained by FTS (CAVIAR, high T).
1. Ptashnik, I. V., McPheat, R. A., Shine, K. P., Smith, K. M., and Williams, R. G.: Water vapor self – continuum absorption in near – infrared windows derived from laboratory measurements, J. Geophys. Res., 116, D16305, 2011, https://doi.org/10.1029/2011JD015603.
2011
Ptashnik I.V., McPheat R.A., Shine K.P., Smith K.M., Williams R.G. , Water vapor self-continuum absorption in near-infrared windows derived from laboratory experiments, Journal of Geophysical Research, 2011 , Volume D116 , Pages 16305.
H2 O
T=∅
P=∅
9. RAL 4300 cm⁻¹
1000/Т (К⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Temperature dependence of the retrieved self-continuum at selected wavenumbers.
2018
Loic Lechevallier, Semen Vasilchenko, Roberto Grilli, Didier Mondelain, Daniele Romanini, and Alain Campargue , The water vapour self-continuum absorption in the infrared atmospheric windows: new laser measurements near 3.3 and 2.0 µm, Atmospheric Measurement Techniques, 2018 , Volume 11 , Issue 1, Pages 2159-217.
H2 O
T=∅
P=∅
7a. Ptashnik, I. V., et al. (2013), (4301 cm⁻¹)
1000/Т (К⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Temperature dependence of the water vapour self-continuum cross-sections near 4301 cm-1 obtained by FTS (Tomsk 2013).
3. Ptashnik, I. V., Petrova, T. M., Ponomarev, Y. N., Shine, K. P., Solodov, A. A., and Solodov, A. M.: Near-infrared water vapour self-continuum at close to room temperature, J. Quant. Spectrosc. Ra. Transf., 120, 23–35 2013, https://doi.org/10.1016/j.jqsrt.2013.02.016,.
2013
I.V. Ptashnik, T.M. Petrova, Yu.N. Ponomarev, K.P. Shine, A.A. Solodov, A.M. Solodov
, Near-infrared water vapour self-continuum at close to room temperature , Journal of Quantitative Spectroscopy and Radiative Transfer, 2013 , Volume 120 , Pages 23-35.
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
2018
Loic Lechevallier, Semen Vasilchenko, Roberto Grilli, Didier Mondelain, Daniele Romanini, and Alain Campargue , The water vapour self-continuum absorption in the infrared atmospheric windows: new laser measurements near 3.3 and 2.0 µm, Atmospheric Measurement Techniques, 2018 , Volume 11 , Issue 1, Pages 2159-217.
H2 O
T=293 К
P=1 атм
7b. Ptashnik, I. V., et al. (2011), (5006 cm⁻¹, CAVIAR high T)
1000/Т (К⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Temperature dependence of the water vapour self-continuum cross-sections near 5006 cm-1 obtained by FTS (CAVIAR,High T).
1. Ptashnik, I. V., McPheat, R. A., Shine, K. P., Smith, K. M., and Williams, R. G.: Water vapor self – continuum absorption in near – infrared windows derived from laboratory measurements, J. Geophys. Res., 116, D16305, 2011, https://doi.org/10.1029/2011JD015603.
2011
Ptashnik I.V., McPheat R.A., Shine K.P., Smith K.M., Williams R.G. , Water vapor self-continuum absorption in near-infrared windows derived from laboratory experiments, Journal of Geophysical Research, 2011 , Volume D116 , Pages 16305.
H2 O
T=∅
P=∅
9. RAL 4600 cm⁻¹
1000/Т (К⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Temperature dependence of the retrieved self-continuum at selected wavenumbers.
2018
Loic Lechevallier, Semen Vasilchenko, Roberto Grilli, Didier Mondelain, Daniele Romanini, and Alain Campargue , The water vapour self-continuum absorption in the infrared atmospheric windows: new laser measurements near 3.3 and 2.0 µm, Atmospheric Measurement Techniques, 2018 , Volume 11 , Issue 1, Pages 2159-217.
H2 O
T=293 К
P=1 атм
7b. Ptashnik, I. V., et al. (2011), (5006 cm⁻¹, CAVIAR)
1000/Т (К⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Temperature dependence of the water vapour self-continuum cross-sections near 5006 cm-1 obtained by FTS (CAVIAR).
1. Ptashnik, I. V., McPheat, R. A., Shine, K. P., Smith, K. M., and Williams, R. G.: Water vapor self – continuum absorption in near – infrared windows derived from laboratory measurements, J. Geophys. Res., 116, D16305, 2011, https://doi.org/10.1029/2011JD015603.
2011
Ptashnik I.V., McPheat R.A., Shine K.P., Smith K.M., Williams R.G. , Water vapor self-continuum absorption in near-infrared windows derived from laboratory experiments, Journal of Geophysical Research, 2011 , Volume D116 , Pages 16305.
H2 O
T=∅
P=∅
9. RAL 4400 cm⁻¹
1000/Т (К⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Temperature dependence of the retrieved self-continuum at selected wavenumbers.
2018
Loic Lechevallier, Semen Vasilchenko, Roberto Grilli, Didier Mondelain, Daniele Romanini, and Alain Campargue , The water vapour self-continuum absorption in the infrared atmospheric windows: new laser measurements near 3.3 and 2.0 µm, Atmospheric Measurement Techniques, 2018 , Volume 11 , Issue 1, Pages 2159-217.
H2 O
T=∅
P=∅
7b. Ptashnik, I. V., et al. (2013) (5006 cm⁻¹)
1000/Т (К⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Temperature dependence of the water vapour self-continuum cross-sections near 4301 cm-1 obtained by FTS (Tomsk 2013).
3. Ptashnik, I. V., Petrova, T. M., Ponomarev, Y. N., Shine, K. P., Solodov, A. A., and Solodov, A. M.: Near-infrared water vapour self-continuum at close to room temperature, J. Quant. Spectrosc. Rad. Transf., 120, 23–35, 2013, https://doi.org/10.1016/j.jqsrt.2013.02.016.
2013
I.V. Ptashnik, T.M. Petrova, Yu.N. Ponomarev, K.P. Shine, A.A. Solodov, A.M. Solodov
, Near-infrared water vapour self-continuum at close to room temperature , Journal of Quantitative Spectroscopy and Radiative Transfer, 2013 , Volume 120 , Pages 23-35.
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
2018
Loic Lechevallier, Semen Vasilchenko, Roberto Grilli, Didier Mondelain, Daniele Romanini, and Alain Campargue , The water vapour self-continuum absorption in the infrared atmospheric windows: new laser measurements near 3.3 and 2.0 µm, Atmospheric Measurement Techniques, 2018 , Volume 11 , Issue 1, Pages 2159-217.
H2 O
T=∅
P=∅
8. Baranov Yu.I., et al. (2015) (2000-3500 cm⁻¹)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
The water vapour selfcontinuum cross-sections, Cs , in the 2000–3500 cm-1 range, values reported by Baranov and Lafferty (2011).
Baranov, Y. I. and Lafferty, W. J.: The water-vapor continuum and selective absorption in the 3–5 µm spectral region at temperatures from 311° to 363°K, J. Quant. Spectrosc. Ra. Transf., 112, 1304–1313, 2011, https://doi.org/10.1016/j.jqsrt.2011.01.024
2011
Yu.I. Baranov, W.J. Lafferty , The water-vapor continuum and selective absorption in the 3–5 μm spectral region at temperatures from 311 to 363 K, Journal of Quantitative Spectroscopy and Radiative Transfer, 2011 , Volume 112 , Issue 8, Pages 1304-1313.
H2 O
T=∅
P=∅
5. This work (T=311K)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Water-vapor self-broadened continuum.
2018
Loic Lechevallier, Semen Vasilchenko, Roberto Grilli, Didier Mondelain, Daniele Romanini, and Alain Campargue , The water vapour self-continuum absorption in the infrared atmospheric windows: new laser measurements near 3.3 and 2.0 µm, Atmospheric Measurement Techniques, 2018 , Volume 11 , Issue 1, Pages 2159-217.
H2 O
T=∅
P=∅
8. Burch D.E., et al. (1984) (2100-2700 cm⁻¹)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
The water vapour selfcontinuum cross-sections, Cs , in the 2100–2700 cm-1 range. Measurements by Burch and Alt (1984) near 2500 cm-1 using a grating spectrograph.
Burch D.E, Alt RL. Continuum absorption by H2 O in the 700 – 1200 cm−1 and 2400 – 2800 cm−1 windows. Report AFGL-TR-84-0128, Air Force Geophys. Laboratory, Hanscom AFB, MA., 1984.
1984
Burch D.E., Alt R.L. , Continuum absorption by H2 O in the 700 - 1200 cm-1 and 2400 - 2800 cm-1 windows, Report AFGL-TR-84-0128 by Ford Aerospace and Communications Corporation, Aeronutronic Division to AFGL, United States Air Force, Hanscom AFB, Unknown, 1984 , Pages 31.
H2 O
T=296 К
P=∅
6. Experiment (296K, 2400-2640cm⁻¹)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Self-broadening coefficients between 2400 and 2640 cm-1 for 296°K.
2018
Loic Lechevallier, Semen Vasilchenko, Roberto Grilli, Didier Mondelain, Daniele Romanini, and Alain Campargue , The water vapour self-continuum absorption in the infrared atmospheric windows: new laser measurements near 3.3 and 2.0 µm, Atmospheric Measurement Techniques, 2018 , Volume 11 , Issue 1, Pages 2159-217.
H2 O
T=∅
P=∅
8. Ptashnik, I. V., et al. (2011) (1600-5800 cm⁻¹)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
The water vapour selfcontinuum cross-sections, Cs , in the 1600–5800 cm-1 range. FTS values reported by the CAVIAR consortium (Ptashnik et al., 2011).
Ptashnik, I. V., McPheat, R. A., Shine, K. P., Smith, K. M., and Williams, R. G.: Water vapor self – continuum absorption in near – infrared windows derived from laboratory measurements, J.Geophys. Res., 116, D16305, 2011, https://doi.org/10.1029/2011JD015603.
2011
Ptashnik I.V., McPheat R.A., Shine K.P., Smith K.M., Williams R.G. , Water vapor self-continuum absorption in near-infrared windows derived from laboratory experiments, Journal of Geophysical Research, 2011 , Volume D116 , Pages 16305.
H2 O
T=293 К
P=0.0150999 атм
1. CAVIAR (293K, 1600-5800 cm⁻¹)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
2018
Loic Lechevallier, Semen Vasilchenko, Roberto Grilli, Didier Mondelain, Daniele Romanini, and Alain Campargue , The water vapour self-continuum absorption in the infrared atmospheric windows: new laser measurements near 3.3 and 2.0 µm, Atmospheric Measurement Techniques, 2018 , Volume 11 , Issue 1, Pages 2159-217.
H2 O
T=∅
P=∅
8. Ptashnik, I. V., et al. (2013) (1500-7800 cm⁻¹)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
The water vapour selfcontinuum cross-sections, Cs , in the 1500–7800 cm-1 range, compared to an exhaustive collection of experimental determinations: (i) FTS values reported from Tomsk 2013 experiments (Ptashnik et al., 2013).
Ptashnik, I. V., Petrova, T. M., Ponomarev, Y. N., Shine, K. P., Solodov, A. A., and Solodov, A. M.: Near-infrared water vapour self-continuum at close to room temperature, J. Quant. Spectrosc. Ra. Transf., 120, 23–35, 2013, https://doi.org/10.1016/j.jqsrt.2013.02.016.
2013
I.V. Ptashnik, T.M. Petrova, Yu.N. Ponomarev, K.P. Shine, A.A. Solodov, A.M. Solodov
, Near-infrared water vapour self-continuum at close to room temperature , Journal of Quantitative Spectroscopy and Radiative Transfer, 2013 , Volume 120 , Pages 23-35.
H2 O
T=289 К
P=1 атм
1. The total error of the retrieval Cs + DCs
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
The total error of the retrieval, including experimental errors and uncertainty in spectral line parameters, is presented by ΔCs
2018
Loic Lechevallier, Semen Vasilchenko, Roberto Grilli, Didier Mondelain, Daniele Romanini, and Alain Campargue , The water vapour self-continuum absorption in the infrared atmospheric windows: new laser measurements near 3.3 and 2.0 µm, Atmospheric Measurement Techniques, 2018 , Volume 11 , Issue 1, Pages 2159-217.
H2 O
T=∅
P=∅
8. Ptashnik, I. V., et al. (2015) (1900-7700 cm⁻¹)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
The water vapour selfcontinuum cross-sections, Cs , in the 1900–7700 cm-1 range. FTS values reported from Tomsk 2015 experiments (Ptashnik et al., 2015).
Ptashnik, I. V., Petrova, T. M., Ponomarev, Y. N., Solodov, A. A., and Solodov, A. M.: Water vapor continuum absorption in near-IR atmospheric windows, Atmos. Ocean. Opt., 28, 115–120, 2015, https://doi.org/10.1134/S1024856015020098.
2015
Igor Ptashnik, T.M. Petrova, Yu.N. Ponomarev, A.A. Solodov, A.M. Solodov , Water vapor continuum absorption in near-IR atmospheric windows, Atmospheric and Oceanic Optics, 2015 , Volume 28 , Issue 2, Pages 115-120.
2019
Igor Ptashnik, Tatyana E. Klimeshina, Alexander A. Solodov, Andrei A. Vigasin , Spectral composition of the water vapour self-continuum absorption within 2.7 and 6.25 μm bands, Journal of Quantitative Spectroscopy and Radiative Transfer, 2019 , Volume 228 , Pages 97-105.
