Recent laboratory observations and advances in theoretical quantum chemistry allow a reappraisal of the fundamental mechanisms that determine the water vapour self-continuum absorption throughout the infrared and millimetre wave spectral regions. By starting from a framework that partitions bimolecular interactions between water molecules into free-pair states, true bound and quasi-bound dimers, we present a critical review of recent observations, continuum models and theoretical predictions. In the near-infrared bands of the water monomer, we propose that spectral features in recent laboratory-derived self-continuum can be well explained as being due to a combination of true bound and quasi-bound dimers, when the spectrum of quasi-bound dimers is approximated as being double the broadened spectrum of the water monomer. Such a representation can explain both the wavenumber variation and the temperature dependence. Recent observations of the self-continuum absorption in the windows between these near-infrared bands indicate that widely used continuum models can underestimate the true strength by around an order of magnitude. An existing far-wing model does not appear able to explain the discrepancy, and although a dimer explanation is possible, currently available observations do not allow a compelling case to be made. In the 8–12 μm window, recent observations indicate that the modern continuum models either do not properly represent the temperature dependence, the wavelength variation, or both. The temperature dependence is suggestive of a transition from the dominance of true bound dimers at lower temperatures to quasi-bound dimers at higher temperatures. In the mid- and far-infrared spectral region, recent theoretical calculations indicate that true bound dimers may explain at least between 20% and 40% of the observed self-continuum. The possibility that quasi-bound dimers could cause an additional contribution of the same size is discussed. Most recent theoretical considerations agree that water dimers are likely to be the dominant contributor to the self-continuum in the mm-wave spectral range.
Papers with the following subject areas are suitable for publication in the Journal of Quantitative Spectroscopy and Radiative Transfer:
As the world’s leading publisher of science and health information, Elsevier serves more than 30 million scientists, students, and health and information professionals worldwide. We are proud to play an essential role in the global science and health communities and to contribute to the advancement of these critical fields. By delivering world-class information and innovative tools to researchers, students, educators and practitioners worldwide, we help them increase their productivity and effectiveness. We continuously make substantial investments that serve the needs of the global science and health communities.
About 200 pure water-vapor spectra covering the region from 800 to 3500 cm−1 were recorded with resolution of 0.1 cm−1 at temperatures 311, 318, 325, 339, 352, and 363 K using a 2 m base White cell coupled to the BOMEM DA3.002 FTIR spectrometer. The water-vapor pressure varied from 28 to 151 mbar (21–113 Torr). Under these conditions, the continuum absorbance is quite measurable with the available path lengths up to 116 m. A program was developed for spectral processing that calculates, fits, and removes ro-vibrational structure from the spectrum. The spectra obtained were used to retrieve averaged and smoothed binary absorption coefficients over the region from 800 to 1250 cm−1. Our continuum data extrapolated to room temperature are in reasonable agreement with the MT_CKD continuum model. But at higher temperatures the MT_CKD model provides very low values, which are up to 50% less than those experimentally measured.