We present a simple model which allows for the computation of the rototranslational band of the collision induced absorption spectra of N2-CH4 pairs at temperatures between 70 and 300 K and at frequencies of up to ~550 cm-1. The agreement with current experimental data has been obtained by adjusting the classical, multipole induced dipolar components by adding semiempirical quantum corrections. We have included a Q6-induction term, never considered before, which we believe is essential for the agreement we have obtained. With the set of temperature-independent parameters derived from fitting the experimental data, our model reproduces recent laboratory measurements within 124-300 K temperature and the 10-600 cm-1 frequency range, within few percent root mean square. The method provides reliable temperature dependence of the absorption coefficient as a function of frequency at temperatures as low as 70 K, which are much lower than those at which laboratory measurements are taken. The work is of significance for modeling the infrared opacity of Titan's atmosphere.
ICARUS is the official publication of the Division for Planetary Sciences of the American Astronomical Society and is dedicated to reporting the results of new research - observational, experimental, or theoretical - concerning the astronomy, geology, meteorology, physics, chemistry, biology, and other scientific aspects of our Solar System or extrasolar systems.
Imprint: ACADEMIC PRESS
As the world’s leading publisher of science and health information, Elsevier serves more than 30 million scientists, students, and health and information professionals worldwide. We are proud to play an essential role in the global science and health communities and to contribute to the advancement of these critical fields. By delivering world-class information and innovative tools to researchers, students, educators and practitioners worldwide, we help them increase their productivity and effectiveness. We continuously make substantial investments that serve the needs of the global science and health communities.