H2 O
T=296 К
P=∅
2. Paynter D.J., et al. (2009) (296K, 1300-2900 cm⁻¹)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Example of pure water vapour continuum cross-section spectra within the 1600 cm–1 bands, retrieved from high-resolution Fourier-transform spectra at room and higher temperatures [24].
[24] Paynter D.J., Ptashnik I.V., Shine K.P., Smith K.M., McPheat R., Williams R.G. Laboratory measurements of the water vapor continuum in the 1200–80 00 cm–1 region between 293°K and 351°K. J Geophys Res 2009;114:D21301
2009
Paynter D.J., Ptashnik I.V., Shine K.P., Smith K.M., McPheat R.M., Williams R.G. , Laboratory measurements of the water vapor continuum in the 1200-8000 cm-1 region between 293K and 351 K, Journal of Geophysical Research, 2009 , Volume 114 , Pages D21301.
H2 O
T=∅
P=∅
6. Paynter, D. J., et al. (2007) (296K, 3400-4000 cm⁻¹)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
The MT_CKD and CKD models are shown for comparison along with the previous continuum measurements by Paynter et al. [2007].
Paynter, D. J., I. V. Ptashnik, K. P. Shine, and K. M. Smith (2007), Pure water vapor continuum measurements between 3100 and 4400 cm-1 : Evidence for water dimer absorption in near atmospheric conditions, Geophys. Res. Lett., 34, L12808, doi:10.1029/2007GL029259.
2019
Igor Ptashnik, Tatyana E. Klimeshina, Alexander A. Solodov, Andrei A. Vigasin , Spectral composition of the water vapour self-continuum absorption within 2.7 and 6.25 μm bands, Journal of Quantitative Spectroscopy and Radiative Transfer, 2019 , Volume 228 , Pages 97-105.
H2 O
T=330 К
P=∅
2. Paynter D.J., et al. (2009) (330K, 1300-2900 cm⁻¹)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Example of pure water vapour continuum cross-section spectra within the 1600 cm–1 bands, retrieved from high-resolution Fourier-transform spectra at room and higher temperatures [24].
[24] Paynter D.J., Ptashnik I.V., Shine K.P., Smith K.M., McPheat R., Williams R.G. Laboratory measurements of the water vapor continuum in the 1200–80 00 cm–1 region between 293°K and 351°K. J Geophys Res 2009;114:D21301
2009
Paynter D.J., Ptashnik I.V., Shine K.P., Smith K.M., McPheat R.M., Williams R.G. , Laboratory measurements of the water vapor continuum in the 1200-8000 cm-1 region between 293K and 351 K, Journal of Geophysical Research, 2009 , Volume 114 , Pages D21301.
H2 O
T=295 К
P=0.0175672 атм
5. This work (295 K, 1200-2000 cm⁻¹)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
The self-continuum derived from pure water vapor measurements in the LPAC between 1200 and 2000 cm-1 conducted at 17.8 mbar and 295 K with a 128.75 m path length.
2019
Igor Ptashnik, Tatyana E. Klimeshina, Alexander A. Solodov, Andrei A. Vigasin , Spectral composition of the water vapour self-continuum absorption within 2.7 and 6.25 μm bands, Journal of Quantitative Spectroscopy and Radiative Transfer, 2019 , Volume 228 , Pages 97-105.
H2 O
T=351 К
P=∅
2. Paynter D.J., et al. (2009) (351K, 1300-2900 cm⁻¹)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Example of pure water vapour continuum cross-section spectra within the 1600 cm–1 bands, retrieved from high-resolution Fourier-transform spectra at room and higher temperatures [24].
[24] Paynter D.J., Ptashnik I.V., Shine K.P., Smith K.M., McPheat R., Williams R.G. Laboratory measurements of the water vapor continuum in the 1200–80 00 cm–1 region between 293°K and 351°K. J Geophys Res 2009;114:D21301
2009
Paynter D.J., Ptashnik I.V., Shine K.P., Smith K.M., McPheat R.M., Williams R.G. , Laboratory measurements of the water vapor continuum in the 1200-8000 cm-1 region between 293K and 351 K, Journal of Geophysical Research, 2009 , Volume 114 , Pages D21301.
H2 O
T=293 К
P=0.0150999 атм
6. This work (293K, 3400-4000 cm⁻¹)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
The self-continuum derived from a pure water vapor measurement in the LPAC between 3400 and 4000 cm-1 conducted at 15.3 mbar and 293 K with a 512.75 m path length.
2019
Igor Ptashnik, Tatyana E. Klimeshina, Alexander A. Solodov, Andrei A. Vigasin , Spectral composition of the water vapour self-continuum absorption within 2.7 and 6.25 μm bands, Journal of Quantitative Spectroscopy and Radiative Transfer, 2019 , Volume 228 , Pages 97-105.
H2 O
T=268.5 К
P=∅
2. Ptashnik I.V., et al. (2016) (268.5, 1300-2000 cm⁻¹)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Example of pure water vapour continuum cross-section spectra within the 1600 cm–1 bands, retrieved from high-resolution Fourier-transform spectra at below room temperatures [25]. Uncertainty in the retrieved continuum is shown for 288.5°К (15.35°C).
[25] Ptashnik I.V., Klimeshina T.E., Petrova T.M., Solodov A.A., Solodov A.M. Water vapor continuum absorption in the 2.7 and 6.25μm bands at decreased temperatures. Atmos Oceanic Opt 2016;29(3):211–15.
2016
I. V. Ptashnik, T. E. Klimeshina, T. M. Petrova, A. A. Solodov, A. M. Solodov , Water vapor continuum absorption in the 2.7 and 6.25 μm bands at decreased temperatures, Atmospheric and Oceanic Optics, 2016 , Volume 29 , Issue 3, Pages 211–215.
2019
Igor Ptashnik, Tatyana E. Klimeshina, Alexander A. Solodov, Andrei A. Vigasin , Spectral composition of the water vapour self-continuum absorption within 2.7 and 6.25 μm bands, Journal of Quantitative Spectroscopy and Radiative Transfer, 2019 , Volume 228 , Pages 97-105.
H2 O
T=278.8 К
P=∅
2. Ptashnik I.V., et al. (2016) (278.8, 1300-2000 cm⁻¹)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Example of pure water vapour continuum cross-section spectra within the 1600 cm–1 bands, retrieved from high-resolution Fourier-transform spectra at below room temperatures [25].
[25] Ptashnik I.V., Klimeshina T.E., Petrova T.M., Solodov A.A., Solodov A.M. Water vapor continuum absorption in the 2.7 and 6.25μm bands at decreased temperatures. Atmos Oceanic Opt 2016;29(3):211–15.
2016
I. V. Ptashnik, T. E. Klimeshina, T. M. Petrova, A. A. Solodov, A. M. Solodov , Water vapor continuum absorption in the 2.7 and 6.25 μm bands at decreased temperatures, Atmospheric and Oceanic Optics, 2016 , Volume 29 , Issue 3, Pages 211–215.
2019
Igor Ptashnik, Tatyana E. Klimeshina, Alexander A. Solodov, Andrei A. Vigasin , Spectral composition of the water vapour self-continuum absorption within 2.7 and 6.25 μm bands, Journal of Quantitative Spectroscopy and Radiative Transfer, 2019 , Volume 228 , Pages 97-105.
H2 O
T=288.5 К
P=∅
2. Ptashnik I.V., et al. (2016) (288.5, 1300-2000 cm⁻¹)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Example of pure water vapour continuum cross-section spectra within the 1600 cm–1 bands, retrieved from high-resolution Fourier-transform spectra at below room temperatures [25].
[25] Ptashnik I.V., Klimeshina T.E., Petrova T.M., Solodov A.A., Solodov A.M. Water vapor continuum absorption in the 2.7 and 6.25μm bands at decreased temperatures. Atmos Oceanic Opt 2016;29(3):211–15.
2016
I. V. Ptashnik, T. E. Klimeshina, T. M. Petrova, A. A. Solodov, A. M. Solodov , Water vapor continuum absorption in the 2.7 and 6.25 μm bands at decreased temperatures, Atmospheric and Oceanic Optics, 2016 , Volume 29 , Issue 3, Pages 211–215.
2019
Igor Ptashnik, Tatyana E. Klimeshina, Alexander A. Solodov, Andrei A. Vigasin , Spectral composition of the water vapour self-continuum absorption within 2.7 and 6.25 μm bands, Journal of Quantitative Spectroscopy and Radiative Transfer, 2019 , Volume 228 , Pages 97-105.
H2 O
T=296 К
P=∅
2a. Paynter D.J., et al. (2009) (296K, 3480-3960 cm⁻¹)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Example of pure water vapour continuum cross-section spectra within the 3600 cm–1 bands, retrieved from high-resolution Fourier-transform spectra at room and higher temperatures [24].
[24] Paynter D.J., Ptashnik I.V., Shine K.P., Smith K.M., McPheat R., Williams R.G. Laboratory measurements of the water vapor continuum in the 1200–80 00 cm–1 region between 293°K and 351°K. J Geophys Res 2009;114:D21301
2009
Paynter D.J., Ptashnik I.V., Shine K.P., Smith K.M., McPheat R.M., Williams R.G. , Laboratory measurements of the water vapor continuum in the 1200-8000 cm-1 region between 293K and 351 K, Journal of Geophysical Research, 2009 , Volume 114 , Pages D21301.
H2 O
T=∅
P=∅
6. Paynter, D. J., et al. (2007) (296K, 3400-4000 cm⁻¹)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
The MT_CKD and CKD models are shown for comparison along with the previous continuum measurements by Paynter et al. [2007].
Paynter, D. J., I. V. Ptashnik, K. P. Shine, and K. M. Smith (2007), Pure water vapor continuum measurements between 3100 and 4400 cm-1 : Evidence for water dimer absorption in near atmospheric conditions, Geophys. Res. Lett., 34, L12808, doi:10.1029/2007GL029259.
2019
Igor Ptashnik, Tatyana E. Klimeshina, Alexander A. Solodov, Andrei A. Vigasin , Spectral composition of the water vapour self-continuum absorption within 2.7 and 6.25 μm bands, Journal of Quantitative Spectroscopy and Radiative Transfer, 2019 , Volume 228 , Pages 97-105.
H2 O
T=317 К
P=∅
2a. Paynter D.J., et al. (2009) (317K, 3480-3960 cm⁻¹)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Example of pure water vapour continuum cross-section spectra within the 3600 cm–1 bands, retrieved from high-resolution Fourier-transform spectra at room and higher temperatures [24].
[24] Paynter D.J., Ptashnik I.V., Shine K.P., Smith K.M., McPheat R., Williams R.G. Laboratory measurements of the water vapor continuum in the 1200–80 00 cm–1 region between 293°K and 351°K. J Geophys Res 2009;114:D21301
2009
Paynter D.J., Ptashnik I.V., Shine K.P., Smith K.M., McPheat R.M., Williams R.G. , Laboratory measurements of the water vapor continuum in the 1200-8000 cm-1 region between 293K and 351 K, Journal of Geophysical Research, 2009 , Volume 114 , Pages D21301.
H2 O
T=∅
P=∅
6. Paynter, D. J., et al. (2007) (296K, 3400-4000 cm⁻¹)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
The MT_CKD and CKD models are shown for comparison along with the previous continuum measurements by Paynter et al. [2007].
Paynter, D. J., I. V. Ptashnik, K. P. Shine, and K. M. Smith (2007), Pure water vapor continuum measurements between 3100 and 4400 cm-1 : Evidence for water dimer absorption in near atmospheric conditions, Geophys. Res. Lett., 34, L12808, doi:10.1029/2007GL029259.
2019
Igor Ptashnik, Tatyana E. Klimeshina, Alexander A. Solodov, Andrei A. Vigasin , Spectral composition of the water vapour self-continuum absorption within 2.7 and 6.25 μm bands, Journal of Quantitative Spectroscopy and Radiative Transfer, 2019 , Volume 228 , Pages 97-105.
H2 O
T=336 К
P=∅
2a. Paynter D.J., et al. (2009) (336K, 3480-3960 cm⁻¹)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Example of pure water vapour continuum cross-section spectra within the 3600 cm–1 bands, retrieved from high-resolution Fourier-transform spectra at room and higher temperatures [24].
[24] Paynter D.J., Ptashnik I.V., Shine K.P., Smith K.M., McPheat R., Williams R.G. Laboratory measurements of the water vapor continuum in the 1200–80 00 cm–1 region between 293°K and 351°K. J Geophys Res 2009;114:D21301
2009
Paynter D.J., Ptashnik I.V., Shine K.P., Smith K.M., McPheat R.M., Williams R.G. , Laboratory measurements of the water vapor continuum in the 1200-8000 cm-1 region between 293K and 351 K, Journal of Geophysical Research, 2009 , Volume 114 , Pages D21301.
H2 O
T=293 К
P=0.0153 атм
8. This work (LPAC) (293K, 6900-7500 cm⁻¹)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
The self continuum derived from a pure water vapor LPAC measurement conducted at 15.3 mb and 293°K with a 512.75 m path length.
2019
Igor Ptashnik, Tatyana E. Klimeshina, Alexander A. Solodov, Andrei A. Vigasin , Spectral composition of the water vapour self-continuum absorption within 2.7 and 6.25 μm bands, Journal of Quantitative Spectroscopy and Radiative Transfer, 2019 , Volume 228 , Pages 97-105.
H2 O
T=351 К
P=∅
2a. Paynter D.J., et al. (2009) (351K, 3480-3960 cm⁻¹)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Example of pure water vapour continuum cross-section spectra within the 3600 cm–1 bands, retrieved from high-resolution Fourier-transform spectra at room and higher temperatures [24].
