# |
Image |
The title of the composite plot |
(Axis Y, X)
Physical Quantity (Unit) |
Reference |
|
|
1. The generalized absorption coefficient for the 15 μ band of CO2 - Solid curve, Elsasser and King; broken curve, Kaplan.
Defined Function = ln(l/2), generalized absorption coefficient l=(2παS/d2), S is the line strength, α the half-width at half-maximum kν.
[7] Elsasser W.M. and J.I.F.King, Rept. No.9, Contract AF 19(122)-392, University of Utah, (September 1,1953).
[9] Kaplan L.D. J Chem Phys 18,186 (1950); see also, J Meteorol 9,1 (1952). |
- Y. Defined Function
- X. Wavenumber (cm⁻¹)
|
Howard J. N., Burch D. E., Williams D.,
Infrared transmission of synthetic atmospheres. IV. Application of Theoretical Band Models,
Journal of Optical Society of America, 1956, Volume 46, no. 5, Pages 334-338,
DOI: 10.1364/JOSA.46.000334, https://doi.org/10.1364/JOSA.46.000334.
|
|
|
2. Logarithmic plot of absorption coefficient vs. wave number for pure CO2.
Defined Function = Log10α + 10 |
- Y. Defined Function
- X. Wavenumber (cm⁻¹)
|
B.H. Winters, S. Silverman, W.S. Benedict,
Line shape in the wing beyond the band head of the 4·3 μ band of CO 2,
Journal of Quantitative Spectroscopy and Radiation Transfer, 1964, Volume 4, Issue 4, Pages 527-537,
DOI: 10.1016/0022-4073(64)90014-7.
|
|
|
3. Logarithmic plot of absorption coefficient vs. wave number for CO2 broadened with N2.
Defined Function = Log10α + 10 |
- Y. Defined Function
- X. Wavenumber (cm⁻¹)
|
|
4. Logarithmic plot of absorption coefficient vs. wave number for CO2 broadened with O2. |
- Y. Defined Function
- X. Wavenumber (cm⁻¹)
|
|
|
|
5. Observations of induced absorption in carbon dioxide. The absorption coefficient/density [2], which at low densities is given by α/ρ2=2πνA in the notation of Eq. (3), is plotted instead of the dielectric loss to allow better comparison with the infrared observations. GS, Gebbie and Stone [7]; FW, Frenkel and Woods [8]; MB, Maryott and Birnbaum [9]; HKT, this work.
7. H. A. Gebbie and N. W. B. Stone, Proc. Phys. Soc. (London) 82,543 (1963)
8. L. Frenkel and D. Woods, J. Chern. Phys. 44, 2219 (1966).
9. G. Birnbaum and A. A. Maryott, J. Chern. Iihys. 36, 2032 (1962)
Defined Function = absorption coefficient / density2 |
- Y. Defined Function
- X. Wavenumber (cm⁻¹)
|
W. Ho, I. A. Kaufman, and P. Thaddeus,
Microwave Absorption in Compressed CO 2,
Journal of Chemical Physics, 1966, Volume 45, Issue 3, Pages 877,
DOI: 10.1063/1.1727698, http://link.aip.org/link/doi/10.1063/1.1727698.
|
|
|
4. Observed and calculated profiles for the ν1 band at 297°K.
Defined function = (1/(l ν) ln(I0/I), l -length, v- spectral interval, I0, I - intensities. |
- Y. Defined Function
- X. Wavenumber (cm⁻¹)
|
L. Mannik, J. C. Stryland,
The ν 1 Band of Carbon Dioxide in Pressure-Induced Absorption. II. Density and Temperature Dependence of the Intensity; Critical Phenomena,
Canadian Journal of Physics, 1972, Volume 50, Issue 12, Pages 1355-1362,
DOI: 10.1139/p72-186.
