We have carried out a detailed analysis of several long pathlength transmission measurements in the 8–12-µm atmospheric window in order to determine the extinction coefficient due to the water vapor continuum. Our results indicate that three modifications to the current LOWTRAN atmospheric transmission model are required. The first two corrections involve an improved fit to the pure water vapor continuum absorption together with the elimination of the atmospheric broadened continuum term. Finally, and most critically, a strong measured temperature dependence must be included in the water vapor continuum absorption coefficient. For pathlengths ranging from 10 km to 50 km, failure to incorporate these corrections can lead to errors in the computed transmission ranging from factors of 2 to more than 10,000.
Founded in 1916, the Optical Society of America (OSA) was organized to increase and diffuse the knowledge of optics, pure and applied; to promote the common interests of investigators of optical problems, of designers and of users of optical apparatus of all kinds; and to encourage cooperation among them. The purposes of the Society are scientific, technical and educational.
The Optical Society of America brings together optics and photonics scientists, engineers, educators, and business leaders. OSA's membership totals 15,500 individuals from over 95 countries. Approximately 47% of the Society's members reside outside the United States.