[24] Paynter D.J., Ptashnik I.V., Shine K.P., Smith K.M., McPheat R., Williams R.G. Laboratory measurements of the water vapor continuum in the 1200–80 00 cm–1 region between 293°K and 351°K. J Geophys Res 2009;114:D21301
2009
Paynter D.J., Ptashnik I.V., Shine K.P., Smith K.M., McPheat R.M., Williams R.G. , Laboratory measurements of the water vapor continuum in the 1200-8000 cm-1 region between 293K and 351 K, Journal of Geophysical Research, 2009 , Volume 114 , Pages D21301.
H2 O
T=293 К
P=0.0150999 атм
6. This work (293K, 3400-4000 cm⁻¹)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
The self-continuum derived from a pure water vapor measurement in the LPAC between 3400 and 4000 cm-1 conducted at 15.3 mbar and 293 K with a 512.75 m path length.
2019
Igor Ptashnik, Tatyana E. Klimeshina, Alexander A. Solodov, Andrei A. Vigasin , Spectral composition of the water vapour self-continuum absorption within 2.7 and 6.25 μm bands, Journal of Quantitative Spectroscopy and Radiative Transfer, 2019 , Volume 228 , Pages 97-105.
H2 O
T=278.8 К
P=∅
2a. Ptashnik I.V., et al. (2016) (278.8, 3480-3960 cm⁻¹)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Example of pure water vapour continuum cross-section spectra within the 31600 cm–1 bands, retrieved from high-resolution Fourier-transform spectra at below room temperatures [25].
[25] Ptashnik I.V., Klimeshina T.E., Petrova T.M., Solodov A.A., Solodov A.M. Water vapor continuum absorption in the 2.7 and 6.25μm bands at decreased temperatures. Atmos Oceanic Opt 2016;29(3):211–15.
2016
I. V. Ptashnik, T. E. Klimeshina, T. M. Petrova, A. A. Solodov, A. M. Solodov , Water vapor continuum absorption in the 2.7 and 6.25 μm bands at decreased temperatures, Atmospheric and Oceanic Optics, 2016 , Volume 29 , Issue 3, Pages 211–215.
2019
Igor Ptashnik, Tatyana E. Klimeshina, Alexander A. Solodov, Andrei A. Vigasin , Spectral composition of the water vapour self-continuum absorption within 2.7 and 6.25 μm bands, Journal of Quantitative Spectroscopy and Radiative Transfer, 2019 , Volume 228 , Pages 97-105.
H2 O
T=288.4 К
P=∅
2a. Ptashnik I.V., et al. (2016) (288.4, 3480-3960 cm⁻¹)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Example of pure water vapour continuum cross-section spectra within the 1600 cm–1 bands, retrieved from high-resolution Fourier-transform spectra at below room temperatures [25].
[25] Ptashnik I.V., Klimeshina T.E., Petrova T.M., Solodov A.A., Solodov A.M. Water vapor continuum absorption in the 2.7 and 6.25μm bands at decreased temperatures. Atmos Oceanic Opt 2016;29(3):211–15.
2016
I. V. Ptashnik, T. E. Klimeshina, T. M. Petrova, A. A. Solodov, A. M. Solodov , Water vapor continuum absorption in the 2.7 and 6.25 μm bands at decreased temperatures, Atmospheric and Oceanic Optics, 2016 , Volume 29 , Issue 3, Pages 211–215.
2019
Igor Ptashnik, Tatyana E. Klimeshina, Alexander A. Solodov, Andrei A. Vigasin , Spectral composition of the water vapour self-continuum absorption within 2.7 and 6.25 μm bands, Journal of Quantitative Spectroscopy and Radiative Transfer, 2019 , Volume 228 , Pages 97-105.
H2 O
T=∅
P=∅
7. Leforestier C. (2014). Total equilibrium constant (Kb+q )
Температура (К)
Константа равновесия (атм⁻¹)
Total equilibrium constant (Kb+q ). The data from Leforestier [42].
[42] Leforestier C. Water dimer equilibrium constant calculation: a quantum formulation including metastable states. J Chem Phys 2014;140:074106.
2014
Claude Leforestier , Water dimer equilibrium constant calculation: A quantum formulation including metastable states, The Journal of Chemical Physics, 2014 , Volume 140 ,
2019
Igor Ptashnik, Tatyana E. Klimeshina, Alexander A. Solodov, Andrei A. Vigasin , Spectral composition of the water vapour self-continuum absorption within 2.7 and 6.25 μm bands, Journal of Quantitative Spectroscopy and Radiative Transfer, 2019 , Volume 228 , Pages 97-105.
H2 O
T=∅
P=∅
7. Ruscic B. (2013). Total equilibrium constant (Kb+q )
Температура (К)
Константа равновесия (атм⁻¹)
Total equilibrium constant (Kb+q ). The data from Ruscic [43]
[43] Ruscic B. Active thermochemical tables: water and water dimer. J Phys Chem A 2013;117(46):11940-53.
2013
Branko Ruscic , Active Thermochemical Tables: Water and Water Dimer , Journal of Physical Chemistry, A, 2013 , Volume 117 , Issue 46, Pages 11940–11953.
2019
Igor Ptashnik, Tatyana E. Klimeshina, Alexander A. Solodov, Andrei A. Vigasin , Spectral composition of the water vapour self-continuum absorption within 2.7 and 6.25 μm bands, Journal of Quantitative Spectroscopy and Radiative Transfer, 2019 , Volume 228 , Pages 97-105.
H2 O
T=∅
P=∅
7. Tretyakov, M.Yu, et al. (2012). Total equilibrium constant (Kb+q )
Температура (К)
Константа равновесия (атм⁻¹)
Total equilibrium constant (Kb+q ), derived in this work. The data from Tretyakov et al. [44].
[44] Tretyakov M.Yu., Serov E.A., Odintsova T.A. Equilibrium thermodynamic state of water vapour and the collisional interaction of molecules. Radiophys Quant Electron 2012;54(10):700-16.
2012
Tretyakov M. Y., Serov E. A. & Odintsova T. A.
, Equilibrium thermodynamic state of water vapor and the collisional interaction of molecules , Radiophysics & Quantum Electronics, 2012 , Volume 54 , Pages 700–716.
Температура (К)
Константа равновесия (м⁻³)
2019
S.Vasilchenko, A.Campargue, S.Kassi, D.Mondelain , The water vapour self- and foreign-continua in the 1.6 µm and 2.3 µm windows by CRDS at room temperature, Journal of Quantitative Spectroscopy and Radiative Transfer, 2019 , Volume 227 , Pages 230-238.
H2 O
T=∅
P=∅
3. Mondelain D., et al. (2014)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Overview of the self-continuum cross-sections, CS , in the 1.6 µm window. The CRDS values of Ref. [19].
[19] Mondelain D, Manigand S, Kassi S, Campargue A. Temperature dependence of the water vapor self-continuum by cavity ring-down spectroscopy in the 1.6 μm transparency window. J Geophys Res Atmos 2014; 119: 5625–5639. doi: 10.1002/2013JD021319.
2014
D. Mondelain, S. Manigand, S. Kassi, A. Campargue , Temperature dependence of the water vapor self-continuum by cavity ring down spectroscopy in the 1.6 µm transparency window, Journal of Geophysical Research: Atmospheres, 2014 , Volume 119 , Issue 9, Pages 5625–5639.
H2 O
T=302 К
P=1 атм
5. Present experiment (302K, 5800-6700 cm⁻¹)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Spectral dependence of the self-continuum cross section, Cs , measured at 302°K in this work.
2019
Tatyana Odintsova, M.Yu Tretyakov, A.O. Zibarova, Olivier Pirali, Pascale Roy, A. Campargue , Far-infrared self-continuum absorption of H2 16 O and H2 18 O (15-500 cm−1 ), Journal of Quantitative Spectroscopy and Radiative Transfer, 2019 , Volume 227 , Pages 190-200.
H2 O
T=∅
P=∅
4. Burch D.E. (1982) (10-50 cm⁻¹)
Волновое число (см⁻¹)
Коэффициент поглощения (см⁴ / (мол атм))
Overview comparison of the experimental values of the normalized self-continuum cross-section of water vapor, CS (ν)/ν2 , to the spectral function of water dimer at room temperature (brown solid line) calculated ab initio [2] and the MT-CKD_3.2 model (dashed black line).
Burch D.E. Continuum absorption by H2 O. Report No AFGL-TR-81-0300, 1982.
1982
Burch D.E. , Continuum absorption by atmospheric H2 O, Report AFGL-TR-81-0300, by Ford Aeronutronic to Air Force Geophys. Lab., Hanscom AFB, Unknown, 1982 , Pages 46.
Волновое число (см⁻¹) Волновое число (см⁻¹) Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹) Коэффициент поглощения (см²мол⁻¹атм⁻¹) Ослабление (дБ/км)
2019
Tatyana Odintsova, M.Yu Tretyakov, A.O. Zibarova, Olivier Pirali, Pascale Roy, A. Campargue , Far-infrared self-continuum absorption of H2 16 O and H2 18 O (15-500 cm−1 ), Journal of Quantitative Spectroscopy and Radiative Transfer, 2019 , Volume 227 , Pages 190-200.
H2 O
T=∅
P=∅
4. Koshelev M.A., et al. (2011) (4-5 cm⁻¹)
Волновое число (см⁻¹)
Коэффициент поглощения (см⁴ / (мол атм))
Overview comparison of the experimental values of the normalized self-continuum cross-section of water vapor, CS (ν)/ν2 .
Koshelev M.A. Collisional broadening and shifting of the 211–202 transition of H2 16 O, H2 17 O, H2 18 O by atmosphere gases. J. Quant. Spectrosc. Radiat. Transfer 2011;112:550–2.
Koshelev M.A., Serov E.A., Parshin V.V., Tretyakov M.Yu. Millimeter wave continuum absorption in moist nitrogen at temperatures 261–328 K. J. Quant. Spectrosc. Radiat. Transfer 2011;112:2704–12.
2011
M.A. Koshelev, E.A. Serov, V.V. Parshin, M.Yu. Tretyakov , Millimeter wave continuum absorption in moist nitrogen at temperatures 261–328 K, Journal of Quantitative Spectroscopy and Radiative Transfer, 2011 , Volume 112 , Issue 17, Pages 2704–2712.
Частота (ГГц)
Коэффициент поглощения (дБ/км)
2019
Tatyana Odintsova, M.Yu Tretyakov, A.O. Zibarova, Olivier Pirali, Pascale Roy, A. Campargue , Far-infrared self-continuum absorption of H2 16 O and H2 18 O (15-500 cm−1 ), Journal of Quantitative Spectroscopy and Radiative Transfer, 2019 , Volume 227 , Pages 190-200.
H2 O
T=∅
P=∅
4. Odintsova T.A., et al. (2017) (50-52 cm⁻¹)
Волновое число (см⁻¹)
Коэффициент поглощения (см⁴ / (мол атм))
Overview comparison of the experimental values of the normalized self-continuum cross-section of water vapor, CS (ν)/ν2 .
Odintsova T.A., Tretyakov M.Y., Pirali O., Roy P., Water vapor continuum in the range of rotational spectrum of H2 O molecule: new experimental data and their comparative analysis. J. Quant. Spectrosc. Radiat. Transf 2017;187:116–23.
2017
T.A. Odintsova, M.Yu. Tretyakov, O. Pirali, P. Roy , Water vapor continuum in the range of rotational spectrum of H2 O molecule: New experimental data and their comparative analysis, Journal of Quantitative Spectroscopy and Radiative Transfer, 2017 , Volume 187 , Issue 2017, Pages 116–123.
Волновое число (см⁻¹) Волновое число (см⁻¹) Волновое число (см⁻¹)
Коэффициент поглощения (дБ/км мБар²) Коэффициент поглощения (дБ/км) Ослабление (дБ/км)
2019
Tatyana Odintsova, M.Yu Tretyakov, A.O. Zibarova, Olivier Pirali, Pascale Roy, A. Campargue , Far-infrared self-continuum absorption of H2 16 O and H2 18 O (15-500 cm−1 ), Journal of Quantitative Spectroscopy and Radiative Transfer, 2019 , Volume 227 , Pages 190-200.
H2 O
T=∅
P=∅
4. T. Kuhn, et al. (2002) (5-12 cm⁻¹)
Волновое число (см⁻¹)
Коэффициент поглощения (см⁴ / (мол атм))
Overview comparison of the experimental values of the normalized self-continuum cross-section of water vapor, CS (ν)/ν2 , to the spectral function of water dimer at room temperature (brown solid line) calculated ab initio [24] and the MT-CKD_3.2 model (dashed black line).
T. Kuhn; A. Bauer, M. Godon, S. Buhler, K. Kunzi Water vapor continuum: absorption measurements at 350 GHz and model calculations J. Quant. Spectrosc. Radiat. Transfer 2002;74:545–562.
2002
Kuhn T., Bauer A., Godon M., Buhler S., Kunzi K. , Water vapor continuum: absorption measurements at 350 GHz and model calculations, Journal of Quantitative Spectroscopy and Radiative Transfer, 2002 , Volume 74 , Pages 545-562.
Частота (ГГц)
Коэффициент поглощения (дБ/км)
2019
Tatyana Odintsova, M.Yu Tretyakov, A.O. Zibarova, Olivier Pirali, Pascale Roy, A. Campargue , Far-infrared self-continuum absorption of H2 16 O and H2 18 O (15-500 cm−1 ), Journal of Quantitative Spectroscopy and Radiative Transfer, 2019 , Volume 227 , Pages 190-200.
H2 O
T=∅
P=∅
9. Burch D.E. (1982) (0-50 cm⁻¹)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Experimental study.
1982
Burch D.E. , Continuum absorption by atmospheric H2 O, Report AFGL-TR-81-0300, by Ford Aeronutronic to Air Force Geophys. Lab., Hanscom AFB, Unknown, 1982 , Pages 46.
