Coefficients for oxygen absorption in the infrared induced by collisions with O2 and N2 are reported over the range 1400–1800 cm−1 and 225–356 K. These coefficients are used to calculate the absorption for O2 in air as a function of temperature and wavenumber, and comparisons are made with previous determinations. In addition, structured absorption features superimposed on the broad collision-induced absorption band, which were observed at all temperatures studied, are interpreted in terms of the presence of (O2)2 and O2-N2 van der Waals molecules.
JGR-Atmospheres includes physics and chemistry of the atmosphere, as well as the atmospheric-biospheric, lithospheric, and hydrospheric interface.
AGU's Vision is a worldwide scientific community that advances, through unselfish cooperation in research, an understanding of Earth and space that is used for the benefit of humanity.
The infrared fundamental band and the five strongest near-infrared and visible electronic bands of gaseous oxygen were studied from 90 to 115 K with path lengths up to 140 m in two low-temperature multiple-traversal absorption cells. The profile of the fundamental band is in good agreement with the theory of quadrupole-induced absorption except for a low-intensity residual in the Q-branch region. Although the electronic bands are less amenable to complete analysis, the general validity of a Boltzmann relation in their intensity distributions confirms their collision-induced nature. The temperature variation of the integrated band intensities is indicative of quadrupole induction for the fundamental and of overlap induction for the electronic bands; a somewhat too sharp rise at low temperatures may be due to the neglect of the quadrupole–quadrupole coupling in evaluating the pair distribution function.