|
|
|
1. Temperature dependence of the N2 continuum (taken from BURCH et al. [11]).
11. D. E. Burch, D. A. Gryvnak, R. R. Patn, and C. E. Bartky, J. Opt. Soc. Am. 59, 267 (1969).
Defined function = lnT/(P2L) (atm-2 km-1) |
- Y. Defined Function
- X. Wavenumber (cm⁻¹)
|
|
|
|
1. Comparison of experimental α(ν) and calculated spectrum αL(ν) of the high frequency wing of the ν3 band of CO2 at room temperature. The computed curve is from (6.3) with Δν = 36.3 cm-1, A = 0.25. WSB is obtained from Fig. 2. Ref. (4) by dividing the experimental absorption.by the calculated Lorentz absorption.
Winters B.H., S. Silverman, W.S. Benedict, Line shape in the wing beyond the band head of the 4.3 µ band of CO2, Journal of Quantitative Spectroscopy and Radiative Transfer, Volume 4, Issue 4, July-August 1964, Pages 527-537 https://doi.org/10.1016/0022-4073(64)90014-7
Defined function = α(ν)/αL(ν). |
- Y. Defined Function
- X. Wavenumber (cm⁻¹)
|
George Birnbaum,
The shape of collision broadened lines from resonance to the far wings,
Journal of Quantitative Spectroscopy and Radiation Transfer, 1979, Volume 21, Issue 6, Pages 597-607,
DOI: 10.1016/0022-4073(79)90099-2.
|
|
|
5. Коэффициент поглощения за кантом полосы 4.3 мкм. 1 – результаты расчета авторов, 2 – данные работы [11], 3- данные работы [5].
The absorption coefficient behind the 4.3 µm band edge. 1 - the results of the authors' calculations, 2 - data from [11], 3 - data from [5].
Defined Function=-ln(K(ν))
[5] Буланин М.О., Булычев В.П., Гранский П.В., Коузов А.П., Тонков М.В. Исследование функций пропускания СО2 в области полос 4.3 и 15 мкм. В кн.: Проблемы физики атмосферы. Вып. 13, Л., Изд. ЛГУ, 1976, с.14-24.
[11] Burch D.E., Gryvnak D.A., Patty R.R., Bartky Ch.E. Absorption of infrared radiant energy by CO2 and H2O. IV. Shapes of collision -broadened CO2 lines. J.Opt.Soc Amer. 1969, 59, No.3, 267-280. |
- Y. Defined Function
- X. Wavenumber (cm⁻¹)
|
Гальцев А.П., Цуканов В.В.,
Расчет формы колебательно-вращательных поплос поглощения углекислого газа методом статистического моделирования,
Оптика и спектроскопия, 1979, Volume 46, Issue 3, Pages 467-473.
|
|
|
1. Спектр поглощения за кантом полосы 3ν3 СО2. а – эксперимент, б – расчет с дисперсионным контуром, в – расчет по формуле (1). 1 - для СО2+СО2, 2 – для СО2+Ar, 3 – для СО2+Не.
Absorption spectrum behind the edge of the 3ν3 CO2 band. a - experiment, b - calculation with a dispersion contour, c - calculation by formula (1). 1 - for CO2+CO2, 2 - for CO2+Ar, 3 - for CO2+He.
Defined Function=-lg(K) |
- Y. Defined Function
- X. Wavenumber (cm⁻¹)
|
Баранов Ю.И., Буланин М.О., Тонков М.В.,
Исследование крыльев линий колебательно-вращательной полосы 3ν3 СО2,
Оптика и спектроскопия, 1981, Volume 50, no. 3, Pages 613-615.
|
|
|
2. Ход коэффициента поглощения за кантом полосы ν3. Сплошная линия – результаты расчета с потенциалом (11), штриховая - с потенциалом (12), точки и кружки – данные работ [25] и [26], соответственно.
