ICARUS is the official publication of the Division for Planetary Sciences of the American Astronomical Society and is dedicated to reporting the results of new research - observational, experimental, or theoretical - concerning the astronomy, geology, meteorology, physics, chemistry, biology, and other scientific aspects of our Solar System or extrasolar systems.
Imprint: ACADEMIC PRESS
As the world’s leading publisher of science and health information, Elsevier serves more than 30 million scientists, students, and health and information professionals worldwide. We are proud to play an essential role in the global science and health communities and to contribute to the advancement of these critical fields. By delivering world-class information and innovative tools to researchers, students, educators and practitioners worldwide, we help them increase their productivity and effectiveness. We continuously make substantial investments that serve the needs of the global science and health communities.
The shapes of the extreme wings of self-broadened CO2(lines have been investigated)in three spectral regions near 7000, 3800, and 2400 cm-1. Absorption measurements have been made on the high-wavenumber sides of band heads where much of the absorption by samples at a few atm is due to the extreme wings of strong lines whose centers occur below the band heads. New information has been obtained about the shapes of self-broadened CO2 lines as well as CO2 lines broadened by N2, O2, Ar, He, and H2. Beyond a few cm-1 from the line centers, all of the lines absorb less than Lorentz-shaped lines having the same half-widths. The deviation from the Lorentz shape decreases with increasing wavenumber, from one of the three spectral regions to the next. The absorption by the wings of H2- and He-broadened lines is particularly low, and the absorption decreases with increasing temperature at a rate faster than predicted by existing theories.