A theory is presented for the calculation of the continuous absorption due to the far wing contributions of allowed lines. The theory is based on the quasistatic approximation for the far wing limit and the binary collision approximation of one absorber molecule and one bath molecule. In line space, the motion of the dipole moment of the absorber molecule, determined by the time displacement Liouville operator related to the total Hamiltonian of the absorber molecule and the bath molecule, is approximately expressed as the ordered product of two time displacement Liouville operators, one related to the intermolecular potential and the other to the unperturbed Hamiltonian. Using a Laplace transformation, the spectral density is expressed in terms of a Cauchy integral whose integrand is a product of two resolvent operators corresponding to the interaction and to the unperturbed Hamiltonian, respectively. After isolating the effects of the bath variables, the spectral density and subsequently the absorption coefficient are expressed in terms of the individual line coupling functions, or the individual line shape functions. By using two average line shape functions instead of the individual ones, the expression of the absorption coefficient closely matches empirical models. The validity of the present theory is discussed, and some numerical results of the water continuum absorption in the infrared region are presented for comparison with experimental data. A good agreement in both the magnitude and the temperature dependence of the absorption coefficients is obtained. Some further extensions and applications of the present theory are also discussed briefly.
The purpose of The Journal of Chemical Physics is to bridge a gap between journals of physics and journals of chemistry by publishing quantitative research based on physical principles and techniques, as applied to "chemical" systems. Just as the fields of chemistry and physics have expanded, so have chemical physics subject areas, which include polymers, materials, surfaces/interfaces, and biological macromolecules, along with the traditional small molecule and condensed phase systems. The Journal of Chemical Physics (JCP) is published four times per month (48 issues per year) by the American Institute of Physics.
The American Institute of Physics (AIP) is a 501(c)(3) not-for-profit membership corporation created for the purpose of promoting the advancement and diffusion of the knowledge of physics and its application to human welfare. It is the mission of the Institute to serve the sciences of physics and astronomy by serving its member societies, by serving individual scientists, and by serving students and the general public.
As a "society of societies," AIP supports ten Member Societies and provides a spectrum of services and programs devoted to advancing the science and profession of physics. A pioneer in digital publishing, AIP is also one of the world's largest publishers of physics journals and produces the publications of more than 25 scientific and engineering societies through its New York-based publishing division.
The continuum absorption by H2O has several characteristics that are common throughout the windows in the infrared and millimeter-wave regions. Values of the continuum absorption coefficient calculated on the basis of simple, widely used line shapes may differ greatly from observed values in the windows between strong absorption lines. The temperature dependence of this absorption is also not predictable from present day understanding of line shapes or of dieters, which may also contribute. The shapes of self-broadened H2O lines are quite different from those of N2-broadened lines, and the difference increases with increasing distance from the centers of the lines. Data obtained from laboratory samples and from atmospheric paths are presented to compare the various windows in the infrared and millimeter regions.