Defined Function = - ln(k(v))
[25] Буланин М.О., Булычев В.П., Гранский П.В., Коузов А.П., Тонков М.В. Исследование функций пропускания СО2 в области полос 4.3 и 15 мкм. В кн.: Проблемы физики атмосферы. Вып. 13, Л., Изд. ЛГУ, 1976, с.14-24.
[26] Burch D.E., Gryvnak D.A., Patty R.R., Bartky Ch.E. Absorption of infrared radiant energy by CO2 and H2O. IV. Shapes of collision -broadened CO2 lines. J.Opt.Soc Amer. 1969, 59, No.3, 267-280. |
- Y. Defined Function
- X. Wavenumber (cm⁻¹)
|
Гальцев А.П., Цуканов В.В.,
Температурная зависимость коэффициента поглощения за кантом полос углекислого газа.,
Оптика и спектроскопия, 1983, Т. 55, Выпуск 2, Страницы 273-279.
|
|
|
1. Спектральная зависимость бинарных коэффициентов поглощения в крыле полосы ν3 СО2.
Spectral dependence of binary absorption coefficients in the wing of the ν3 СО2 band.
Defined Function=ln(Bab)
1 – CO2+CO2, 2 – CO2+N2, 3 – CO2+Ar, 4 – CO2+D2, 5 – CO2+H2, 6 – CO2+He.
Bab=(ρa ρb l)-1 ln(I0/I) (unit cm-1 Amagat-2), ρa and ρb are the densities of the absorbing and disturbing gases, l is the thickness of the optical layer. |
- Y. Defined Function
- X. Wavenumber (cm⁻¹)
|
Sattarov, K., Tonkov, M.V.,
Infrared absorption in the wing of the ν3 vibrational-rotational band of CO2,
Optics and Spectroscopy, 1983, Volume 54, Pages 562.
|
|
|
2. Зависимость коэффициентов поглощения от частоты в области крыла полосы ν3 СО2. Точки – эксперимент, кривые – расчет по формуле (9).
Frequency dependence of absorption coefficients in the region of the wing of the ν3 СО2 band. Points - experiment, curves - calculation by formula (9).
Defined Function = lgKab
|
- Y. Defined Function
- X. Wavenumber (cm⁻¹)
|
Cаттаров Х.,
Исследование инфракрасных спектров углекислого газа и фреонов в условиях, близких к атмосферным,
Ленинград, Автореферат канд ф.-м. н., 1983, 18 С..
|
|
|
3. Зависимость функции k(n) в области крыла полосы ν3 СО2. Точки – эксперимент, кривые – расчет по модели интерференции линий. n – число интерферирующих линий.
Dependence of the function k(n) in the wing region of the ν3 СО2 band. Points - experiment, curves - calculation by the line interference model. n is the number of interfering lines.
Defined Function = ln(κ), k=Kexp(ν)/KL(ν), k- поправочная функция (correction factor).
|
- Y. Defined Function
- X. Wavenumber (cm⁻¹)
|
|
|
109. Comparison of experimental and calculated spectrum (A0 in cm-1 amagat-2) T=296°K. observed, Lorentz absorption, best fit obtained with the two-parameter lineshape factor of Birnbaum [see Eq. (5)]. The optimized values of the parameters are given in Table IV.
Defined function = log10A0 + 10 |
- Y. Defined Function
- X. Wavenumber (cm⁻¹)
|
R. Le Doucen, C. Cousin, C. Boulet, and A. Henry,
Temperature dependence of the absorption in the region beyond the 4.3-µm band head of CO 2. 1: Pure CO 2 case,
Applied Optics, 1985, Volume 24, Pages 897-906,
DOI: 10.1364/AO.24.000897, http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-24-6-897.
|
|
|
209. Comparison of experimental and calculated spectrum (A0 in cm-1 amagat-2) T = 218°K: observed, Lorentz absorption, best fit obtained with the two-parameter lineshape factor of Birnbaum [see Eq. (5)]. The optimized values of the parameters are given in Table IV.
