Spectral dependence of the self-continuum cross-section: measured in ref. 17 (empty circles). [17] I.V. Ptashnik, T.M. Petrova, Yu.N. Ponomarev, K.P. Shine, A.A. Solodov, A.M. Solodov , Near-infrared water vapour self-continuum at close to room temperature, Journal of Quantitative Spectroscopy and Radiative Transfer, 2013, Volume 120, Pages 23-35, DOI: 10.1016/j.jqsrt.2013.02.016, http://dx.doi.org/10.1016/j.jqsrt.2013.02.016
The room temperature self- and foreign-continua of water vapor have been measured near 4250 cm−1 with a newly developed high sensitivity cavity ring down spectrometer (CRDS). The typical sensitivity of the recordings is αmin ≈ 6 × 10−10 cm−1 which is two orders of magnitude better than previous Fourier transform spectroscopy (FTS) measurements in the spectral region. The investigated spectral interval is located in the low energy range of the important 2.1 μm atmospheric transparency window. Self-continuum cross-sections, CS, were retrieved from the quadratic dependence of the spectrum base line level measured for different water vapor pressures between 0 and 15 Torr, after subtraction of the local water monomer lines contribution calculated using HITRAN2012 line parameters. The CS values were determined with 5% accuracy for four spectral points between 4249.2 and 4257.3 cm−1. Their values of about 3.2 × 10−23 cm2 molecule−1 atm−1 are found 20% higher than predicted by the MT_CKD V2.5 model but two times weaker than reported in the literature using FTS. The foreign-continuum was evaluated by injecting various amounts of synthetic air in the CRDS cell while keeping the initial water vapor partial pressure constant. The foreign-continuum cross-section, CF, was retrieved from a linear fit of the spectrum base line level versus the air pressure. The obtained CF values are larger by a factor of 4.5 compared to the MT_CKD values and smaller by a factor of 1.7 compared to previous FTS values. As a result, for an atmosphere at room temperature with 60% relative humidity, the foreign-continuum contribution to the water continuum near 4250 cm−1 is found to be on the same order as the self-continuum contribution.
PCCP publishes new, original research, covering the areas of physical chemistry, chemical physics and biophysical chemistry, and includes papers on: biophysical chemistry, chemisorption and heterogeneous catalysis, clusters, colloid and interface science, computational chemistry and molecular dynamics, electrochemistry, energy transfer and relaxation processes, gas-phase kinetics and dynamics, laser-induced chemistry, liquids and solutions, materials science, molecular beam kinetics and spectroscopy, photochemistry and photophysics, physical chemistry of macromolecules and polymers, physisorption and chromatographic science, quantum chemistry and molecular structure, radiation chemistry, reactions in condensed phases, solid-state chemistry (microstructures and dynamics), spectroscopy of molecules and gas-phase complexes spectroscopy, statistical mechanics and quantum theory of the condensed phase, statistical mechanics of gaseous molecules and complexes, surface science, thermodynamics, zeolites and ion-exchange phenomena
The RSC is the largest organisation in Europe for advancing the chemical sciences. Supported by a worldwide network of members and an international publishing business, our activities span education, conferences, science policy and the promotion of chemistry to the public.
The gaseous absorption of solar radiation within near-infrared atmospheric windows in the Earth's atmosphere is dominated by the water vapour continuum. Recent measurements by Baranov et al. (2011) [17] in 2500 cm−1 (4 μm) window and by Ptashnik et al. (2011) [18] in a few near-infrared windows revealed that the self-continuum absorption is typically an order of magnitude stronger than given by the MT_CKD continuum model prior to version 2.5. Most of these measurements, however, were made at elevated temperatures, which makes their application to atmospheric conditions difficult. Here we report new laboratory measurements of the self-continuum absorption at 289 and 318 K in the near-infrared spectral region 1300–8000 cm−1, using a multipass 30 m base cell with total optical path 612 m. Our results confirm the main conclusions of the previous measurements both within bands and in windows. Of particular note is that we present what we believe to be the first near-room temperature measurement using Fourier Transform Spectrometry of the self-continuum in the 6200 cm−1 (1.6 μm) window, which provides tentative evidence that, at such temperatures, the water vapour continuum absorption may be as strong as it is in 2.1 μm and 4 μm windows and up to 2 orders of magnitude stronger than the MT_CKD-2.5 continuum. We note that alternative methods of measuring the continuum in this window have yielded widely differing assessment of its strength, which emphasises the need for further measurements.