H2 O
T=∅
P=∅
13. The empirical continuum for self broadening (C)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹)
Comparison of the spectral curves from 0 to 50 cm-1 of the empirical continuum for self broadening (C).
2019
Tatyana Odintsova, M.Yu Tretyakov, A.O. Zibarova, Olivier Pirali, Pascale Roy, A. Campargue , Far-infrared self-continuum absorption of H2 16 O and H2 18 O (15-500 cm−1 ), Journal of Quantitative Spectroscopy and Radiative Transfer, 2019 , Volume 227 , Pages 190-200.
H2 O
T=∅
P=∅
9. Burch D.E. (1982) (350-800 cm⁻¹)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Experimental study.
1982
Burch D.E. , Continuum absorption by atmospheric H2 O, Report AFGL-TR-81-0300, by Ford Aeronutronic to Air Force Geophys. Lab., Hanscom AFB, Unknown, 1982 , Pages 46.
H2 O
T=296 К
P=∅
1. Experiment (296K, 600-1350 cm⁻¹)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Spectral plots of Cs 0 for H2 O at temperature 296°K.
2019
Tatyana Odintsova, M.Yu Tretyakov, A.O. Zibarova, Olivier Pirali, Pascale Roy, A. Campargue , Far-infrared self-continuum absorption of H2 16 O and H2 18 O (15-500 cm−1 ), Journal of Quantitative Spectroscopy and Radiative Transfer, 2019 , Volume 227 , Pages 190-200.
H2 O
T=∅
P=∅
9. Odintsova T.A., et al. (2017) (50-200 cm⁻¹)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Experimental study.
Odintsova T.A., Tretyakov M.Y., Pirali O., Roy P. Water vapor continuum in the range of rotational spectrum of H2 O molecule: new experimental data and their comparative analysis. J Quant Spectrosc Radiat Transf 2017;187:116-23.
2017
T.A. Odintsova, M.Yu. Tretyakov, O. Pirali, P. Roy , Water vapor continuum in the range of rotational spectrum of H2 O molecule: New experimental data and their comparative analysis, Journal of Quantitative Spectroscopy and Radiative Transfer, 2017 , Volume 187 , Issue 2017, Pages 116–123.
H2 O
T=296 К
P=0.0026943 атм
4. Continuum retrieved from spectra (2.73 mbar)
Волновое число (см⁻¹)
Коэффициент поглощения (дБ/км мБар²)
Continuum retrieved from spectra recorded at 2.73 mbar in microwindows of transparency within frequency range of 40–200 cm−1 .
2020
Birk M., Wagner G., Loos J., Shine K.P. , 3 μm Water vapor self- and foreign-continuum: New method for determination and new insights into the self-continuum, Journal of Quantitative Spectroscopy and Radiative Transfer, 2020 , Volume 253 ,
H2 O
T=293 К
P=1 атм
16. CAVIAR (T=293K)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Comparison between different SCs and the dimer spectrum around 296°K. CAVIAR data have been downloaded from http://www.met.reading.ac.uk/caviar/home/data.php.
Paynter D.J., Ptashnik I.V., Shine K.P., Smith K.M., McPheat R., Williams R.G. Laboratory measurements of the water vapour continuum in the 120 0–800 0 cm−1 region between 293°K and 351°K. J Geophys Res 2009;114:D21301. http://dx.doi.org/10.1029/2008JD011355.
2009
Paynter D.J., Ptashnik I.V., Shine K.P., Smith K.M., McPheat R.M., Williams R.G. , Laboratory measurements of the water vapor continuum in the 1200-8000 cm-1 region between 293K and 351 K, Journal of Geophysical Research, 2009 , Volume 114 , Pages D21301.
H2 O
T=∅
P=∅
6. Paynter, D. J., et al. (2007) (296K, 3400-4000 cm⁻¹)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
The MT_CKD and CKD models are shown for comparison along with the previous continuum measurements by Paynter et al. [2007].
Paynter, D. J., I. V. Ptashnik, K. P. Shine, and K. M. Smith (2007), Pure water vapor continuum measurements between 3100 and 4400 cm-1 : Evidence for water dimer absorption in near atmospheric conditions, Geophys. Res. Lett., 34, L12808, doi:10.1029/2007GL029259.
2020
Birk M., Wagner G., Loos J., Shine K.P. , 3 μm Water vapor self- and foreign-continuum: New method for determination and new insights into the self-continuum, Journal of Quantitative Spectroscopy and Radiative Transfer, 2020 , Volume 253 ,
H2 O
T=351 К
P=1 атм
16. CAVIAR (T=351K)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Comparison between different SCs and the dimer spectrum around 351°K. The base term [32] was added to the SC from the current work in order to make it comparable to the other work. CAVIAR data have been downloaded from http://www.met.reading.ac.uk/caviar/home/data.php.
Paynter D.J., Ptashnik I.V., Shine K.P., Smith K.M., McPheat R., Williams R.G. Laboratory measurements of the water vapour continuum in the 120 0–800 0 cm−1 region between 293°K and 351°K. J Geophys Res 2009;114:D21301. http://dx.doi.org/10.1029/2008JD011355.
2009
Paynter D.J., Ptashnik I.V., Shine K.P., Smith K.M., McPheat R.M., Williams R.G. , Laboratory measurements of the water vapor continuum in the 1200-8000 cm-1 region between 293K and 351 K, Journal of Geophysical Research, 2009 , Volume 114 , Pages D21301.
H2 O
T=293 К
P=∅
6. Model CKD 2.4. (293K, 3400-4000 cm⁻¹)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
The CKD model is shown.
2020
Birk M., Wagner G., Loos J., Shine K.P. , 3 μm Water vapor self- and foreign-continuum: New method for determination and new insights into the self-continuum, Journal of Quantitative Spectroscopy and Radiative Transfer, 2020 , Volume 253 ,
H2 O
T=296 К
P=1 атм
18. Paynter D.J. et al. (2009)
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
Comparison of FC.
Paynter D.J., Ptashnik I.V., Shine K.P., Smith K.M., McPheat R., Williams R.G. Laboratory measurements of the water vapour continuum in the 120 0–800 0 cm−1 region between 293 K and 351 K. J Geophys Res 2009;114:D21301. http://dx.doi.org/10.1029/2008JD011355.
2009
Paynter D.J., Ptashnik I.V., Shine K.P., Smith K.M., McPheat R.M., Williams R.G. , Laboratory measurements of the water vapor continuum in the 1200-8000 cm-1 region between 293K and 351 K, Journal of Geophysical Research, 2009 , Volume 114 , Pages D21301.
H2 O
T=∅
P=∅
6. Base line, original
Волновое число (см⁻¹)
Коэффициент поглощения (см²мол⁻¹атм⁻¹)
The base term (see text) is shown separately but is also included in the continuum.
1965
Bosomworth, D. R., & Gush, H. P. , Collision-induced absorption of compressed gases in the far infrared, Part II. , Canadian Journal of Physics, 1965 , Volume 43 , Issue 5, Pages 751-769.
N2
T=300 К
P=∅
14. Heasty, R., et al. (1962)
Волновое число (см⁻¹)
Коэффициент поглощения (см⁻¹Амага⁻²)
Heastie, R., and Martin, D. H., Collision-Induced Absorption of Submillimeter Radiation by Non-Polar Atmospheric Gases, Canadian Journal of Physics, 1962, 40(1): 122-127 https://doi.org/10.1139/p62-010
1962
Heastie, R., and Martin, D. H. , Collision-Induced Absorption of Submillimeter Radiation by Non-Polar Atmospheric Gases, Canadian Journal of Physics, 1962 , Volume 40 , Issue 1, Pages 122-127.
N2
T=∅
P=1 атм
2a. Curve
Волновое число (см⁻¹)
Коэффициент поглощения (см⁻¹атм⁻²)
1986
Borysow, Aleksandra; Frommhold, Lothar , Collision-induced rototranslational absorption spectra of N2 -N2 pairs for temperatures from 50 to 300 K, The Astrophysical Journal, 1986 , Volume 311 , Pages 1043-1057.
N2
T=124 К
P=∅
2. Buontempo et al. (1975) (124K, 0-200 cm⁻¹)
Волновое число (см⁻¹)
Коэффициент поглощения (см⁻¹Амага⁻²)
Far-infrared absorption spectrum of N2 + N2 at 124°K of Buentempo et.al. (1975) (Open circles).
U. Buontempo, S. Cunsolo, G. Jacucci, and J. J. Weis, The far infrared absorption spectrum of N2 in the gas and liquid phases, The Journal of Chemical Physics 63, 2570 (1975); https://doi.org/10.1063/1.431648.
1975
U. Buontempo, S. Cunsolo, G. Jacucci, and J. J. Weis , The far infrared absorption spectrum of N2 in the gas and liquid phases, The Journal of Chemical Physics, 1975 , Volume 63 , Pages 2570.
Волновое число (см⁻¹)
Поглощательная способность по базе 10 (единицы поглощения)
1986
Borysow, Aleksandra; Frommhold, Lothar , Collision-induced rototranslational absorption spectra of N2 -N2 pairs for temperatures from 50 to 300 K, The Astrophysical Journal, 1986 , Volume 311 , Pages 1043-1057.
N2
T=126 К
P=∅
2. Stone et al. (1984), Dagg et al. (1985) (126K, 0-200 cm⁻¹)
Волновое число (см⁻¹)
Коэффициент поглощения (см⁻¹Амага⁻²)
Far-infrared absorption spectrum of N2 + N2 at (a) 126°K. Filled circles, squaries and triangles denote new results (Stone et al. 1984; Dagg et al. 1985).
Stone, N. W. B., Read, L. A. A., Anderson, A., Dagg, I. R., & Smith, W., Temperature dependent collision-induced absorption in nitrogen, Canadian journal of physics, 62(4), 338-347. (1984). (Fig1)
Dagg, I.R., Anderson, A., Yan, S., Smith, W. and Read, L.A.A., Collision-induced absorption in nitrogen at low temperatures. Canadian journal of physics, 63(5), pp.625-631. 1985.
1985
Dagg, I.R., Anderson, A., Yan, S., Smith, W. and Read, L.A.A. , Collision-induced absorption in nitrogen at low temperatures, Canadian Journal of Physics, 1985 , Volume 63 , Issue 5, Pages 625-631.
N2
T=126 К
P=∅
3c. FIR Interferometer
Волновое число (см⁻¹)
Коэффициент поглощения (см⁻¹Амага⁻²)
A plot of A (v)/ρ2 versus the frequency (cm-1 ) measured using an FIR interferometer and indicated by the solid curve. The results are displayed for the temperature used: 126°K.
1986
Borysow, Aleksandra; Frommhold, Lothar , Collision-induced rototranslational absorption spectra of N2 -N2 pairs for temperatures from 50 to 300 K, The Astrophysical Journal, 1986 , Volume 311 , Pages 1043-1057.
N2
T=149 К
P=∅
2. Stone et al. (1984), Dagg et al. (1985) (149K, 0-200 cm⁻¹)
Волновое число (см⁻¹)
Коэффициент поглощения (см⁻¹Амага⁻²)
Far-infrared absorption spectrum of N2 + N2 at (a) 149°K. Filled circles, squaries and triangles denote new results (Stone et al. 1984; Dagg et al. 1985).
Stone, N. W. B., Read, L. A. A., Anderson, A., Dagg, I. R., & Smith, W., Temperature dependent collision-induced absorption in nitrogen, Canadian journal of physics, 62(4), 338-347. (1984).
Dagg, I.R., Anderson, A., Yan, S., Smith, W. and Read, L.A.A., Collision-induced absorption in nitrogen at low temperatures. Canadian journal of physics, 63(5), pp.625-631. 1985.
1985
Dagg, I.R., Anderson, A., Yan, S., Smith, W. and Read, L.A.A. , Collision-induced absorption in nitrogen at low temperatures, Canadian Journal of Physics, 1985 , Volume 63 , Issue 5, Pages 625-631.
N2
T=149 К
P=∅
3b. FIR Interferometer
Волновое число (см⁻¹)
Коэффициент поглощения (см⁻¹Амага⁻²)
A plot of A(v)/ρ2 versus the frequency (cm-1 ) measured using an FIR interferometer and indicated by the solid curve. The results are displayed for the temperature used: 149°K.
1986
Borysow, Aleksandra; Frommhold, Lothar , Collision-induced rototranslational absorption spectra of N2 -N2 pairs for temperatures from 50 to 300 K, The Astrophysical Journal, 1986 , Volume 311 , Pages 1043-1057.
N2
T=179 К
P=∅
2. Stone et al. (1984), Dagg et al. (1985) (179K, 0-200 cm⁻¹)
Волновое число (см⁻¹)
Коэффициент поглощения (см⁻¹Амага⁻²)
Far-infrared absorption spectrum of N2 +N2 at (a) 179°K . Triangles denote new results (Stone et al. 1984; Dagg et al. 1985). In (a), the scale is shifted by a factor of 2 at each temperature.
Stone, N. W. B., Read, L. A. A., Anderson, A., Dagg, I. R., & Smith, W., Temperature dependent collision-induced absorption in nitrogen, Canadian journal of physics, 62(4), 338-347. (1984). (Fig1)
Dagg, I.R., Anderson, A., Yan, S., Smith, W. and Read, L.A.A., Collision-induced absorption in nitrogen at low temperatures. Canadian journal of physics, 63(5), pp.625-631. 1985.
1985
Dagg, I.R., Anderson, A., Yan, S., Smith, W. and Read, L.A.A. , Collision-induced absorption in nitrogen at low temperatures, Canadian Journal of Physics, 1985 , Volume 63 , Issue 5, Pages 625-631.
