A far-wing line shape theory based on the binary collision and quasistatic approximations that is applicable for both the low- and high-frequency wings of the vibration-rotational bands has been developed. This theory has been applied in order to calculate the frequency and temperature dependence of the continuous absorption coefficient for frequencies up to 10,000 cm−1 for pure H2O and for H2O-N2 mixtures. The calculations were made assuming an interaction potential consisting of an isotropic Lennard-Jones part with two parameters that are consistent with values obtained from other data, and the leading long-range anisotropic part, together with the measured line strengths and transition frequencies. The results, obtained without the introduction of adjustable parameters, compare well with the existing laboratory data, both in magnitude and in temperature dependence. This leads us to the conclusion that the water continuum can be explained in terms of far-wing absorption. Current work in progress to extend the theory and to validate the theoretically calculated continuum will be discussed briefly
Attention is given to all processes extending from the earth surface to the tropopause, but special emphasis continues to be devoted to the physics of clouds and precipitation, i.e. atmospheric aerosols; microphysical processes; cloud dynamics and thermodynamics; numerical simulation of cloud processes; clouds and radiation; meso- and macrostructure of clouds and cloud systems, and weather modification.
As the world’s leading publisher of science and health information, Elsevier serves more than 30 million scientists, students, and health and information professionals worldwide. We are proud to play an essential role in the global science and health communities and to contribute to the advancement of these critical fields. By delivering world-class information and innovative tools to researchers, students, educators and practitioners worldwide, we help them increase their productivity and effectiveness. We continuously make substantial investments that serve the needs of the global science and health communities.
This is a comprehensive study of water-vapor line and continuum absorption in the 8–14μm atmospheric window by laser-photoacoustic spectroscopy. The characteristics of laser-photoacoustic spectroscopy and detectors are discussed with results on continuum and line absorption at selected CO2-laser wavelengths.
We have assigned four weak absorption lines which occur at the CO2-laser emissions 10P(40), 10R(20), 9P(38) and 9R(36) to pure rotational transitions of H2O, and have determined the dependence of the continuum water-vapor absorption over the temperature range +70°C and −20°C. The measured negative temperature coefficient of the continuum is consistent with both monomer and dimer models, yet not with predictions of larger water clusters.
Experiments with supersaturated water vapor indicate that for S ⩾ 1 collision broadening of distant strong lines as well as water dimer absorption contribute to the continuum. However, the dimer absorption is an order of magnitude too small to cause a significant contribution at ambient atmospheric conditions.
We have investigated the effect of UV-radiation on the 8–14μm absorption of water vapor, buffered either with N2 or synthetic air. The observed changes are explained by UV-photodissociation of H2O molecules and by ozone production. There is no evidence in favor of a cluster model.
Finally, we compared our measured spectra with LOWTRAN 6 and HITRAN models. The LOWTRAN yields a stronger negative temperature dependence than observed while the HITRAN does not predict the observed continuum absorption.