Defined function = log10A0 + 10 |
- Y. Defined Function
- X. Wavenumber (cm⁻¹)
|
|
|
|
7. Ratio of the experimental (from Refs. 20, 33, and 43) to calculated absorption coefficient for pure CO2 at 296°K in the troughs between the R lines of the v3 band. X Lorentzian model; 0 ECSA line-mixing model.
Defined Function = Kexp(ν)/ Kth(ν). ESCA = The energy corrected sudden approximation
20. C. Cousin, R. Le Doucen, C. Bouiet, A. Henry, and D. Robert. 1. Quant. Spectrosc. Radiat. Transfer 36,521 (1986).
33. C. Cousin-Lucasseau, Thesis, Rennes, 1987.
43. C. Cousin, R. Le Doucen, J. P. Houdeau, C. Boulet, and A. Henry, Appl. Opt. 25, 2434 (1986). |
- Y. Defined Function
- X. Wavenumber (cm⁻¹)
|
J.-.M. Hartmann,
Measurements and calculations of CO 2 room-temperature high-pressure spectra in the 4.3 μm region,
Journal of Chemical Physics, 1989, Volume 90, Issue 6, Pages 2944–2950,
DOI: 10.1063/1.455894.
|
|
|
5. Normalized absorption coefficient B0(u) vs wave number u for CO2-argon at room temperature; 0: experimental results, .: Lorentzian calculation, X: theoretical results BRQS-EC0 [cf. Eqs. (27) and (30) J obtained with the potential of Ref. 12 (A2 = 0.266, R2 = 1.09), b.: theoretical results BRQS-EC0 obtained with the optimized anisotropic potential V2(R) given in Fig. 7.
Defined function = ln(B0(u))
12. L. Berreby & E. Dayan, Mean square torque from linear molecule-rare gas atom systems at intermediate pressures, Molecular Physics, Volume 48, 1983 - Issue 3, Pages 581-592, https://doi.org/10.1080/00268978300100411 |
- Y. Defined Function
- X. Wavenumber (cm⁻¹)
|
Boissoles J., Menoux V., Le Doucen R., Boulet C., Robert D.,
Collisionally induced population transfer effects in infrared absorption spectra. II. The wing of the Ar-broadened ν 3 band of CO 2,
The Journal of Chemical Physics, 1989, Volume 91, Issue 4, Pages 2163-2171,
DOI: 10.1063/1.457024, https://doi.org/10.1063/1.457024.
|
|
|
9. The ratios of the observed absorption (αobserved) in the wing region beyond the band head of CO2 to the calculated ECS-P absorption (χECS-P) at T = 300°K: ---, for CO2+CO2; • - for CO2+N2 |
- Y. Defined Function
- X. Wavenumber (cm⁻¹)
|
J. Boissoles, C. Boulet, L. Bonamy and D. Robert,
Calculation of absorption in the microwindows of the 4.3 μm CO 2 band from an ECS scaling analysis,
Journal of Quantitative Spectroscopy and Radiative Transfer, 1989, Volume 42, Issue 6, Pages 509-520,
DOI: 10.1016/0022-4073(89)90041-1.
|
|
|
1. CO2-Ar absorption coefficient. o experiment [3], x, Δ – calculation with different potentials [3], •– calculation with dispersive line shape, ____ calculation according to the line wing theory
Defined Function = ln(kappa)
[3] Boulet C. in Spectral line shape, V.5, Proc 9th Int Conf, Torun, Poland, 1988, P.539 |
- Y. Defined Function
- X. Wavenumber (cm⁻¹)
|
Tvorogov S.D., Nesmelova L.I., Rodimova O.B.,
Far wings of spectral lines: theory, interpretation and application in atmospheric optics,
Proceedings of ASA Workshop, 1990. Tomsk,
Tomsk, Издательство ИОА, 1990, Pages 14-18.
|
|