N2
T=179 К
P=∅
3a. FIR Interferometer
Волновое число (см⁻¹)
Коэффициент поглощения (см⁻¹Амага⁻²)
A plot of A (v)/ρ2 versus the frequency (cm-1 ) measured using an FIR interferometer and indicated by the solid curve. The results are displayed for the temperature used: (b) 179°K.
1986
Borysow, Aleksandra; Frommhold, Lothar , Collision-induced rototranslational absorption spectra of N2 -N2 pairs for temperatures from 50 to 300 K, The Astrophysical Journal, 1986 , Volume 311 , Pages 1043-1057.
N2
T=300 К
P=∅
2a. Dagg, I.R., et al. (1985) (300K)
Волновое число (см⁻¹)
Коэффициент поглощения (см⁻¹Амага⁻²)
Dagg, I.R., 1985, in Phenomenoa induced by intermolecular interaction, ed. G.Birnbaum (New York; Plenum), p.95.
Dagg, I.R., and Gray C.G., 1985, in Phenomenoa induced by intermolecular interaction, ed. G.Birnbaum (New York; Plenum), p.109.
Dagg, I.R., Anderson, A., Yan, S., Smith, W. and Read, L.A.A., Collision-induced absorption in nitrogen at low temperatures, Canadian Journal of Physics, 1985 , Volume 63 , Issue 5, Pages 625-631, DOI: 10.1139/p85-096, https://doi.org/10.1139/p85-096 .
1985
Dagg, I.R., Anderson, A., Yan, S., Smith, W. and Read, L.A.A. , Collision-induced absorption in nitrogen at low temperatures, Canadian Journal of Physics, 1985 , Volume 63 , Issue 5, Pages 625-631.
Волновое число (см⁻¹)
Коэффициент поглощения (см⁻¹Амага⁻²)
1986
Borysow, Aleksandra; Frommhold, Lothar , Collision-induced rototranslational absorption spectra of N2 -N2 pairs for temperatures from 50 to 300 K, The Astrophysical Journal, 1986 , Volume 311 , Pages 1043-1057.
N2
T=228.3 К
P=∅
2a. Stone, N. W. B., et al. (1984) (228.3K)
Волновое число (см⁻¹)
Коэффициент поглощения (см⁻¹Амага⁻²)
Stone, N. W. B., Read, L. A. A., Anderson, A., Dagg, I. R., & Smith, W., Temperature dependent collision-induced absorption in nitrogen, Canadian journal of physics, 62(4), 338-347. (1984). (Fig1)
1984
N. W. B. Stone, L. A. A. Read, A. Anderson, I. R. Dagg, W. Smith , Temperature dependent collision-induced absorption in nitrogen, Canadian Journal of Physics, 1984 , Volume 62 , Issue 4, Pages 338-347.
N2
T=228.3 К
P=∅
1. Absorption coefficient (228.3K, 20-300 cm⁻¹)
Волновое число (см⁻¹)
Нормализованный по плотности коэффициент поглощения (см⁵)
Plots of A (ω) /ρ2 vs frequency for nitrogen for 228.3°K.
1986
Borysow, Aleksandra; Frommhold, Lothar , Collision-induced rototranslational absorption spectra of N2 -N2 pairs for temperatures from 50 to 300 K, The Astrophysical Journal, 1986 , Volume 311 , Pages 1043-1057.
N2
T=300 К
P=∅
2a. U. Buentempo, et al. (300K)
Волновое число (см⁻¹)
Коэффициент поглощения (см⁻¹Амага⁻²)
U. Buontempo, S. Cunsolo, G. Jacucci, and J. J. Weis, The far infrared absorption spectrum of N2 in the gas and liquid phases, The Journal of Chemical Physics, 1975 , Volume 63 , Pages 2570, DOI: 10.1063/1.431648, https://doi.org/10.1063/1.431648
1975
U. Buontempo, S. Cunsolo, G. Jacucci, and J. J. Weis , The far infrared absorption spectrum of N2 in the gas and liquid phases, The Journal of Chemical Physics, 1975 , Volume 63 , Pages 2570.
Волновое число (см⁻¹)
Поглощательная способность по базе 10 (единицы поглощения)
1987
Dore, P., and Filabozzi, A. , On the nitrogen-induced far-infrared absorption spectra, Canadian Journal of Physics, 1987 , Volume 65 , Issue 1, Pages 90-93.
N2
T=297 К
P=∅
1. Stone, N. W. B., et al. (1984) Experimental data (297K)
Волновое число (см⁻¹)
Коэффициент поглощения (см⁻¹Амага⁻²)
Pure N2 absorption spectrum at 297°K: ... , experimental data from
Stone, N. W. B., Read, L. A. A., Anderson, A., Dagg, I. R., & Smith, W., Temperature dependent collision-induced absorption in nitrogen, Canadian journal of physics, 62(4), 338-347. (1984).
1984
N. W. B. Stone, L. A. A. Read, A. Anderson, I. R. Dagg, W. Smith , Temperature dependent collision-induced absorption in nitrogen, Canadian Journal of Physics, 1984 , Volume 62 , Issue 4, Pages 338-347.
Волновое число (см⁻¹)
Нормализованный по плотности коэффициент поглощения (см⁵)
1987
Dore, P., and Filabozzi, A. , On the nitrogen-induced far-infrared absorption spectra, Canadian Journal of Physics, 1987 , Volume 65 , Issue 1, Pages 90-93.
N2
T=149 К
P=1 атм
1a. Stone, N. W. B., et al. (149K)
Волновое число (см⁻¹)
Коэффициент поглощения (см⁻¹Амага⁻²)
Pure N2 absorption spectrum at 149°K: ... , experimental data from Ref.
Stone, N. W. B., Read, L. A. A., Anderson, A., Dagg, I. R., & Smith, W., Temperature dependent collision-induced absorption in nitrogen, Canadian journal of physics, 62(4), 338-347. (1984).
1984
N. W. B. Stone, L. A. A. Read, A. Anderson, I. R. Dagg, W. Smith , Temperature dependent collision-induced absorption in nitrogen, Canadian Journal of Physics, 1984 , Volume 62 , Issue 4, Pages 338-347.
Волновое число (см⁻¹)
Нормализованный по плотности коэффициент поглощения (см⁵)
1987
Dore, P., and Filabozzi, A. , On the nitrogen-induced far-infrared absorption spectra, Canadian Journal of Physics, 1987 , Volume 65 , Issue 1, Pages 90-93.
N2
T=140 К
P=∅
2. P.Codastefano, et al. (1986) (140K)
Волновое число (см⁻¹)
Коэффициент поглощения (см⁻¹Амага⁻²)
Pure N2 absorption spectra at 140°K and 93°K: experimental data from ref.9.
P.Codastefano, P.Dore, Far infrared absorption of N2 -H2 gaseous mixtures, Journal of Quantitative Spectroscopy and Radiative Transfer, 1986, Volume 36, Issue 5, Pages 445-452, DOI: 10.1016/0022-4073(86)90100-7, https://doi.org/10.1016/0022-4073(86)90100-7 .
1986
P.Codastefano, P.Dore , Far infrared absorption of N2 -H2 gaseous mixtures, Journal of Quantitative Spectroscopy and Radiative Transfer, 1986 , Volume 36 , Issue 5, Pages 445-452.
1987
Dore, P., and Filabozzi, A. , On the nitrogen-induced far-infrared absorption spectra, Canadian Journal of Physics, 1987 , Volume 65 , Issue 1, Pages 90-93.
N2
T=93 К
P=∅
2a. J.L.Hunt, et al. (1983) (90K)
Волновое число (см⁻¹)
Коэффициент поглощения (см⁻¹Амага⁻²)
Pure N2 absorption spectra at 93°K: Computed 90°K spectrum from ref. 5.(multiplied by a factor of 2 because of a different definition of the absorption coefficient)
[5] J.L.Hunt, J.D.Poll, D.Goorvitch and, R.H.Tipping, Collision-induced absorption in the far infrared spectrum of Titan, Icarus, 55. 63 (1983).
1983
J.L.Hunt, J.D.Poll, D.Goorvitch and, R.H.Tipping , Collision-induced absorption in the far infrared spectrum of Titan, Icarus, 1983 , Volume 55 , Pages 63.
1987
Dore, P., and Filabozzi, A. , On the nitrogen-induced far-infrared absorption spectra, Canadian Journal of Physics, 1987 , Volume 65 , Issue 1, Pages 90-93.
N2
T=93 К
P=∅
2a. P.Codastefano, et al. (1986) (93K)
Волновое число (см⁻¹)
Коэффициент поглощения (см⁻¹Амага⁻²)
Pure N2 absorption spectra at 93°K: experimental data from P. Codastefano, P. Dore, Far infrared absorption of N2 +H2 gaseous mixtures, JQSRT, v. 36(5), 1986, p. 445-452.
1986
P.Codastefano, P.Dore , Far infrared absorption of N2 -H2 gaseous mixtures, Journal of Quantitative Spectroscopy and Radiative Transfer, 1986 , Volume 36 , Issue 5, Pages 445-452.
1993
Borysow, Aleksandra; Tang, Chunmei , Far Infrared CIA Spectra of N2 -CH4 Pairs for Modeling of Titan's Atmosphere, Icarus, 1993 , Volume 105 , Issue 1, Pages 175-183.
N2
T=∅
P=∅
1. Collision-induced intensities due to N₂ pairs
Волновое число (см⁻¹)
Оптическая глубина
Total column optical depth in the thermal IR for Titan’s atmosphere. Collision-induced intensities due to N2 +N2 pairs are marked.
McKay, C.P., J.B. Pollack, and R.Courtin, The greenhouse and antigreenhouse effects on Titan, Science 253, 1118-1121, 1991.
1991
McKay, C.P., J.B. Pollack, and R.Courtin , The greenhouse and antigreenhouse effects on Titan, Science, 1991 , Volume 253 , Number 5024, Pages 1118-1121.
2014
Bussery-Honvault, B., & Hartmann, J. M.
, Ab initio calculations for the far infrared collision induced absorption by N2 gas , The Journal of Chemical Physics, 2014 , Volume 140 , Issue 5,
N2
T=149 К
P=1 атм
2. CMDS calculations
Волновое число (см⁻¹)
Коэффициент ИСП (см⁻¹/Амага²)
Collision-induced absorption spectrum (in cm−1 /amagat2 ) of N2 by N2 (a) at 149°K, as obtained from the CMDS calculations using the present ab initio dipole moment and the intermolecular potential of Ref. 16 (continuous lines).
[16] L. Gomez, B. Bussery-Honvault, T. Cauchy, M. Bartolomei, D. Cappelletti, and F. Pirani, Chem. Phys. Lett. 445, 99 (2007).
2007
L. Gomez, B. Bussery-Honvault, T. Cauchy, M. Bartolomei, D. Cappelletti, F. Pirani , Global fits of new intermolecular ground state potential energy surfaces for N2 –H2 and N2 –N2 van der Waals dimers, Chemical Physics Letters, 2007 , Volume 445 , Issue 4–6, Pages 99-107.
Межмолекулярное расстояние (Ангстрем)
Потенциальная энергия (см⁻¹)
2014
Bussery-Honvault, B., & Hartmann, J. M.
, Ab initio calculations for the far infrared collision induced absorption by N2 gas , The Journal of Chemical Physics, 2014 , Volume 140 , Issue 5,
N2
T=149 К
P=1 атм
2. W.B.Stone, et al. (1984) and I.R.Dagg, et al. (1985). Measurements
Волновое число (см⁻¹)
Коэффициент ИСП (см⁻¹/Амага²)
Collision-induced absorption spectrum (in cm−1 /amagat2 ) of N2 by N2 (a) at 149 K, as obtained from measurements [12, 13] (circles).
12 N. W. B. Stone, L. A. A. Read, A. Anderson, I. R. Dagg, and W. Smith, Can. J. Phys. 62, 338 (1984).
13 I. R. Dagg, A. Anderson, S. Yan, W. Smith, and L. A. A. Read, Can. J. Phys. 63, 625 (1985).
1984
N. W. B. Stone, L. A. A. Read, A. Anderson, I. R. Dagg, W. Smith , Temperature dependent collision-induced absorption in nitrogen, Canadian Journal of Physics, 1984 , Volume 62 , Issue 4, Pages 338-347.
Волновое число (см⁻¹)
Нормализованный по плотности коэффициент поглощения (см⁵)
2014
Bussery-Honvault, B., & Hartmann, J. M.
, Ab initio calculations for the far infrared collision induced absorption by N2 gas , The Journal of Chemical Physics, 2014 , Volume 140 , Issue 5,
N2
T=300 К
P=1 атм
2a. CMDS calculations
Волновое число (см⁻¹)
Коэффициент ИСП (см⁻¹/Амага²)
Collision-induced absorption spectrum (in cm−1 /amagat2 ) of N2 by N2 (a) at 228°K, as obtained from the CMDS calculations using the present ab initio dipole moment and the intermolecular potential of Ref. 16 (continuous lines).
[16]. L. Gomez, B. Bussery-Honvault, T. Cauchy, M. Bartolomei, D. Cappelletti, and F. Pirani, Chem. Phys. Lett. 445, 99 (2007).
2007
L. Gomez, B. Bussery-Honvault, T. Cauchy, M. Bartolomei, D. Cappelletti, F. Pirani , Global fits of new intermolecular ground state potential energy surfaces for N2 –H2 and N2 –N2 van der Waals dimers, Chemical Physics Letters, 2007 , Volume 445 , Issue 4–6, Pages 99-107.
Межмолекулярное расстояние (Ангстрем)
Потенциальная энергия (см⁻¹)
2014
Bussery-Honvault, B., & Hartmann, J. M.
