Existing rototranslational collision-induced absorption (CIA) spectra of methane pairs are analyzed with the help of spectral profiles computed from quantum mechanics. Dipoles induced by octopolar and hexadecapolar fields, hexadecapolar overlap, and the gradient of the octopolar field are considered. The spectral contributions of both bound and free pairs of molecules are accounted for. The analysis which suggests a centrifugal distortion of rotating methane molecules permits one to reproduce from theory the measured CIA spectra at all temperatures (126–300 K) and over the full range of frequencies (> 700 cm−1 at high temperatures) with rms deviations that are smaller than the experimental uncertainties. The values of the octopole and hexadecapole moments of (nonrotating) CH4 molecules needed for that purpose are consistent with state-of-the-art ab initio computations for the first time in such work.
The Journal of Molecular Spectroscopy presents experimental and theoretical articles on all subjects relevant to molecular spectroscopy and its modern applications. An international medium for the publication of some of the most significant research in the field, the Journal of Molecular Spectroscopy is an invaluable resource for astrophysicists, chemists, physicists, engineers, and others involved in molecular spectroscopy research and practice. Submit your Article online The 'Elsevier Editorial System' (or EES) is a web-based system with full online submission, review and status update capabilities. EES allows you to upload files directly from your computer. This is part of our on-going efforts to improve the efficiency and accuracy of our editorial procedures and the quality and timeliness of the manuscripts published.
former Academic Press
As the world’s leading publisher of science and health information, Elsevier serves more than 30 million scientists, students, and health and information professionals worldwide. We are proud to play an essential role in the global science and health communities and to contribute to the advancement of these critical fields. By delivering world-class information and innovative tools to researchers, students, educators and practitioners worldwide, we help them increase their productivity and effectiveness. We continuously make substantial investments that serve the needs of the global science and health communities.
The collision-induced spectra of C2N2 gas and a gaseous mixture of C2Nl and Ar at 298 K have been obtained in the spectral region below 120 cm-1 using far-infrared laser and microwave techniques as well as a Fourier-transform spectrometer. In addition, the collision-induced spectra of a gaseous mixture of CO2 and Ar are reported at temperatures of 233 and 298 K in the spectral region below 230 cm-1. The theoretical values for the spectral moments α1 and γ1 for CO2 are much smaller than the experimental values, as expected for a molecule with a relatively large quadrupole moment. However, for CO2-Ar mixtures, the agreement between the theoretically and experimentally determined spectral moments is relatively good, resulting in a value of 4.6 B for the quadrupole moment of CO2 instead of the generally accepted value of 4.3 B. The quadrupole moment of C2N, is estimated to be 6.2 ± 0.4 B from our data and the theory for the spectral moments, if a correction is made for an overestimate of the quadrupole moment similar to that obtained for the CO2-Ar mixture. This value is considerably smaller than a previously reported calculated result of 9.0 B. Line-shape expressions based on information theory (IT6) do not yield good agreement with experiment, a result that is attributed to the large anisotropy of the molecules.