Проведены измерения поглощения инфракрасного излучения водяным паром в спектральном диапазоне 2000–8000 см–1. Регистрация спектров производилась с помощью IFS 125 HR Фурье-спектрометра при температуре 287 К и спектральном разрешении 0,03 см–1. Восстановлен спектр континуального поглощения водяного пара с привязкой к известному поглощению в окне 2500 см–1. Показано, что в рассмотренных условиях, в четырех исследованных окнах прозрачности величина континуума различается не более чем на 20%. Это находится в противоречии с моделью континуума MT_CKD, которая предсказывает гораздо большую изменчивость континуума в этих окнах прозрачности.
English version (Atmospheric and Ocean Optics), former Atmospheric Optics
English (IAO Publishing)
The water vapour self-continuum has been investigated by high sensitivity Cavity Ring Down Spectroscopy at room temperature in the 1.6 mm window. The real time pressure dependence of the continuum was investigated during pressure cycles up to 12 Torr for fifteen selected wavenumber values. The continuum absorption coefficient measured between 5875 and 6450 cm-1 shows a minimum value around 6300 cm-1 and ranges between 1*10-9 and 8*10-9 cm-1 for 8 Torr of water vapour. The continuum level is observed to deviate significantly from the expected quadratic dependence versus the pressure. This deviation is interpreted as due to a significant contribution of water adsorbed on the super mirrors to the cavity loss rate. The pressure dependence is well reproduced by a second order polynomial. We interpret the linear and quadratic terms as the adsorbed water and vapour water contribution, respectively. The derived self-continuum cross sections, Cs(T 1⁄4 296 K), ranging between 3*10-25 and 3*10-24 cm2 molecule-1 atm-1 are found in reasonable agreement with the last version of the MT_CKD 2.5 model but in disagreement with recent FTS measurements. The FTS cross section values are between one and two orders of magnitude higher than our values and mostly frequency independent over the investigated spectral region. The achieved baseline stability of the CRDS spectra (better than 1*10-10 cm-1) level totally rules out water continuum absorption at the FTS level (1.2 *10-7 cm-1 at 9 Torr) in the CRDS cell. In order to find the origin of such conflicting results, the differences and possible experimental biases in the two measurement methods are discussed.