, Ab initio calculations for the far infrared collision induced absorption by N2 gas , The Journal of Chemical Physics, 2014 , Volume 140 , Issue 5,
N2
T=228 К
P=1 атм
2a. W.B.Stone, et al. (1984) and I.R.Dagg, et al. (1985). Measurements
Волновое число (см⁻¹)
Коэффициент ИСП (см⁻¹/Амага²)
Collision-induced absorption spectrum (in cm−1 /amagat2 ) of N2 by N2 (a) at 228°K, as obtained from measurements [12, 13] (circles).
12 N. W.B. Stone, L. A.A. Read, A. Anderson, I. R. Dagg, and W. Smith, Can. J. Phys. 62, 338 (1984).
13 I.R. Dagg, A. Anderson, S. Yan, W. Smith, and L. A. A. Read, Can. J. Phys. 63, 625 (1985).
1984
N. W. B. Stone, L. A. A. Read, A. Anderson, I. R. Dagg, W. Smith , Temperature dependent collision-induced absorption in nitrogen, Canadian Journal of Physics, 1984 , Volume 62 , Issue 4, Pages 338-347.
Волновое число (см⁻¹)
Нормализованный по плотности коэффициент поглощения (см⁵)
2014
Bussery-Honvault, B., & Hartmann, J. M.
, Ab initio calculations for the far infrared collision induced absorption by N2 gas , The Journal of Chemical Physics, 2014 , Volume 140 , Issue 5,
N2
T=296 К
P=1 атм
2b. L. Gomez, et al. (2007).CMDS calculations
Волновое число (см⁻¹)
Коэффициент ИСП (см⁻¹/Амага²)
Collision-induced absorption spectrum (in cm−1 /amagat2 ) of N2 by N2 (a) at 296°K, as obtained from the CMDS calculations using the present ab initio dipole moment and the intermolecular potential of Ref. 16 (continuous lines).
[16] L. Gomez, B. Bussery-Honvault, T. Cauchy, M. Bartolomei, D. Cappelletti, and F. Pirani, Chem. Phys. Lett. 445, 99 (2007).
2007
L. Gomez, B. Bussery-Honvault, T. Cauchy, M. Bartolomei, D. Cappelletti, F. Pirani , Global fits of new intermolecular ground state potential energy surfaces for N2 –H2 and N2 –N2 van der Waals dimers, Chemical Physics Letters, 2007 , Volume 445 , Issue 4–6, Pages 99-107.
Межмолекулярное расстояние (Ангстрем)
Потенциальная энергия (см⁻¹)
2015
Karman, T., Miliordos, E., Hunt, K.L., Groenenboom, G.C. and van der Avoird, A. , Quantum mechanical calculation of the collision-induced absorption spectra of N2 –N2 with anisotropic interactions, The Journal of Chemical Physics, 2015 , Volume 142 , Issue 8,
N2
T=78 К
P=∅
1. E. H. Wishnow, et al. (1996) alpha (T=78K)
Волновое число (см⁻¹)
Коэффициент поглощения (см⁻¹Амага⁻²)
Collision-induced absorption spectrum of N2 for the temperatures 78°K.
10. E. H. Wishnow, H. P. Gush, and I. Ozier, J. Chem. Phys. 104, 3511 (1996).
1996
Wishnow, E.H., Gush, H.P. and Ozier, I. , Far-infrared spectrum of N2 and N2 -noble gas mixtures near 80 K, The Journal of Chemical Physics, 1996 , Volume 104 , Issue 10, Pages 3511-3516.
N2
T=78 К
P=∅
6. N₂+N₂ (78K)
Волновое число (см⁻¹)
Коэффициент поглощения (см⁻¹Амага⁻²)
Absorption coefficient αN2+N2 as derived from the data of Figs. 1 and 2.
2015
Karman, T., Miliordos, E., Hunt, K.L., Groenenboom, G.C. and van der Avoird, A. , Quantum mechanical calculation of the collision-induced absorption spectra of N2 –N2 with anisotropic interactions, The Journal of Chemical Physics, 2015 , Volume 142 , Issue 8,
N2
T=126 К
P=∅
1. I. R. Dagg, et al. (1985). 10² alpha (T=126K)
Волновое число (см⁻¹)
Коэффициент поглощения (см⁻¹Амага⁻²)
Collision-induced absorption spectrum of N2 for the temperatures 126°K.
8 I. R. Dagg, A. Anderson, S. Yan, W. Smith, and L. A. A. Read, Can. J. Phys. 63, 625 (1985).
1985
Dagg, I.R., Anderson, A., Yan, S., Smith, W. and Read, L.A.A. , Collision-induced absorption in nitrogen at low temperatures, Canadian Journal of Physics, 1985 , Volume 63 , Issue 5, Pages 625-631.
N2
T=126 К
P=∅
3c. FIR Interferometer
Волновое число (см⁻¹)
Коэффициент поглощения (см⁻¹Амага⁻²)
A plot of A (v)/ρ2 versus the frequency (cm-1 ) measured using an FIR interferometer and indicated by the solid curve. The results are displayed for the temperature used: 126°K.
2015
Karman, T., Miliordos, E., Hunt, K.L., Groenenboom, G.C. and van der Avoird, A. , Quantum mechanical calculation of the collision-induced absorption spectra of N2 –N2 with anisotropic interactions, The Journal of Chemical Physics, 2015 , Volume 142 , Issue 8,
N2
T=228.3 К
P=∅
1. N. W. B. Stone, et al. (1984) 10³ alpha (T=228.3K)
Волновое число (см⁻¹)
Коэффициент поглощения (см⁻¹Амага⁻²)
Collision-induced absorption spectrum of N2 for the temperatures 228.3°K.
7 N. W. B. Stone, L. A. A. Read, A. Anderson, I. R. Dagg, and W. Smith, Can. J. Phys. 62, 338 (1984).
1984
N. W. B. Stone, L. A. A. Read, A. Anderson, I. R. Dagg, W. Smith , Temperature dependent collision-induced absorption in nitrogen, Canadian Journal of Physics, 1984 , Volume 62 , Issue 4, Pages 338-347.
Волновое число (см⁻¹)
Нормализованный по плотности коэффициент поглощения (см⁵)
2015
Karman, T., Miliordos, E., Hunt, K.L., Groenenboom, G.C. and van der Avoird, A. , Quantum mechanical calculation of the collision-induced absorption spectra of N2 –N2 with anisotropic interactions, The Journal of Chemical Physics, 2015 , Volume 142 , Issue 8,
N2
T=300 К
P=∅
1. N. W. B. Stone, et al. (1985). 10⁴ alpha (T=300K)
Волновое число (см⁻¹)
Коэффициент поглощения (см⁻¹Амага⁻²)
Collision-induced absorption spectrum of N2 for the temperatures 300°K.
7 N. W. B. Stone, L. A. A. Read, A. Anderson, I. R. Dagg, and W. Smith, Can. J. Phys. 62, 338 (1984).
1984
N. W. B. Stone, L. A. A. Read, A. Anderson, I. R. Dagg, W. Smith , Temperature dependent collision-induced absorption in nitrogen, Canadian Journal of Physics, 1984 , Volume 62 , Issue 4, Pages 338-347.
Волновое число (см⁻¹)
Нормализованный по плотности коэффициент поглощения (см⁵)
2015
Karman, T., Miliordos, E., Hunt, K.L., Groenenboom, G.C. and van der Avoird, A. , Quantum mechanical calculation of the collision-induced absorption spectra of N2 –N2 with anisotropic interactions, The Journal of Chemical Physics, 2015 , Volume 142 , Issue 8,
N2
T=93 К
P=∅
1. P. Dore, et al. (1996). 10¹ alpha (T=93K)
Волновое число (см⁻¹)
Коэффициент поглощения (см⁻¹Амага⁻²)
Collision-induced absorption spectrum of N2 for the temperatures 93°K.
9. P. Dore and A. Filabozzi, Can. J. Phys. 65, 90 (1987). 10 E. H. Wishnow, H. P. Gush, and I. Ozier, J. Chem. Phys. 104, 3511 (1996).
1987
Dore, P., and Filabozzi, A. , On the nitrogen-induced far-infrared absorption spectra, Canadian Journal of Physics, 1987 , Volume 65 , Issue 1, Pages 90-93.
N2
T=93 К
P=∅
2a. Computed spectra (93K)
Волновое число (см⁻¹)
Коэффициент поглощения (см⁻¹Амага⁻²)
Pure N2 absorption spectra at 93°K: computed spectra multiplied by a normalizing factor F (F = 1.12 at 93°K).
1965
Bosomworth, D. R., & Gush, H. P. , Collision-induced absorption of compressed gases in the far infrared, Part II. , Canadian Journal of Physics, 1965 , Volume 43 , Issue 5, Pages 751-769.
O2
T=300 К
P=1 атм
15. Heastie, R., et al. (1962)
Волновое число (см⁻¹)
Коэффициент поглощения (см⁻¹Амага⁻²)
The absorption profile of oxygen.
Heastie, R., and Martin, D. H., Collision-Induced Absorption of Submillimeter Radiation by Non-Polar Atmospheric Gases, Canadian Journal of Physics, 1962, 40(1): 122-127 https://doi.org/10.1139/p62-010
1962
Heastie, R., and Martin, D. H. , Collision-Induced Absorption of Submillimeter Radiation by Non-Polar Atmospheric Gases, Canadian Journal of Physics, 1962 , Volume 40 , Issue 1, Pages 122-127.
Волновое число (см⁻¹)
Коэффициент поглощения (см⁻¹атм⁻²)
1972
A. R. W. McKellar, Nathan H. Rich, H. L. Welsh , Collision-Induced Vibrational and Electronic Spectra of Gaseous Oxygen at Low Temperatures, Canadian Journal of Physics, 1972 , Volume 50 , Issue 1, Pages 1-9.
O2
T=293 К
P=1 атм
1. M.M.Shapiro, et al. (1966)
Волновое число (см⁻¹)
Коэффициент поглощения (Амага⁻²)
The collision-induced fundamental band of O2 at three temperatures. The experimental conditions were: temperature 293°K, density 9.59 amagat, path length 40 m.
M. M. Shapiro and H. P. Gush, The Collision-Induced Fundamental and First Overtone Bands of Oxygen and Nitrogen, Canadian Journal of Physics, 1966, 44(5): 949-963, 10.1139/p66-079
1966
M. M. Shapiro, H. P. Gush , The Collision-Induced Fundamental and First Oovertone Bands of Oxygen and Nitrogen, Canadian Journal of Physics, 1966 , Volume 44 , Issue 5, Pages 949-963.
Волновое число (см⁻¹)
Поглощательная способность по базе 10 (единицы поглощения)
1973
Charles A. Long , George E. Ewing , Spectroscopic investigation of van der Waals molecules. I. The infrared and visible spectra of (O2 )2 , Journal of Chemical Physics, 1973 , Volume 8 , Pages 4824.
O2
T=300 К
P=∅
1. M.M.Shapiro et al. (1966)
Волновое число (см⁻¹)
Поглощательная способность по базе 10 (единицы поглощения)
The infrared spectra of gaseous oxygen at 300°K. The path length is 152.4 m and the density is 2.31 amagat. The 300°K data are taken from Ref. [24].
[24]. M.M.Shapiro and H. P. Gush, The Collision-Induced Fundamental and First Overtone Bands of Oxygen and Nitrogen, Canadian Journal of Physics, 1966, 44(5): 949-963, 10.1139/p66-079.
1966
M. M. Shapiro, H. P. Gush , The Collision-Induced Fundamental and First Oovertone Bands of Oxygen and Nitrogen, Canadian Journal of Physics, 1966 , Volume 44 , Issue 5, Pages 949-963.
O2
T=∅
P=∅
2. The fundamental absorption band of O₂
Волновое число (см⁻¹)
Поглощательная способность по базе 10 (единицы поглощения)
The fundamental absorption band of oxygen. The path length equals 40 m. The densities are: pure oxygen, 9.59 Amagats
1973
Charles A. Long , George E. Ewing , Spectroscopic investigation of van der Waals molecules. I. The infrared and visible spectra of (O2 )2 , Journal of Chemical Physics, 1973 , Volume 8 , Pages 4824.
O2
T=300 К
P=1 атм
2. R.P. Blickensderfer, et al. (1969) (300K, 17000-17800 cm⁻¹)
Волновое число (см⁻¹)
Поглощательная способность по базе e (единицы поглощения)
The visible spectra of oxygen gas at 87.3° and 300°K. The path length for both spectra is 152.4 m and the density is 2.31 amagat. The 300°K spectrum is taken from Blickensderfer and Ewing (Ref. 16).
Roger P. Blickensderfer, George E. Ewin, Collision‐Induced Absorption Spectrum of Gaseous Oxygen at Low Temperatures and Pressures. II. The Simultaneous Transitions 1Δg + 1 Δg ← 3 Σg − + 3 Σg − and 1 Δg + 1 Σg + ← 3 Σg − + 3 Σg − , J. Chem. Phys. 51(12) , 5284-5289 (1969) http://dx.doi.org/10.1063/1.1671946
1969
Roger P. Blickensderfer, George E. Ewin , Collision‐Induced Absorption Spectrum of Gaseous Oxygen at Low Temperatures and Pressures. II. The Simultaneous Transitions 1 Δg + 1 Δg ← 3 Σg − + 3 Σg − and 1 Δg + 1 Σg + ← 3 Σg − + 3 Σg − , Journal of Chemical Physics, 1969 , Volume 51 , Pages 5284.
Волновое число (см⁻¹)
Поглощательная способность по базе 10 (единицы поглощения)
1991
John J. Orlando, Geoffrey S. Tyndall, Karen E. Nickerson, Jack G. Calvert , The temperature dependence of collision-induced absorption by oxygen near 6 μm, Journal of Geophysical Research, 1991 , Volume 96 , Issue D11, Pages 20755–20760.
O2
T=∅
P=∅
2. Long, C. A, et al. (1971)
Температура (К)
Бинарный коэффициент поглощения (см⁵молекула⁻²)
Measurements of kO2 near 1556 cm-1 as a function of temperature:
Long, C. A., and G. E. Ewing, The infrared spectrum of bound state oxygen dimers, Chem. Phys.Lett., 9, 225-229, 1971.
1971
C.A. Long, G.E. Ewing , The infrared spectrum of bound state oxygen dimers in the gas phase, Chemical Physics Letters, 1971 , Volume 9 , Issue 3, Pages 225-229.
Волновое число (см⁻¹)
Поглощательная способность по базе 10 (единицы поглощения)
1991
John J. Orlando, Geoffrey S. Tyndall, Karen E. Nickerson, Jack G. Calvert , The temperature dependence of collision-induced absorption by oxygen near 6 μm, Journal of Geophysical Research, 1991 , Volume 96 , Issue D11, Pages 20755–20760.
O2
T=∅
P=∅
2. Shapiro (1961), as reported by McKellar et al. (1972)
Температура (К)
Бинарный коэффициент поглощения (см⁵молекула⁻²)
Measurements of kO2 near 1556 cm-1 as a function of temperature:
(circles) Shapiro [1961], as reported by McKellar et al. [1972].
Shapiro, M. M., M.A. Thesis, University of Toronto, Toronto, Ontario. 1961.
A. R. W. McKellar; Nathan H. Rich; H. L. Welsh, Collision-Induced Vibrational and Electronic Spectra of Gaseous Oxygen at Low Temperatures, Canadian Journal of Physics, 01 January 1972, Vol. 50, Issue 1, Page 1-9, 10.1139/p72-001
1972
A. R. W. McKellar, Nathan H. Rich, H. L. Welsh , Collision-Induced Vibrational and Electronic Spectra of Gaseous Oxygen at Low Temperatures, Canadian Journal of Physics, 1972 , Volume 50 , Issue 1, Pages 1-9.
Волновое число (см⁻¹)
Коэффициент поглощения (Амага⁻²)
1991
John J. Orlando, Geoffrey S. Tyndall, Karen E. Nickerson, Jack G. Calvert , The temperature dependence of collision-induced absorption by oxygen near 6 μm, Journal of Geophysical Research, 1991 , Volume 96 , Issue D11, Pages 20755–20760.
O2
T=∅
P=∅
2. Timofeyev, Yu.M. et al. (1978)
Температура (К)
Бинарный коэффициент поглощения (см⁵молекула⁻²)
Measurements of kO2 near 1556 cm-1 as a function of temperature: (inverted triangles) Timofeyev and Tonkov [1978].
Timofeyev, Yu. M., and M. V. Tonkov, Effect of the induced oxygen absorption band on the transformation of radiation in the 6 μm region in the Earth's atmosphere, Isv. Akad. Sci. USSR Atmos. Oceanic Phys., Engl. Transl., 14, 437-441, 1978.
1978
Timofeyev, Yu. M., and M. V. Tonkov , Effect of the induced oxygen absorption band on the transformation of radiation in the 6 μm region in the Earth's atmosphere, Известия РАН. Серия Физика атмосферы и океана, 1978 , Volume 14 , Pages 437-441.
2000
A.A. Vigasin
, Collision-Induced Absorption in the Region of the O2 Fundamental: Bandshapes and Dimeric Features , Journal of Molecular Spectroscopy, 2000 , Volume 202 , Issue 1, Pages 59-66.
O2
T=228 К
P=∅
2. B. Mate, et al. (2000)
Волновое число (см⁻¹)
Нормализованный профиль ИСП
The normalized CIA profiles for pure oxygen at T = 228°K. Experimental spectra shown by heavier line is taken from Lafferty et al. (11).
[11]. Maté, B., C. L. Lugez, A. M. Solodov, G. T. Fraser, and W. J. Lafferty, Investigation of the collision-induced absorption by O2 near 6.4 μm in pure O2 and O2 /N2 mixtures, Journal of Geophysical Research, 2000 , Volume 105D , no. 17, Pages 22225–22230, DOI: 10.1029/2000JD900295
2000
Maté, B., C. L. Lugez, A. M. Solodov, G. T. Fraser, and W. J. Lafferty , Investigation of the collision-induced absorption by O2 near 6.4 μm in pure O2 and O2 /N2 mixtures, Journal of Geophysical Research, 2000 , Volume 105D , Number 17, Pages 22225–22230.
Волновое число (см⁻¹)
Коэффициент поглощения (см⁻¹Амага⁻²)
Цитирующие графики, связанные с комплексами
Год издания
Библиографическая ссылка
В-тво
Номер и подпись к графику
Физическая величина по оси X
Физическая величина по оси Y
Комментарий к примитивному графику
2016
Yulia N. Kalugina, Sergei E. Lokshtanov, Victor N. Cherepanov, and Andrey A. Vigasin , Ab initio 3D potential energy and dipole moment surfaces for the CH4 –Ar complex: Collision-induced intensity and dimer content, The Journal of Chemical Physics, 2016 , Volume 144 , Issue 23,
CH4 -Ar
T=∅
P=∅
8. Experimental zeroth spectral moment. P. Dore, et al. (1990)
Температура (К)
Нулевой спектральный момент (см⁻¹Амага⁻²)
Comparison of calculated and experimental (black dot from Ref. 5) zeroth spectral moments. P. Dore and , A. Filabozzi, Far infrared absorption of the gaseous CH4 –Ar mixture, Canadian Journal of Physics, 1990, 68(10): 1196-1199, https://doi.org/10.1139/p90-169.
1990
P. Dore and , A. Filabozzi , Far infrared absorption of the gaseous CH4 –Ar mixture, Canadian Journal of Physics, 1990 , Volume 68 , Issue 10, Pages 1196-1199.
Волновое число (см⁻¹) Волновое число (см⁻¹)
Коэффициент поглощения (см⁻¹) Коэффициент поглощения (см⁻¹Амага⁻²)
1995
Jenö Nagy, Donald F. Weaver and Vedene H. Smith Jr. , Ab initio methane dimer intermolecular potentials, Molecular Physics, 1995 , Volume 85 , Issue 6, Pages 1179-1192.
CH4 -CH4
T=∅
P=∅
1. H. Schindler, et al. (1993). Theory. Methane dimer interaction energies for orientation A
R (атомная единица)
Потенциальная энергия (мэВ)
Methane dimer interaction energies for orientation A. See text for details.
H. Schindler, R. Vogelsang , V. Staemmler , M.A. Siddiqi & P. Svejda, Ab initio intermolecular potentials of methane, nitrogen and methane + nitrogen and their use in Monte Carlo simulations of fluids and fluid mixtures, Molecular Physics, Volume 80, 1993 - Issue 6, Pages 1413-1429 https://doi.org/10.1080/00268979300103111
1993
H. Schindler, R. Vogelsang, V. Staemmler, M.A. Siddiqi & P. Svejda , Ab initio intermolecular potentials of methane, nitrogen and methane + nitrogen and their use in Monte Carlo simulations of fluids and fluid mixtures, Molecular Physics, 1993 , Volume 80 , Issue 6, Pages 1413-1429.
R (атомная единица)
Потенциальная энергия (атомные единицы)
1995
Jenö Nagy, Donald F. Weaver and Vedene H. Smith Jr. , Ab initio methane dimer intermolecular potentials, Molecular Physics, 1995 , Volume 85 , Issue 6, Pages 1179-1192.
CH4 -CH4
T=∅
P=∅
1. H.J. Bohm, et al. (1984). Fitting. Methane dimer interaction energies for orientation A
R (атомная единица)
Потенциальная энергия (мэВ)
Methane dimer interaction energies for orientation A. See text for details.
H. J. Böhm, R. Ahlrichs, P. Scharf, and H. Schiffer, Intermolecular potentials for CH4 , CH3 F, CHF3 , CH3 Cl, CH2 Cl2 , CH3 CN, and CO2 , J. Chem. Phys. 81, 1389 (1984); https://doi.org/10.1063/1.447773
1984
H. J. Böhm , R. Ahlrichs , P. Scharf , H. Schiffer , Intermolecular potentials for CH4 , CH3 F, CHF3 , CH3 Cl, CH2 Cl2 , CH3 CN, and CO2 , Journal of Chemical Physics, 1984 , Volume 81 , Pages 1389.
R (атомная единица)
Потенциальная энергия
1995
Jenö Nagy, Donald F. Weaver and Vedene H. Smith Jr. , Ab initio methane dimer intermolecular potentials, Molecular Physics, 1995 , Volume 85 , Issue 6, Pages 1179-1192.
CH4 -CH4
T=∅
P=∅
1. H.J. Bohm, et al. (1984). Theory. Methane dimer interaction energies for orientation A
R (атомная единица)
Потенциальная энергия (мэВ)
Methane dimer interaction energies for orientation A. See text for details.
H. J. Böhm, R. Ahlrichs, P. Scharf, and H. Schiffer, Intermolecular potentials for CH4 , CH3 F, CHF3 , CH3 Cl, CH2 Cl2 , CH3 CN, and CO2 , J. Chem. Phys. 81, 1389 (1984); https://doi.org/10.1063/1.447773
1984
H. J. Böhm , R. Ahlrichs , P. Scharf , H. Schiffer , Intermolecular potentials for CH4 , CH3 F, CHF3 , CH3 Cl, CH2 Cl2 , CH3 CN, and CO2 , Journal of Chemical Physics, 1984 , Volume 81 , Pages 1389.
R (атомная единица)
Потенциальная энергия
1995
Jenö Nagy, Donald F. Weaver and Vedene H. Smith Jr. , Ab initio methane dimer intermolecular potentials, Molecular Physics, 1995 , Volume 85 , Issue 6, Pages 1179-1192.
CH4 -CH4
T=∅
P=∅
1. Kolos, W., et al. (1980). Fitting. Methane dimer interaction energies for orientation A
R (атомная единица)
Потенциальная энергия (мэВ)
Methane dimer interaction energies for orientation A. See text for details.
Kolos, W., Ranghino, G., Clementi, E., and Novaro, O., 1980, Int. J. Quantum Chem., 17, 429
1980
W. Kolos, G. Ranghino, o. Novaro, and E. Clementi , Interaction of methane molecules, International Journal of Quantum Chemistry, 1980 , Volume 17 , Pages 429.
1995
Jenö Nagy, Donald F. Weaver and Vedene H. Smith Jr. , Ab initio methane dimer intermolecular potentials, Molecular Physics, 1995 , Volume 85 , Issue 6, Pages 1179-1192.
CH4 -CH4
T=∅
P=∅
1. Kolos, W., et al. (1980). Theory. Methane dimer interaction energies for orientation A
R (атомная единица)
Потенциальная энергия (мэВ)
Methane dimer interaction energies for orientation A. See text for details.
Kolos, W., Ranghino, G., Clementi, E., and Novaro, O., 1980, Int. J. Quantum Chem., 17, 429
1980
W. Kolos, G. Ranghino, o. Novaro, and E. Clementi , Interaction of methane molecules, International Journal of Quantum Chemistry, 1980 , Volume 17 , Pages 429.
2009
Yulia N. Kalugina, Victor N. Cherepanov, Mikhail A. Buldakov, Natalia Zvereva-Loëte and Vincent Boudon , Theoretical investigation of the potential energy surface of the van der Waals complex CH4 –N2 , Journal of Chemical Physics, 2009 , Volume 131 , Issue 13,
CH4 -N2
T=∅
P=∅
3. H. Schindler, et al. (1993) 1
R (атомная единица)
Энергия взаимодейтвия (μХартри)
Interaction energies of the CH4 – N2 complex in different geometries. Dashed lines: work (Ref. 9).
H. Schindler, R. Vogelsang , V. Staemmler , M.A. Siddiqi & P. Svejda, Ab initio intermolecular potentials of methane, nitrogen and methane + nitrogen and their use in Monte Carlo simulations of fluids and fluid mixtures, Molecular Physics, 1993, Volume 80, Issue 6, Pages 1413-1429, DOI: 10.1080/00268979300103111, https://doi.org/10.1080/0026897930010311
1993
H. Schindler, R. Vogelsang, V. Staemmler, M.A. Siddiqi & P. Svejda , Ab initio intermolecular potentials of methane, nitrogen and methane + nitrogen and their use in Monte Carlo simulations of fluids and fluid mixtures, Molecular Physics, 1993 , Volume 80 , Issue 6, Pages 1413-1429.
R (атомная единица)
Потенциальная энергия (атомные единицы)
2009
Yulia N. Kalugina, Victor N. Cherepanov, Mikhail A. Buldakov, Natalia Zvereva-Loëte and Vincent Boudon , Theoretical investigation of the potential energy surface of the van der Waals complex CH4 –N2 , Journal of Chemical Physics, 2009 , Volume 131 , Issue 13,
CH4 -N2
T=∅
P=∅
3. H. Schindler, et al. (1993) (Geometry 1)
R (атомная единица)
Энергия взаимодейтвия (μХартри)
Interaction energies of the CH4 – N2 complex in different geometries. Dashed lines: work (Ref. 9).
H. Schindler , R. Vogelsang , V. Staemmler , M.A. Siddiqi & P. Svejda, Ab initio intermolecular potentials of methane, nitrogen and methane + nitrogen and their use in Monte Carlo simulations of fluids and fluid mixtures, Molecular Physics, 1993, Volume 80, Issue 6, Pages 1413-1429, DOI: 10.1080/00268979300103111,
1993
H. Schindler, R. Vogelsang, V. Staemmler, M.A. Siddiqi & P. Svejda , Ab initio intermolecular potentials of methane, nitrogen and methane + nitrogen and their use in Monte Carlo simulations of fluids and fluid mixtures, Molecular Physics, 1993 , Volume 80 , Issue 6, Pages 1413-1429.
R (атомная единица)
Потенциальная энергия (атомные единицы)
2009
Yulia N. Kalugina, Victor N. Cherepanov, Mikhail A. Buldakov, Natalia Zvereva-Loëte and Vincent Boudon , Theoretical investigation of the potential energy surface of the van der Waals complex CH4 –N2 , Journal of Chemical Physics, 2009 , Volume 131 , Issue 13,
CH4 -N2
T=∅
P=∅
3. H. Schindler, et al. (1993) (Geometry 4)
R (атомная единица)
Энергия взаимодейтвия (μХартри)
Interaction energies of the CH4 – N2 complex in different geometries. Dashed lines: work (Ref. 9).
H. Schindler , R. Vogelsang , V. Staemmler , M.A. Siddiqi & P. Svejda, Ab initio intermolecular potentials of methane, nitrogen and methane + nitrogen and their use in Monte Carlo simulations of fluids and fluid mixtures, Molecular Physics, 1993, Volume 80, Issue 6, Pages 1413-1429, DOI: 10.1080/00268979300103111,
1993
H. Schindler, R. Vogelsang, V. Staemmler, M.A. Siddiqi & P. Svejda , Ab initio intermolecular potentials of methane, nitrogen and methane + nitrogen and their use in Monte Carlo simulations of fluids and fluid mixtures, Molecular Physics, 1993 , Volume 80 , Issue 6, Pages 1413-1429.
R (атомная единица)
Потенциальная энергия (атомные единицы)
2009
Yulia N. Kalugina, Victor N. Cherepanov, Mikhail A. Buldakov, Natalia Zvereva-Loëte and Vincent Boudon , Theoretical investigation of the potential energy surface of the van der Waals complex CH4 –N2 , Journal of Chemical Physics, 2009 , Volume 131 , Issue 13,
CH4 -N2
T=∅
P=∅
3. H. Schindler, et al. (1993) (Geometry 6)
R (атомная единица)
Энергия взаимодейтвия (μХартри)
Interaction energies of the CH4 – N2 complex in different geometries. Dashed lines: work (Ref. 9).
H. Schindler, R. Vogelsang , V. Staemmler , M.A. Siddiqi & P. Svejda, Ab initio intermolecular potentials of methane, nitrogen and methane + nitrogen and their use in Monte Carlo simulations of fluids and fluid mixtures, Molecular Physics, 1993, Volume 80, Issue 6, Pages 1413-1429, DOI: 10.1080/00268979300103111,
1993
H. Schindler, R. Vogelsang, V. Staemmler, M.A. Siddiqi & P. Svejda , Ab initio intermolecular potentials of methane, nitrogen and methane + nitrogen and their use in Monte Carlo simulations of fluids and fluid mixtures, Molecular Physics, 1993 , Volume 80 , Issue 6, Pages 1413-1429.
R (атомная единица)
Потенциальная энергия (атомные единицы)
2009
Yulia N. Kalugina, Victor N. Cherepanov, Mikhail A. Buldakov, Natalia Zvereva-Loëte and Vincent Boudon , Theoretical investigation of the potential energy surface of the van der Waals complex CH4 –N2 , Journal of Chemical Physics, 2009 , Volume 131 , Issue 13,
CH4 -N2
T=∅
P=∅
3. H. Schindler, et al. (1993) (Geometry 7)
R (атомная единица)
Энергия взаимодейтвия (μХартри)
Interaction energies of the CH4 – N2 complex in different geometries. Dashed lines: work (Ref. 9).
H. Schindler , R. Vogelsang , V. Staemmler , M.A. Siddiqi & P. Svejda, Ab initio intermolecular potentials of methane, nitrogen and methane + nitrogen and their use in Monte Carlo simulations of fluids and fluid mixtures, Molecular Physics, 1993, Volume 80, Issue 6, Pages 1413-1429, DOI: 10.1080/00268979300103111.
1993
H. Schindler, R. Vogelsang, V. Staemmler, M.A. Siddiqi & P. Svejda , Ab initio intermolecular potentials of methane, nitrogen and methane + nitrogen and their use in Monte Carlo simulations of fluids and fluid mixtures, Molecular Physics, 1993 , Volume 80 , Issue 6, Pages 1413-1429.
R (атомная единица)
Потенциальная энергия (атомные единицы)
2009
Yulia N. Kalugina, Victor N. Cherepanov, Mikhail A. Buldakov, Natalia Zvereva-Loëte and Vincent Boudon , Theoretical investigation of the potential energy surface of the van der Waals complex CH4 –N2 , Journal of Chemical Physics, 2009 , Volume 131 , Issue 13,
CH4 -N2
T=∅
P=∅
3. H. Schindler, et al. (1993) 2
R (атомная единица)
Энергия взаимодейтвия (μХартри)
Interaction energies of the CH4 – N2 complex in different geometries. Dashed lines: work (Ref. 9).
H. Schindler , R. Vogelsang , V. Staemmler , M.A. Siddiqi & P. Svejda, Ab initio intermolecular potentials of methane, nitrogen and methane + nitrogen and their use in Monte Carlo simulations of fluids and fluid mixtures, Molecular Physics, 1993, Volume 80, Issue 6, Pages 1413-1429, DOI: 10.1080/00268979300103111, https://doi.org/10.1080/00268979300103111
1993
H. Schindler, R. Vogelsang, V. Staemmler, M.A. Siddiqi & P. Svejda , Ab initio intermolecular potentials of methane, nitrogen and methane + nitrogen and their use in Monte Carlo simulations of fluids and fluid mixtures, Molecular Physics, 1993 , Volume 80 , Issue 6, Pages 1413-1429.
R (атомная единица)
Потенциальная энергия (атомные единицы)
2014
Robert Hellmann, Eckard Bich, Eckhard Vogel, and Velisa Vesovic , Intermolecular potential energy surface and thermophysical properties of the CH4 –N2 system, The Journal of Chemical Physics, 2014 , Volume 141 ,
CH4 -N2
T=∅
P=∅
1. Y.N. Kalugina,et al. (2009). CH₄ - N₂ pair potential. Angular configuration 1
R (атомная единица)
Потенциальная энергия
CH4 –N2 pair potential as a function of the distance R. Angular configurations. The small gray circles represent the values obtained by Kalugina et al. (Ref. 21) for angular configurations 1 and 4.
Yulia N. Kalugina, Victor N. Cherepanov, Mikhail A. Buldakov, Natalia Zvereva-Loëte and Vincent Boudon, Theoretical investigation of the potential energy surface of the van der Waals complex CH4 –N2 J. Chem. Phys. 131(13), 134304 (2009); http://dx.doi.org/10.1063/1.3242080
2009
Yulia N. Kalugina, Victor N. Cherepanov, Mikhail A. Buldakov, Natalia Zvereva-Loëte and Vincent Boudon , Theoretical investigation of the potential energy surface of the van der Waals complex CH4 –N2 , Journal of Chemical Physics, 2009 , Volume 131 , Issue 13,
R (атомная единица)
Энергия взаимодейтвия (μХартри)
2014
Robert Hellmann, Eckard Bich, Eckhard Vogel, and Velisa Vesovic , Intermolecular potential energy surface and thermophysical properties of the CH4 –N2 system, The Journal of Chemical Physics, 2014 , Volume 141 ,
CH4 -N2
T=∅
P=∅
1. Y.N. Kalugina,et al. (2009). CH₄ - N₂ pair potential. Angular configuration 4
R (атомная единица)
Потенциальная энергия
CH4 –N2 pair potential as a function of the distance R. Angular configuration 4. The small gray circles represent the values obtained by Kalugina et al. (Ref. 21).
Yulia N. Kalugina, Victor N. Cherepanov, Mikhail A. Buldakov, Natalia Zvereva-Loëte and Vincent Boudon, Theoretical investigation of the potential energy surface of the van der Waals complex CH4 –N2 J. Chem. Phys. 131(13), 134304 (2009); http://dx.doi.org/10.1063/1.3242080
2009
Yulia N. Kalugina, Victor N. Cherepanov, Mikhail A. Buldakov, Natalia Zvereva-Loëte and Vincent Boudon , Theoretical investigation of the potential energy surface of the van der Waals complex CH4 –N2 , Journal of Chemical Physics, 2009 , Volume 131 , Issue 13,
R (атомная единица)
Энергия взаимодейтвия (μХартри)
2017
Daniil V. Oparin, Nikolai N. Filippov, I. M. Grigoriev, Alexander P Kouzov , Effect of stable and metastable dimers on collision-induced rototranslational spectra: Carbon dioxide – rare gas mixtures, Journal of Quantitative Spectroscopy and Radiative Transfer, 2017 , Volume 196 , Pages 87-93.
CO2 -Ar
T=241 К
P=1 атм
7a. Andreeva G.V, et al. (1990) (T=241K)
Волновое число (см⁻¹)
Спектральная функция (Амага⁻²)
Spectral functions for the CO2 –Ar at T=241°K: experimental data. Experimental data for the infrared region are taken from Ref. [33].
[33] Andreeva G.V, Kudriavtsev A.A., Tonkov M.V, Filippov N.N. Investigation of the integral characteristics off ar-IR absorption spectra of mixtures of CO2 with inert gases. Opt Spectrosc (USSR) 1990;68:623–5.
1990
Andreeva G.V, Kudriavtsev A.A., Tonkov M.V, Filippov N.N. , Investigation of the integral characteristics off ar-IR absorption spectra of mixtures of CO2 with inert gases, Optics and Spectroscopy, 1990 , Volume 68 , Pages 623–5.
2017
Daniil V. Oparin, Nikolai N. Filippov, I. M. Grigoriev, Alexander P Kouzov , Effect of stable and metastable dimers on collision-induced rototranslational spectra: Carbon dioxide – rare gas mixtures, Journal of Quantitative Spectroscopy and Radiative Transfer, 2017 , Volume 196 , Pages 87-93.
CO2 -Ar
T=351 К
P=1 атм
7a. Andreeva G.V., et al. (1990) (T=351K)
Волновое число (см⁻¹)
Спектральная функция (Амага⁻²)
Spectral functions for the CO2 –Ar (a) at T=351°K: experimental (dots) data). Experimental data for the infrared region are taken from Ref. [33].
Andreeva G.V, Kudriavtsev A.A., Tonkov M.V, Filippov N.N. Investigation of the integral characteristics off ar-IR absorption spectra of mixtures of CO2 with inert gases. Opt Spectrosc (USSR) 1990;68:623–5.
1990
Andreeva G.V, Kudriavtsev A.A., Tonkov M.V, Filippov N.N. , Investigation of the integral characteristics off ar-IR absorption spectra of mixtures of CO2 with inert gases, Optics and Spectroscopy, 1990 , Volume 68 , Pages 623–5.
1989
G. Cardini, V. Schettino , Structure and dynamics of carbon dioxide clusters: A molecular dynamics study, The Journal of Chemical Physics, 1989 , Volume 90 , Issue 8, Pages 4441.
CO2 -CO2
T=∅
P=∅
6. J.A. Barnes et al. (1987)
Волновое число (см⁻¹)
Интенсивность (произвольные единицы)
Comparison between a calculated and a measured infrared Q3 -mode spectrum for clusters of carbon dioxide. The upper curve was taken from the FTIR spectrum of an argon beam seeded with 2 % carbon dioxide.[7].
[7]. J.A. Barnes and T. E. Gough, J. Chem. Phys. 86, 6012 (1987).
1987
J. A. Barnes and T. E. Gough , Fourier transform infrared spectroscopy of molecular clusters: The structure and internal mobility of clustered carbon dioxide, Journal of Chemical Physics, 1987 , Volume 86 , Issue 11, Pages 6012.
2014
Bussery-Honvault, B., & Hartmann, J. M.
, Ab initio calculations for the far infrared collision induced absorption by N2 gas , The Journal of Chemical Physics, 2014 , Volume 140 , Issue 5,
CO2 -CO2
T=296 К
P=1 атм
2b. W.B.Stone, et al. (1984) and I.R.Dagg, et al. (1985). Measurements
Волновое число (см⁻¹)
Коэффициент ИСП (см⁻¹/Амага²)
Collision-induced absorption spectrum (in cm−1 /amagat2 ) of N2 by N2 (a) at 296°K, as obtained from measurements [12, 13] (circles).
12 N. W.B.Stone, L. A. A. Read, A. Anderson, I. R. Dagg, and W. Smith, Can. J. Phys. 62, 338 (1984). 13 I. R. Dagg, A. Anderson, S. Yan, W. Smith, and L. A. A. Read, Can. J. Phys. 63, 625 (1985).
1984
N. W. B. Stone, L. A. A. Read, A. Anderson, I. R. Dagg, W. Smith , Temperature dependent collision-induced absorption in nitrogen, Canadian Journal of Physics, 1984 , Volume 62 , Issue 4, Pages 338-347.
Волновое число (см⁻¹)
Нормализованный по плотности коэффициент поглощения (см⁵)
2014
Y.N. Kalugina, I.A. Buryak, Yosra Ajili, A.A. Vigasin, Nejm Eddine Jaidane, and Majdi Hochlaf , Explicit correlation treatment of the potential energy surface of CO2 dimer, The Journal of Chemical Physics, 2014 , Volume 140 , Pages 234310 (2).
CO2 -CO2
T=∅
P=∅
3. A.Halkier, et al. (1999). CCSD(T)/CBS(T,Q)